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Abstract—Multimodal Optimization (MMO) aims at iden-
tifying several best solutions to a problem whereas classical
optimization converge often to only one good solution. MMO
has been an active research area in the past years and several
new evolutionary algorithms have been developed to tackle
multimodal problems.

In this work, we compare extensively three recent evolution-
ary algorithms (MoBiDE, Multimodal NSGAII and MOMMOP).
Each algorithm uses multiobjectivization, together with niching
techniques to address single objective MMO problems. We
have fully re-implemented MoBiDE and MM-NSGAII in order
to better evaluate their sensitivity to parameter changes and
their strengths and weaknesses. We have carefully evaluated all
algorithms on the same benchmark functions and with the same
parameters settings. The algorithms are also compared to a non-
multimodal evolutionary algorithm to better highlight the impact
of the multimodal adaptations.

Moreover, full access to the detailed results and source code
is granted on our website for the ease of reproducibility.

I. INTRODUCTION

MultiModal Optimization Problems (MMOP) are problems
for which several optimal solutions exist. Identifying different
optimal solutions allows the user to choose which one fits
his needs the best. Indeed, engineers often face problems in
which physical conditions, prices or time can make one or
several solutions unreachable. In those situations, having a set
of optimal or near optimal solutions allows to switch to what
fits the best depending on the situation. Therefore, the need of
finding several optimal solutions is becoming more and more
present. However, classical evolutionary optimization methods
usually focus on finding only one solution. Therefore, the
development of multimodal optimization (MMO) algorithms
has been an intense research area in the past years.

Several techniques have been developed to tackle this prob-
lem [1], [2], [3], [4]. The study of all those techniques is out of
the scope of this work, which focus on the comparative study
of 3 recent evolutionary algorithms dedicated to multimodal
optimization : NSGAII adapted for MMO (PNA-NSGAII) [5]
, Multimodal Optimization using a Bi-objective Differential
Evolution (MOBiDE) [6] and Multiobjective Optimization
for MultiModal Optimization Problems (MOMMOP) [7]. To
solve a multimodal problem, these algorithms transform the
multimodal scalar problem into a multiobjective optimization

problem (MOP). This process is referred to as multiobjec-
tivization. They also use niching techniques, which consist
in finding and preserving several solutions to the problem in
different places of the search space. To stress the importance
of the multimodal adaptations, we also compare the studied
algorithms to a classic multiobjective genetic algorithm. We
chose the original version of NSGAII as the multiobjective
genetic algorithm, and it is used to solve the same bi-objective
problem as PNA-NSGAII.

To assess the performances of such algorithms, several
benchmark functions have been built [8]. In spite of this
profusion of benchmark functions, experimental conditions
may differ from one study to another. So, even though the
number of function evaluations is often the same, a lot of other
parameters come into play for each algorithm performances.
Thus, comparing results of different algorithms with slightly
different parameters could lead to wrong interpretations of the
results. Moreover, most of the time only the best performances
obtained are presented. No information is given about the
sensitivity to parameters, which can be very important for real
cases.

All comparisons are done under the strict same experimen-
tal conditions and statistical tests were conducted to validate
them. In addition, the influence of a specific parameter of
MOBiDE is explored to better understand the strengths and
weaknesses of this algorithm. As no implementation of PNA-
NSGAII and MOBiDE were available, we implemented our
own version of those algorithms. The implementations have
been made in java using ECJ [9]. All results and material used
for the experimentations are available on our website1.

The next section introduces the tested algorithms. Ex-
perimental conditions are presented in details in Section III.
Section IV presents and discusses the results obtained. Finally,
Section V summarizes and concludes the paper.

II. ALGORITHMS

In this section, we will briefly introduce each of the com-
pared algorithms and their workflow after introducing some
concepts about multiobjective problems. For the full details
about each algorithm, the reader can refer to the corresponding
papers: NSGAII [10], PNA-NSGAII [5], MOBIDE [6] and
MOMMOP [7].

1http://denispallez.i3s.unice.fr/doku.php?id=soft_multimodal
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Fig. 1: Example of non dominated sorting in a minimization
context. The gray colored rectangle represents the hypervol-
ume measure of the individual X

A. Multiobjective Problem

Each studied algorithm uses multiobjectivization to solve
MMOPs. The result of this operation is a Multiobjective
Optimization Problem (MOP) which solutions are solutions
to the MMOP.

The formalization of a MOP is shown in Def. 1. Solving
a MOP consists in finding parameter vectors that optimize
(maximize or minimize depending on the context) F .

Definition 1. Multiobjective optimization problem

Let F = [f1, f2, ..., fn],
D = {x ∈ R

m : h(x) = 0, g(x) ≥ 0}.
minF (x), x ∈ D is a multi-objective optimization problem.
Elements of D are called parameter vectors, potential solutions
(sometimes shorten as solutions) or individuals (in the context
of evolutionary algorithms).

In order to evaluate the performance of parameter vectors
to solve a MOP, the dominance (more precisely pareto domi-
nance) relation has been created and is explained in Def. 2. If
a parameter vector is dominated by another parameter vector,
it is a poorer solution to the MOP. It is worth noting that
sometimes we cannot compare two potential solutions using
the dominance relation. It is illustrated in Fig.1 in the case of
a 2 objectives problem where all parameter vectors having the
same color do not dominate each other.

Definition 2. Pareto dominance

Let F = {f1, f2, ..., fn} be a n objectives problem from D
in R

n to be minimized. For (x1,x2) ∈ D, x1 dominates x2,
noted x1 ≺ x2, if and only if:
∀i ∈ [1, n], fi(x1) ≤ fi(x2) and
∃i ∈ [1, n] / fi(x1) < fi(x2)

Using the dominance relation, the non-dominated sorting
procedure consists in assigning a rank to each element of a set
of parameter vectors. This procedure is presented in Alg. 1.
Fig.1 shows an example of the result of this procedure, each
color representing a rank.

The pareto front is then defined as the subset of individuals
of rank 1 within a set of individuals. The optimal pareto front
is the set of elements from D that are non dominated. This

is the solution to a MOP. Thus this is what a multiobjective
algorithm should converge to. We will now explain the key

Algorithm 1 Non dominated sorting of a set of parameter
vectors S

rank = 1
while S �= ∅ do

H = nonDominatedIndividual(S)
assign rank to H
rank = rank + 1
S = S \H

end while

components of the studied algorithms.

B. PNA-NSGAII

The goal of PNA-NSGAII is to optimize a scalar multi-
modal function, i.e. finding different parameter vectors that
give the optimum value of the function. To do so, multiob-
jectivization is used. A second objective, ensuring diversity,
is added to the function to be optimized. This objective is
presented in (1), where POP is the size of the population.
Ω(x) measures the cumulative distance to other individuals in
the population, so, the smaller f2 is, the further the individual
is from other individuals. Therefore, minimizing f2 increases
the diversity in the population.

f2(x) =
1∑POP

j=1 ||x− xj||2
=

1

Ω(x)
(1)

To solve this bi-objectives problem (the MMOP under study,
referred to as f , and the introduced f2), a dedicated multiobjec-
tive algorithm is used. For PNA-NSGAII, a modified version of
NSGAII is used. The workflow of PNA-NSGAII is presented
in Figure 3. A niching technique has been added in the non-
dominated sorting routine of NSGAII. It consists in making
individuals that are far from one another not comparable. This
leads to a new definition of the dominance relation given in
Def. 3.

Definition 3. PNA-NSGAII dominance

For (x1,x2) ∈ D, x1 dominates x2, noted x1 ≺mm x2,
if and only if:
proximate(x1,x2) is true and
∀i ∈ [1, n], fi(x1) ≤ fi(x2) and
∃i ∈ [1, n] / fi(x1) < fi(x2)

This prevents the algorithm from discarding individuals
that are far from any other individual in the population (be-
cause they are part of the pareto front with the new dominance
relation), and thus maintain a good diversity of individuals
through the search space. The proximate function computation
is given by (2), (3) and (4). m is the dimension of the problem,
Ud and Ld are the upper and lower bounds of the search space
for dimension d and xd stands for the dth component of vector
x.

T = exp
ln(POP )

m
(2)

vd =
Ud − Ld

T
∀d ∈ 1, 2, ...,m (3)

proximate(x1,x2) = 1 if |(x1 − x2)d| ≤ vd (4)
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Fig. 2: NSGAII workflow Fig. 3: PNA-NSGAII workflow Fig. 4: MOBiDE’s workflow Fig. 5: MOMMOP workflow

TABLE I: Multi-objectivization of the different algorithms

NSGAII PNA-NSGAII MOBiDE MOMMOP

Objective 1 Min. or Max. (f(x)) Min.

(
xi +

|f(x)−Fbest|
|Fworst−Fbest| × (Ui − Li)× η

)

Objective 2 Min.

(
f2(x) = 1∑POP

j=1
||x−xj||2

= 1
Ω(x)

)
Max.

(
f3(xd) =

Ω(x)
POP = 1

POP×f2(x)

)
Min.

(
1− xi +

|f(x)−Fbest|
|Fworst−Fbest| × (Ui − Li)× η

)

Preventing the comparison of individuals far from one another
allows groups of individuals to gather around local optima. To
prevent this and guide the individuals toward the global optima,
another self-adaptive parameter is introduced, the adaptive
constraint. It is used to force the convergence toward the
best values by making individuals with a fitness worse than a
computed threshold infeasible. Equations (5) to (7) show how
this threshold is adaptively computed through the generations
of the GA. (5) is presented in a minimization context. ε
is the expected precision for the retrieved optima, F best is
the best value of f(x) found so far and MaxGen is the
maximum number of generation allowed for the evolution
process. Looking at fgen that exponentially decreases with
the generations, we can see that this constraint is loose at
the beginning of the run and tightens as the end of the run
approaches. This makes the population progressively gather
and converge toward the global optima as local optima become

infeasible.

If f(x) > F best + fgen × ε then x is infeasible. (5)

fgen = a× expb×gen with: (6)

a =
1014

expb
, b =

ln(2)− ln(1014)

MaxGen
(7)

Now that PNA-NSGAII has been presented, we will describe
the principal components of MOBiDE.

C. MOBiDE

As for PNA-NSGAII, MOBiDE introduces a second ob-
jective focusing on the diversity of solutions. This objective is
presented in (8). We can see that this objective is almost the
same as the one added in PNA-NSGAII.

Max.

(
f3(xd) =

Ω(x)

POP

)

⇐⇒ Max.

(
1

POP × f2(x)

) (8)
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What differs between those algorithms is the evolutionary
algorithm used (DE for MOBiDE and a GA for PNA-NSGAII)
and the niching techniques. MOBiDE’s workflow is presented
in Fig.4.

MOBiDE is based on DE/rand/1/bin [11] to generate
new individuals. The breeding procedure of this algorithm is
recalled in Alg. 2. MOBiDE uses an external archive to keep
track of the best individuals found through the evolution. Each
time an individual is generated, if it is within a δ radius of
any element of the archive, it is immediately discarded, and
another individual is generated. This makes the population
concentrate on different part of the search space, which is a
kind of niching technique. Then, individuals of the population

Algorithm 2 DE Breeding procedure

for i ∈ [1, POP ] do
chose i1, i2, i3 randomly such that i �= i1 �= i2 �= i3
V = Xi1 + F × (Xi2 −Xi3)
U = binaryCrossover(V,Xi)
keep best of U and Xi for the next generation.

end for

are ranked using the non dominated sorting procedure and
the hypervolume criteria. The hypervolume is a measure of
diversity in the objective space. It consists in measuring the
difference of the hypervolume dominated by the current rank
and the hypervolume dominated by the current rank without
the studied solution. This gives the volume of space dominated
only by the studied solution in the rank. Fig.1 illustrates
this in a 2 objectives minimization case. The gray rectangle
represents the hypervolume measure of solution x. The greater
the hypervolume measure is, the better the solution. The
hypervolume measure is used to sort individuals belonging
to the same rank. After the ranking, only the POP best
individuals are kept to form the new population.

The archive is then updated using this new population. In-
dividuals that present a good enough fitness for the multimodal
function (9) are added to the archive. The required fitness value
to be added to the archive is computed from the best fitness
value found since the beginning of the run (F best) and a fixed
parameter α. α has been set to 0.1 in the experiments, as it is
the case in the work presented in [6]

Add x to the archive if⎧⎨
⎩
f(x) < (1 + α) ∗ F best when F best > 0

f(x) < (1− α) ∗ F best when F best < 0

f(x) < 0.001 when F best ≈ 0

(9)

Finally, the archive is cleansed by removing any individual that
has a fitness bellow the average fitness of the individuals in the
archive. Then a new generation can begin with the generation
of new individuals.

D. MOMMOP

PNA-NSGAII and MOBiDE add an objective to the exist-
ing multimodal function to be optimized to build a Multiobjec-
tive Optimization Problem (MOP). MOMMOP adopts another
strategy. It builds a brand new MOP, using the multimodal
problem as part of the different objectives. The Bi-Objective

Problem (BOP) built by MOMMOP is presented in (10). In
each BOP, η is a parameter that grows with the number of
function evaluations (FEs), giving more importance to the
optimization of the MMOP f as the run progresses.

BOPi

⎧⎨
⎩

Min.
(
xi +

|f(x)−F best|
|Fworst−F best| × (Ui − Li)× η

)
Min.

(
1− xi +

|f(x)−F best|
|Fworst−F best| × (Ui − Li)× η

)
(10)

Authors of MOMMOP proved that the two objectives of this
MOP are conflicting. Indeed, the first objective scales with xi

while the second scales with 1− xi. And for both objectives,
the second term is the same and is a normalized evaluation
of f . So these two objectives are clearly conflicting. Authors
of MOMMOP also proved that all pareto optimal solutions to
this MOP are solutions to the MMOP f . This means that the
solutions to BOPi is a subset of the solutions to f .

We can see that the presented MOP is associated with
one of the decision variable. Choosing only one particular
variable and solving the MOP associated with it could result
in missing some of the solutions to the problem f . Indeed,
several solutions to f may have the same value for xi, and
thus will have the same value for both objectives of BOPi.
Thus some solutions are more likely to be discarded by the
algorithm (when ranking using the crowding distance and
selecting only the best individuals). Therefore, MOMMOP is
using simultaneously the bi-objective problems linked to each
decision variable. To do so, an extension to the dominance
relation has been defined and replaces the standard dominance
in this algorithm. (11) shows this new dominance relation.

x ≺ y if :

∀i ∈ [1, D],x ≺ y on BOPi
(11)

Then a niching technique, showed in (12) has also been
added, modifying further the dominance. The normalization
is explained in (13) and the distance is the euclidean distance.
This modification helps discarding individuals that are too
close to one another by making one dominates the other. So the
dominated individual will be assigned a lower rank during the
non dominated sorting, and thus is most likely to be discarded.

x ≺ y if :

f(x) is better than f(y)∧
distance(norm.(x), norm.(y)) < 0.01

(12)

norm.(x) =y so that

∀i ∈ [1, D], yi =
xi − Li

Ui − Li

(13)

The workflow of the algorithm used to solve the crafted MOP
using this new dominance is presented in Fig.5. We can see
that this algorithm is almost the same as NSGA-II, but instead
of using genetic operators to generate new individuals, it uses
the differential evolution operators. In addition, when sorting
the population, the dominance described in this subsection is
used instead of the standard dominance.

E. NSGAII

As explained before, all studied algorithms dedicated to
MMOP use multiobjectivization. But then dedicated algo-
rithms are created to solve the resulting multiobjective prob-
lem. To stress what is brought by those algorithms, we
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compared them to the original NSGAII [10], solving the MOP
resulting from PNA-NSGAII’s multiobjectivization.

NSGAII workflow is presented in Fig.2. In NSGAII, se-
lection and generation of individuals is done using classic
operators: a tournament selection, SBX crossover [12] and
polynomial mutation [13].

Once the children are generated, the non dominated sorting
procedure takes place on the combined population composed
of both the parents and the children. Then, only the POP
best individuals are kept to form the population for the next
generation. The crowding distance is used to rank individuals
belonging to a same rank. The less crowded an individual is,
i.e. the bigger the crowding distance is and the better it is. The
crowding distance computation procedure is recalled in Alg. 3.
Finally, a new generation can take place with the generation

Algorithm 3 Compute the crowding distance for a front F
l = |F|
for all i do

set F [i]crowding = 0
end for
for all objective m do
F = Sort(F ,m)
F [1]crowding = F [l]crowding =∞

end for
for i = 2 to l − 1 do
F [i]crowding = F [i]crowding +

F [i+1].m−F [i−1].m
fmax
m −fmin

m

end for

of new individuals from the new population.

The components of each of the compared algorithms have
been presented. Tab. I sum up the objectives used by each
algorithm while the global workflow of each algorithm is
presented in Figs. 2 to 5. We can now introduce the details
about the experiments conducted.

III. EXPERIMENTS

This section aims at presenting the experimental conditions
used. We will first describe common elements to all tested
algorithms before introducing some specific parameters for
each algorithm.

A. Common Elements

The first thing to set up is the set of benchmark functions
that will be used. A large choice of functions is available [8].
To have a good insight of each algorithm strengths and
weaknesses, it is essential to use functions that present different
types of problems. A set of benchmark functions respecting
this condition has been published for the CEC2013 multimodal
optimization competition [14]. Along with the benchmark
functions, this technical report also provides the maximum
number of function evaluations allowed for each function,
some interesting figures to present as results when dealing with
MMOP and some experimental recommendations. We will use
this benchmark as the test bed for our comparisons.

As recommended in [14], each experiment is run 50 times
and average results are presented. We want to compare the

TABLE II: Common parameters

Benchmark functions CEC2013 [14]

Number of runs 50

Population size 100 ∗ dim
Precision (ε) 0.001

average results of the same experiment done with several
algorithms. To ensure that the differences observed between
those means are relevant, a statistical test is required. We chose
to use the Kruskal-Wallis [15] test to validate our results. This
test is the equivalent to the ANOVA test when one does not
know if the results of the experiments follow a normal law. In
addition, the Kruskal-Wallis test presents similar results to the
ANOVA test when dealing with data following a normal law
and having enough samples [15].

To assess the performances of the algorithms, the peak ratio
measure is used. This measure, presented in [14], is the ratio
of the number of optima retrieved over the total number of
optima of the function.

All implemented algorithms are population based. To be
fair in our comparisons, we chose to compare them with the
same population size. This size has been set to 100∗m where
m is the dimension of the problem. This value is what has
been used by the authors of [5].

In all the conducted experiments, the expected precision
for the retrieved optima is ε = 0.001.

Thanks to our own implementation of PNA-NSGAII and
MOBiDE using the ECJ library, the matlab sources of MOM-
MOP provided by the authors and the implementation of
NSGAII provided in ECJ, we have access to the results of
each algorithm at each generation of the runs. So, in addition
to the final results, we are also able to compare the results
at each generation, and thus able to compare the convergence
speed and convergence scheme of each algorithm. To ensure
that those comparisons are relevant, the Kruskal-Wallis test is
performed for each generation.

All the common elements have been presented, they are
briefly summed up in Tab. II. We will now introduce some
specific parameters of each algorithm under study and the
values that were used for them.

B. Algorithm Specific Parameters

In this subsection, we present specific parameters inherent
to each algorithm. We will also provide some precision about
the decisions we made when implementing those algorithms.
Indeed, some details were not fully provided and thus we had
to take decisions about the expected behavior of the algorithms
in those cases.

1) PNA-NSGAII: This algorithm adopts a self-adaptive
niching technique, using the constraints on the search space
(the size of the search space) and the size of the population.
No new parameter is introduced besides the classic parameters
of genetic algorithms such as mutation and crossover proba-
bility for example. All of these parameters are provided by
the authors [5] and will be set without any changes in the
remaining of this paper. They are recalled in Tab. III.
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TABLE III: PNA-NSGAII specific parameters

SBX crossover probability (pc) 0.9

Polynomial mutation probability (pm) 0.05

SBX distribution index (νc) 10

Mutation distribution index (νm) 50

TABLE IV: MOBiDE specific parameters

F (pc) 0.8

binomial crossover probability (Cr) 0.9

α (9) 0.1

2) MOBiDE: We saw before that MOBiDE introduces
a parameter δ for its niching technique in addition to the
standard parameters. Authors stated that this parameter must
be small (< 1e−3) without providing much more precision.
We investigate the influence of this parameter by setting it to
several values, 0.9e−3, 0.9e−4, 0.9e−5 and 0.9e−6.

In the third case of (9), no precision is given to check the
equality to 0. We decided that the test will be done with a
precision of 1e−3. Since any individual with a fitness below
1e−3 is added to the archive in such a case, it seems good to
consider that a fitness below 1e−3 is considered close enough
to 0 to apply the rule.

All other parameters were provided by the authors [6] and
are used for all the experiments. They are summed up in
Tab. IV.

3) MOMMOP: All the parameters of MOMMOP were
specified by the authors and were used as is. They are recalled
in Tab. V

IV. RESULTS AND DISCUSSIONS

Two main experiments have been conducted in this work.
The first one aims at comparing the performances of PNA-
NSGAII [5], MOBiDE [6] and MOMMOP [7], with NS-
GAII [10] used as a baseline to show the improvements
brought by the multimodal adaptations. The second experiment
aims at showing the impact of δ in MOBiDE. Tab. VI to IX
compare the evolution of the peak ratio obtained by MOBiDE,
PNA-NSGAII, MOMMOP and NSGAII for 4 functions from
the CEC2013 benchmark [14]. The results of the Kruskal-
Wallis tests for this experiment are reported in Tab. X, list-
ing for each function, the generation numbers for which no
conclusion can be drawn from the presented data. That is

TABLE V: MOMMOP specific parameters

F (pc) 0.5

Cr 0.7

η (10) 40×D × (CurrentFEs/MaxFEs)

TABLE VI: Evolution of the peak ratio of the different
algorithms for the function five uneven peak trap

Generation 0 10 25 60 175 350 425 500

PNA-NSGAII 0 0 0 0.11 0.66 1 1 0.98

MOBiDE 0 0 0 0.26 1 1 1 1
NSGAII 0 0.05 0.5 0.5 0.5 0.5 0.5 0.5

MOMMOPS 0.97 1 1 1 1 1 1 1

TABLE VII: Evolution of the peak ratio of the different
algorithms for the function modified rastringin

Generation 0 20 50 120 350 700 850 1000

PNA-NSGAII 0 0.01 0.05 0.09 0.09 0.08 0.24 0.98

MOBiDE 0 0.05 0.53 0.61 0.73 0.8 0.82 0.83

NSGAII 0 0.12 0.08 0.08 0.08 0.08 0.08 0.08

MOMMOPS 0 0 0 0 1 1 1 1

TABLE VIII: Evolution of the peak ratio of the different
algorithms for the function CF3 in 3 dimension

Generation 0 26 66 159 466 933 1133 1333

PNA-NSGAII 0 0 0 0 0.05 0.15 0.28 0.43
MOBiDE 0 0 0 0.01 0.16 0.17 0.18 0.19

NSGAII 0 0.09 0.17 0.17 0.17 0.17 0.17 0.17

MOMMOPS 0 0.09 0.17 0.17 0.17 0.17 0.17 0.17

the confidence in the results was less than 95%. Tab. XI
to XIII present the evolution of the peak ratio of MOBiDE
with different δ values for 3 functions from the CEC2013
benchmark [14]. As for the previous experiment, the Kruskal-
Wallis tests results are reported in Tab. XIV. The results of
only 3 functions are shown here since other functions didn’t
bring more informations.

Access to our source code and to the results on all functions
of the CEC2013 [14] benchmark is provided on our website2.

A. Comparison of MOBiDE, PNA-NSGAII, MOMMOP and
NSGAII

Let’s first focus on the experiment comparing the different
algorithms. In this experiment, the value of δ has been fixed
to 0.9e−6 for MOBiDE. As we can see in Tab. X, the
Kruskal-Wallis test often fails on the first few generations.
But comparisons are relevant for all presented functions from
generation 31.

We can observe in Tab. VI to IX that the original NSGAII
has a fairly fast convergence, but its results are poor in term
of peak ratio. Indeed, when looking at the detailed results, it
appears that NSGAII is always retrieving exactly one optimum
per run whereas other algorithms are retrieving more solutions
for each function. This shows that the niching techniques and
other mechanisms used in the dedicated multimodal algorithms

TABLE IX: Evolution of the peak ratio of the different
algorithms for the function CF3 in 10 dimension

Generation 0 8 20 48 140 280 340 400

PNA-NSGAII 0 0 0 0 0 0 0.01 0.1

MOBiDE 0 0 0 0 0 0 0 0

NSGAII 0 0 0 0 0.17 0.17 0.17 0.17

MOMMOPS 0 0 0 0 0 0.05 0.06 0.18

TABLE X: Kruskal-Wallis results for algorithms comparison

Function name Generations for which the Kruskal-Wallis test fails

Equal Maxima 0 to 1

Modified Rastringin All 0 to 2

CF3 3D 0 to 17

CF3 10D 0 to 31

2http://denispallez.i3s.unice.fr/doku.php?id=soft_multimodal
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TABLE XI: Evolution of the peak ratio with different values
of delta for the function five uneven peak trap

Generation 0 10 25 60 175 350 425 500

MOBiDE 0.9e−3 0 0 0.01 0.01 0.04 0.05 0.05 0.05

MOBiDE 0.9e−4 0 0 0.06 0.23 0.27 0.28 0.28 0.28

MOBiDE 0.9e−5 0 0 0.16 1 1 1 1 1
MOBiDE 0.9e−6 0 0 0.26 1 1 1 1 1

TABLE XII: Evolution of the peak ratio with different values
of delta for the function modified rastringin

Generation 0 20 50 120 350 700 850 1000

MOBiDE 0.9e−3 0 0.03 0.33 0.63 0.84 0.88 0.89 0.9

MOBiDE 0.9e−4 0 0.07 0.55 0.72 0.88 0.95 0.97 0.98
MOBiDE 0.9e−5 0 0.04 0.54 0.62 0.78 0.85 0.87 0.87

MOBiDE 0.9e−6 0 0.05 0.53 0.61 0.73 0.80 0.82 0.83

improve performances when solving multimodal problems.
However, if only one solution is required, the choice of the
raw NSGAII seems to be the best. It converges faster or at the
same speed than the others and always finds one optimum to
the function.

Comparing the multimodal algorithms, we can observe that
MOMMOP’s convergence is not stable. It converges extremely
fast for five uneven peak trap (Tab. VI) and Composition
Function 3 (CF3) in 3 dimension (Tab. VIII), whereas its
convergence is slow for modified rastringin (Tab. VII) and
CF3 in 10 dimensions (Tab. IX). MOBiDE and PNA-NSGAII
always present the same convergence scheme. MOBiDE tends
to find a lot of solutions at the beginning of the run and
then slowly improves. On the contrary, PNA-NSGAII has poor
results at the beginning of the run but presents a big step in
the retrieved results at around 75% of the run completion. This
convergence scheme is probably due to the adaptive constraint
that evolves exponentially as the run progresses.

Speaking of the peak ratio, MOMMOP is ahead for five
uneven peak trap, modified rastringin and CF3 in 10 dimen-
sion. However, MOBiDE and PNA-NSGAII are not far behind.
PNA-NSGAII gets the best results when dealing with CF3
in 3 dimension, retrieving more than twice as much optima
as MOMMOP or MOBiDE. But this is the only case where
this algorithm takes the lead. In other cases, it has lower or
equal results than MOMMOP or MOBiDE and has a slower
convergence. Therefore, MOMMOP and MOBiDE will most

TABLE XIII: Evolution of the peak ratio with different values
of delta for the function Vincent 3D

Generation 0 26 66 159 466 933 1133 1333

MOBiDE 0.9e−3 0 0.01 0.19 0.30 0.42 0.55 0.60 0.63

MOBiDE 0.9e−4 0 0.02 0.20 0.29 0.33 0.38 0.39 0.40

MOBiDE 0.9e−5 0 0.02 0.19 0.29 0.32 0.34 0.35 0.36

MOBiDE 0.9e−6 0 0.05 0.53 0.61 0.73 0.80 0.82 0.83

TABLE XIV: MOBiDE influence of δ, Kruskal-Wallis results

Function name Generations for which the Kruskal-Wallis test fails

Vincent 3D 0 to 201

Modified Rastringin all 0 to 24

Five Uneven Peak Trap 0 to 22

of the time be preferred.

When dealing with higher dimensional problems, like CF3
in 10 dimensions, MOMMOP stay stable in its results while
MOBiDE completely fails. So, in the end, MOMMOP seems to
be a good choice when dealing with MMOP today. It converges
sometimes really fast and sometimes it is fairly slow, but
never slower than PNA-NSGAII. Its performances are better
or equal to those of MOBiDE and PNA-NSGAII and it is able
to perform at least equally with NSGAII when dealing with
composition functions. However, MOBiDE’s results are not too
bad and its stable and quick convergence can be preferred in
some cases when we want to decrease the number of function
evaluations. However MOBiDE depends on a parameter δ that
needs to be setup manually and for which we don’t have
many information. That’s why we explore the influence of this
parameter on MOBiDE’s performances in the next subsection.

B. Influence of δ in MOBiDE

In the whole previous experiment, the value of δ was
constant. As we explained before, δ is a parameter of the
niching technique introduced in MOBiDE. We decided to
explore the influence of this parameter on the performances
of MOBiDE. Indeed, MOBiDE presents good performances
in most cases, but if it is too sensitive to its δ parameter,
its use might be tricky in some real cases. Experiments have
been done with δ ranging from 0.9e−6 to 0.9e−3. The Kruskal-
Wallis tests in Tab. XIV show that no trusted comparison can
be observed on the first generations, up to generation 201 for
Vincent in 3 dimensions. However most of the presented data
can be considered for comparisons safely.

In Tab. XI to XIII, we can see that depending on the
benchmark function, the best results are not obtained with the
same value of δ. For Vincent3D, the best value of δ is by far
0.9e−3, whereas for FiveUnevenPeakTrap the best value of δ
would be by far 0.9e−5 or 0.9e−6. And for modified rastringin,
the value of δ is of less importance. So we can conclude that
δ is a sensitive and crucial parameter of MOBiDE which must
be chosen carefully depending on the problem. We tried to
infer some heuristic to set this parameter to its optimal value
depending on the problem but were not able to come up with a
satisfying solution yet. This makes MOBiDE a difficult method
to tune, and its convergence speed strength is greatly balanced
by the drawback of tuning δ for each specific problem.

V. CONCLUSION

This work presented an extensive comparison of three
recent multiobjective evolutionary algorithms: PNA-NSGAII,
MOBiDE and MOMMOP. A fair comparison using the same
benchmark functions and the same parameters has been con-
ducted, including the study of the convergence scheme of each
algorithm. We also analyzed the influence of the parameter δ
of MOBiDE.

We observed that MOMMOP presents the best results
at the end of the run, but PNA-NSGAII and MOBiDE are
close to its performances. However, beside those performances,
MOMMOP does not present a stable convergence scheme. It
can be really fast or rather slow depending on the problem.
Therefore, despite having a bit worse results, MOBiDE might
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be preferred in some cases because its convergence is always
fast.

However, we also revealed that δ is a crucial parameter for
MOBiDE and no heuristic has been found so far to set this
parameter to an optimal value given a specific problem. This
makes MOBiDE practically hard to use in real cases.

Finding an self-adaptive scheme for δ in MOBiDE would
make MOBiDE a good concurrent method to MOMMOP.
We would have two complementary methods in the field of
multimodal evolutionary algorithms: one that converges faster
but with less solutions and one that finds more solutions but
might be slower. Both being interesting depending on the case.

It is worth mentioning that none of these algorithms were
able to properly solve complex problems, introduced in the
form of composition functions in the CEC2013 benchmark. So
we should look closely to the apparitions of future competitors
to be added to this benchmark in the future.
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