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Abstract—Scalable multi-objective test problems are known
to be useful in testing and analyzing the abilities of algorithms.
In this paper we focus on test problems with degenerated Pareto-
fronts and provide an in-depth insight into the properties of
some problems which show these characteristics. In some of the
problems with degenerated fronts such as Distance Minimization
Problem (DMP) with the Manhattan metric, it is very difficult
to dominate some of the non-optimal solutions as the optimal
solutions are hidden within a set of so called pseudo-optimal
solutions. Hence the algorithms based on Pareto-domination
criterion are shown to be inefficient. In this paper, we explore
the pseudo-optimal solutions and examine how and why the use
of ε-dominance can help to achieve a better approximation of
the hidden Pareto-fronts or of degenerated fronts in general.
We compare the performance of the ε-MOEA with 3 other
algorithms (NSGA-II, NSGA-III and MOEA/D) and show that ε-
dominance performs better when dealing with pseudo-optimal
kind of solutions. Furthermore, we analyze the performance
on the WFG3 test problem and illustrate the advantages and
disadvantages of ε-dominance for this degenerated problem.

I. INTRODUCTION

Real-world multi-objective problems usually contain
Pareto-fronts of various shapes and geometries such as convex,
concave, disconnected and degenerated. In this sense, the
existing test problems resemble these properties and provide a
platform to test the ability of the algorithms [1]. The major goal
of many of the existing multi-objective evolutionary algorithms
is to find a set of diverse solutions along the Pareto-front.
In the literature, many existing approaches have been tested
and analyzed on various test problems. Nevertheless, to our
knowledge, the problems with degenerated Pareto-fronts have
not been analyzed as much as the other test problems. In
a previous work, we found that the Distance Minimization
Problem (DMP) using the Manhattan metric has a degenerated
Pareto-front [2] and a certain special structure of domination.
Therefore, the goal of this paper is to provide an analysis of the
properties of optimal solutions in certain problems with degen-
erated Pareto-fronts. The difficulty in finding optimal solutions
for such problems has also been stated in the literature e.g.,
by Huband et al. [1] and Deb et. al. [3]. Examples for test
Problems with degenerated fronts are the mentioned Distance
Minimization Problem (DMP) using the manhattan metric, the
WFG3 problem [1] and the 3-objective instance of the DTLZ5
problem [3].

In [2], we analyzed the properties of the DMP with
Manhattan metric and found out that in such problems when

approaching the Pareto-optimal area in the decision space, it
gets very difficult to find dominating solutions to the current
population since the amount of dominating solutions in the
neighborhood of the current population gets smaller. In such a
case, if there is only a sparse set of solutions which dominates
the current solution sets members, the probability of finding
members of this dominating set is relatively small, particularly
by using genetic operators. Additionally, even when Pareto-
optimal solutions are already found within the current popula-
tion, these Pareto-optimal solutions might still be surrounded
by a large set of solutions that are non-dominated to them,
even though they are not optimal. In this work, we aim to
examine this kind of solutions in further detail.

In this paper, we introduce pseudo-optimal solutions and
provide a concept for hidden Pareto-fronts which are optimal
solutions surrounded by sets of indifferent pseudo-optimal
solutions. Additionally, we will deal with the concept of such
hard to dominate solutions and the corresponding Pareto-
optimal fronts. A special focus is to the performance of the
ε-MOEA, which uses ε-dominance and should in theory be
suitable to overcome the weaknesses of Pareto-dominance that
were described in [2]. For the analysis, we take the DMP with
the Manhattan metric and introduce a simple toy problem for
which we can specify the properties for the degenerated Pareto-
front. In addition, we show some results on the WFG3 problem
[1], to investigate whether the found results on problems with
pseudo-optimal solutions also reproduce for other problems
with degenerated Pareto-fronts. We analyze the performance
of the algorithms NSGA-II [4], NSGA-III [5], MOEA/D [6]
and ε-MOEA [7] on these problems with the goal to identify
the methods which help the algorithms to deal with this kind
of domination structure.

The remainder of this paper is structured as follows. First
we introduce the concept of the pseudo-optimal solutions and
hidden Pareto-fronts, by describing the properties of hard-to-
dominate solutions in detail. In Section III, a description of
the Manhattan metric based DMP and a toy problem are given
with the goal to understand the structure of the domination in
both of these problems. Section IV contains the experiments
and the comparisons and the paper is concluded in section V.

II. PSEUDO-OPTIMAL SOLUTIONS

The goal of this section is to provide some fundamental
definitions for the solutions of a multi-objective problem. In
the literature there are several definitions such as domination,
strong domination or weak domination [8]. Here we want
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(a) Non-pseudo-optimal solution �x
and the area of dominating solutions
in P1
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(b) Pseudo-optimal solution �x and the
area of dominating solutions in P2

Fig. 1. Non-pseudo-optimal and pseudo-optimal solutions in P1 and P2 and
the areas that dominate them (example).

to further differentiate between the solutions in terms of the
existing structures in the decision space, which have strong
impact on the strength of the domination.

Pseudo-optimal Solution: We call a solution �x ∈ R
n to be

pseudo-optimal, if �x is not Pareto-optimal and it is hard to find
a solution which can dominate �x in the neighborhood of �x.

This means that a solution can be pseudo-optimal when
there are dominating solutions in its neighborhood, but the
probability of randomly picking them from the neighborhood
is very low. Of course the definition of low in this case is quite
variable. It is very unlikely to find the dominating solutions
in a neighborhood, if we have a small number of them. For
instance, let us consider a solution �x = (x1, x2) ∈ R

2 and two
different optimization problems P1 and P2 with the (weak)
Pareto-dominance relation �p. Without knowing the exact
fitness function, let us assume that the domination structures
of both problems look like following:

P1 : �y �p �x ⇐⇒ y1 ≤ x1

P2 : �y �p �x ⇐⇒ y1 ≤ x1 ∧ y2 = x2
(1)

In P1, �x is dominated by any other solution that has a
smaller value for the first decision variable. In P2, this is only
the case if also the value of the second decision variable is
the same. Now we can compute the probabilities of finding a
dominating solution in both problems, using the neighborhood
H(�x) := {�z ∈ R

2|z1 = x1 + Δ1 ∧ z2 = x2 + Δ2,Δ1,Δ2 ∈
[−ε, ε]}:

P1 : Prob(�y �p �x)

= Prob(y1 ≤ x1)

= Prob(x1 +Δ1 ≤ x1)

= Prob(Δ1 ≤ 0)

= 0.5

P2 : Prob(�y �p �x)

= Prob(y1 ≤ x1 ∧ y2 = x2)

= Prob(y1 ≤ x1) ∗ Prob(y2 = x2)

= 0.5 ∗ Prob(x2 +Δ2 = x2)

= 0.5 ∗ Prob(Δ2 = 0)

= 0.5 ∗ 0
= 0

(2)

Figure 1 illustrates this example. We can observe that it
is unlikely to find dominating solutions for �x in P2 using a
random search in its neighborhood. For that reason, since we
are dealing with continuous decision variables and operators in
evolutionary algorithms that involve randomness to create new
solutions during recombination and mutation, we can assume
that the possibility to exactly create a dominating solution in
the above example of P2 is almost the same as for a random
picking mechanism to obtain these solutions. In this example,
for any randomly selected solution �p in the neighborhood of
�x, �x is Pareto-dominated by �p with a probability of 0. So the
set of dominating solutions in the neighborhood is actually in
this case 1-dimensional, which is found in a 2-dimensional
neighborhood with a probability of 0.

The above example indicates that pseudo-optimal solutions
are unlikely to be dominated, if they are used to produce new
solutions close to them by genetic operators.

The difficulty arises, when the true Pareto-optimal solutions
are located within the area of the fitness landscape containing
pseudo-optimal solutions. Since pseudo-optimal solutions are
not optimal, we can theoretically find dominating solutions
around them and eventually approach the true Pareto-optimal
front. However, since newly created solutions are unlikely to
dominate any existing ones, it is very difficult to distinguish
between pseudo-optimal and optimal solutions. In that case,
we have a so called hidden Pareto-front.

Hidden Pareto-optimal Solution: A Pareto-optimal solution
�x∗ is a hidden Pareto-optimal solution, if every other solution �y
in the neighborhood of �x∗ is either Pareto-optimal, or pseudo-
optimal. If all of the Pareto-optimal solutions of a Problem
are hidden, we speak of a hidden Pareto-optimal front of the
Problem.

One problem that has this kind of pseudo-optimal solu-
tions and an at least partially hidden Pareto-optimal front is
the Manhattan-metric based Distance Minimization Problem
(Manhattan-DMP). This problem will be discussed in the next
section. The actual Pareto-optimal set in the decision space
is surrounded by a large set of pseudo-optimal solutions, that
are not Pareto-optimal, but can only be dominated by a very
specific set of solutions and only 1 (numerically exact) Pareto-
optimal solution. Due to that structure, the algorithms used in
[2] that were based on Pareto-dominance failed to approximate
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the Pareto-optimal front. Zille and Mostaghim studied the
ability of 3 different algorithms (among them NSGA-II [4] and
MOEA/D [6]) to solve 2-variable instances of the Manhattan
metric DMP, and found that the algorithms which use Pareto-
dominance fail to approximate the true Pareto-set.

III. PROBLEMS WITH DEGENERATED PARETO FRONTS

In this section we briefly study and introduce problems with
degenerated fronts which contain Pseudo-optimal solutions and
hidden Pareto-fronts.

A. The Manhattan Distance Minimization Problem

The Distance Minimization Problem (DMP) is a scalable
multi-objective optimization problem which contains a set of

predefined so-called objective-points { �O1, .., �Om} with co-

ordinates �Oi = (oi1, .., oin)
T in a n-dimensional decision

space [2], [9], [10], [11], [12]. The number of objective-points
corresponds to the number of objectives (m). The goal of the
DMP is to find a set of solution vectors (∈ R

n) in the decision
space which have a minimum distance to all of the objective-
points. It is formulated as follows:

min f(�x) = (f1(�x), f2(�x), ..., fm(�x))T

s.t. fi = dist(�x, �Oi) ∀i = 1, ..,m

xj ≤ xmax,j ∀j = 1, .., n

xj ≥ xmin,j ∀j = 1, .., n

(3)

For measuring the distances between two points in the
decision space, we select the dist function to be the Manhattan
metric (p− 1 metric) induced by the p− 1 norm as follows:

dist1(�a,�b) := ‖ �a−�b ‖1 =
n∑

i=1

|ai − bi| (4)

The Pareto-optimal front of this problem is partially hidden
according to the definition in Section II. Most of the Pareto-
optimal solutions are surrounded by pseudo-optimal solutions
and therefore Pareto-dominance based algorithms have prob-
lems to find them, even in a very small 2-variable problem. For
an analysis about the shapes and properties of the Manhattan-
based DMP refer to [2].

B. Toy Problem

Since the composition of the Pareto-optimal areas in
Manhattan-based DMP is quite complex, we introduce a simple
problem that has the desired pseudo-optimal areas and is very
easy to scale and visualize. In this case, we can investigate
the performance of the algorithms when dealing with the
pseudo-optimal solutions and hidden Pareto-optimal fronts. Let
us consider the following simple example problem with 3
objective functions and 2 decision variables:

min f1(�x) = |A− x1|
f2(�x) = |B − x1|
f3(�x) = |C − x2|

s.t. x1, x2 ≤ 10

x1, x2 ≥ 0

(5)

�

�

������	�
����

� �

������	�
����

Fig. 2. Decision space of the example problem with Pareto-optimal solutions
and hard-to-dominate solutions

where A, B and C are constant values. Figure 2 illustrates
the decision space of this problem for 2 decision variables.
The Pareto-optimal set of solutions in the decision space is
given by x2 = C ∧ x1 ∈ [A,B]. This Pareto-front is hidden
within pseudo-optimal solutions. Consider the constants to
be A = 4, B = 6 and C = 5. Taking two solutions
x = (x1, x2) = (4.5, 8) and y = (y1, y2) = (4.5001, 6), it is
clear that solution y is located closer to the true Pareto-front
than solution x. However, these solutions do not dominate each
other in a Pareto-sense. Hence, the algorithms using the Pareto-
domination criterion consider these solutions to be equal in
terms of quality.

In this simple test problem, only the objectives f1 and f2
are conflicting and therefore the other function (f3) can be
separately optimized. Nevertheless, even though the objectives
are not conflicting, the attempt to optimize them at the same
time makes the problem much harder to solve. This problem
is scalable to any arbitrary number of decision variables (n)
and objective functions (m). The generalized problems looks
like the following:

min f1(�x) = |A− x1|
f2(�x) = |B − x1|
fi(�x) = |C − xi−1| ∀i = 3..m− 1

fm(�x) =
n∑

k=m

|C − xk|

s.t. xj ≤ 10 ∀j = 1..n

xj ≥ 0 ∀j = 1..n

(6)

The Pareto-optimal set of solutions in the decision space
and the corresponding Pareto-optimal front in the objective
space can be described as following:
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PS : x1 ∈ [A,B]

xi = C ∀i = 2..n

PF : f1 ∈ [0, |B −A|]
f2 ∈ [0, |B −A|]
f1 + f2 = |B −A|
fj = 0 ∀j = 3..m

(7)

As we could observe in this problem as well as in the
Manhattan-based DMP, the hidden Pareto-fronts are both de-
generated in a way that the Pareto-optimal set of solutions in
the search space (partly) consists of areas of smaller dimension
than the decision variable space. Most parts of the Pareto-
optimal front of the 2-variable Manhattan-based DMP form
lines instead of volumes, which makes it even more difficult for
the algorithms to obtain the Pareto-front. The Pareto-optimal
front in the objective space is also a set of 3 lines which are
1-dimensional subsets of the 3-dimensional objective space.

IV. EXPERIMENTS

After defining the properties in Section II and the test
problems in Section III, we aim to analyze different multi-
objective evolutionary algorithms to investigate the method-
ologies which help deal with problems with pseudo-optimal
solutions, hidden Pareto-fronts and degenerated Pareto-fronts.
The goal of the experiments is not to generally compare
the algorithms with each other. Here we are interested to
investigate the mechanisms and therefore the analysis on the
simple test problems is used. Furthermore, besides the typical
evaluation mechanisms, we aim to visualize the 2 dimensional
decision spaces.

Among the existing algorithms, we have selected 4 algo-
rithms with different mechanisms for obtaining the Pareto-
optimal solutions:

• NSGA-II The NSGA-II is an evolutionary algorithm
developed by Deb et al. [4] and uses non-dominated
sorting and crowding distance.

• NSGA-III The new version of the non-dominated
sorting algorithm was developed in 2014 and focuses
on reference-direction vectors for diversity instead of
crowding, and also omits a selection operator [3].

• MOEA/D This evolutionary algorithm completely
omits Pareto-dominance and uses an aggregation func-
tion with weight vectors to solve multiple single-
objective problems instead of one multi-objective
problem [6].

• ε-MOEA The ε-MOEA uses two components. ε-
dominance is used as the domination criteria, while a
cell-structure is applied to the solution set to maintain
diversity. The Pareto-dominance is used for compari-
son within the same ε-cell [7].

For the analysis, we measure the Generational Distance
(GD) and Inverted Generational Distance (IGD) values of the
obtained non-dominated fronts. We perform 50 independent
runs for each algorithm on the 2-variable Manhattan DMP

and different instances of the toy problem, since its Pareto-
optimal fronts are easier to determine in higher dimensions.
In addition, since we are interested to know if the possible
advantages of the mechanisms transfer to degenerated Pareto-
fronts in general, we use different instances of the WFG3
problem [1].

The number of objectives is set to be 3 in all tested
problems. The number of decision variables is varied. The
WFG3 problem splits the decision variables artificially into
position-related and distance-related variables. We split these
in a 1/3 to 2/3 relation, which means a 30 variable instance
has 10 position-related and 20 distance-related variables. Also,
the WFG3 function requires the position-related variables to
be a multiple of m − 1 (m is the number of objectives) and
the distance-related variables to be an even number.

In addition to the GD and IGD values we want to show
some randomly chosen runs as plots in the decision and
objective space of the problems to visualize the distribution
of solutions and use this for the analysis.

A. Parameter settings

For all algorithms we use 120,000 function evaluations as
the stopping criterion. Our experiments are performed with
the MOEA-framework [13], and we use the standard MOEA-
framework implementations and parameter settings for the al-
gorithms and operators (SBX crossover, polynomial mutation,
crossover-rate 1.0, crossover-distribution-index 15.0, mutation-
rate 1/n, mutation-distribution-index 20.0). The aggregation
function for the MOEA/D is the Chebyshev method.

We set the population sizes of the MOEA/D, the NSGA-II
and the NSGA-III to 100. The ε-values of the ε-MOEA are
experimentally adjusted beforehand to values that will result
in final population sizes close to the population sizes of the
other algorithms. Due to the search process of the ε-MOEA,
the final population sizes may vary a bit, so that some runs
yield a population size of 99, some of 104. It is known that
different population sizes may result in less reliable numbers
for GD and IGD values for comparison. However, since the
fluctuations are minimal compared to the population size of
100, it can be assumed that the numbers obtained are sufficient
for comparison of the algorithms performance.

In our experiments, we use the instance of the DMP created
in the same way as in [2], where the 3 objective-points are
distributed evenly around a center and the initial offset is α1 =
π/4. For the toy problem, A = 4, B = 6 and C = 5.

B. Results and Analysis

The Tables I and II give an overview of the average
obtained GD and IGD values as well as the corresponding
standard errors for all tested problems. Additionally, the Fig-
ures 4 to 10 show the plots of the obtained fronts and the true
Pareto-front of some instances of the problems in objective
and also - where possible - in decision spaces.

Manhatten based DMP: The results on the Manhattan based
DMP in Tables I and II indicate that the ε-MOEA has advan-
tages over the two algorithms which use non-dominated sorting
(NSGA-II and NSGA-III). The performance of the MOEA/D
is similar to the ε-MOEA. The ε-MOEA obtains on average
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Fig. 3. Areas dominated by solution x without and by solution y with ε-
domination.
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(d) ε-MOEA

Fig. 4. Decision space of the 2-variable Manhattan-DMP with 3 objectives.
The Pareto-front is given as solid lines and areas.

solutions closer to the Pareto-front (higher GD-value), but
the MOEA/D algorithm achieves only slightly better diversity.
This can also be seen in the plots of 1 example run of all 4
algorithm in the Figures 4 and 5.

The MOEA/D is able to achieve a better approximation of
the Pareto-optimal front than the NSGA-II algorithm, since
it does not use Pareto-dominance. This is consistent with
the results found in [2]. The NSGA-III performs similar to
the NSGA-II, since it also uses the non-dominated sorting
approach. However, we can see that the distribution of the
solutions is slightly better, which might be an effect of the
reference-direction approach used in NSGA-III, that resembles
the concept of the weight vectors used in MOEA/D to achieve
diversity.

The usage of ε-dominance is especially suitable to counter
the properties of the pseudo-optimal solutions. Since they can
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Fig. 5. Objective space of the 2-variable Manhattan-DMP with 3 objectives.
The Pareto-front is given as solid lines.

TABLE I. AVERAGE GD VALUES AND STANDARD ERRORS (50 RUNS)
FOR DIFFERENT PROBLEMS WITH 3 OBJECTIVES (120,000 EVALUATIONS).

BEST RESULTS ARE MARKED IN BOLD.

Problem n NSGA-II NSGA-III MOEA/D ε-MOEA

DMP 2 0.0336
(± 1,66e-04)

0.0283
(± 4,93e-04)

0.0149
(± 2,94e-04)

0.0136
(± 2,79e-04)

Toy Problem 2 0.2764
(± 1,33e-03)

0.1705
(± 7,67e-03)

0.0548
(± 1,40e-03)

0.0531
(± 1,16e-03)

20 1.3179
(± 2,32e-02)

0.4871
(± 9,66e-03)

0.1369
(± 6,72e-03)

0.0981
(± 2,69e-03)

40 1.3891
(± 2,17e-02)

0.6717
(± 1,15e-02)

0.1700
(± 8,18e-03)

0.1002
(± 2,05e-03)

100 1.8655
(± 2,95e-02)

1.1355
(± 1,56e-02)

0.3455
(± 2,84e-02)

0.1017
(± 1,98e-03)

WFG3 2 - 4 0.0811
(± 4,56e-04)

0.0828
(± 2,94e-03)

0.0817
(± 4,57e-04)

0.0422
(± 7,71e-04)

10 - 20 0.0719
(± 5,80e-04)

0.0068
(± 1,87e-04)

0.0827
(± 4,74e-04)

0.0063
(± 4,26e-04)

20 - 40 0.0454
(± 7,26e-04)

0.0091
(± 2,61e-04)

0.0844
(± 5,54e-04)

0.0182
(± 7,46e-04)

40 - 60 0.0229
(± 7,81e-04)

0.0133
(± 4,80e-04)

0.0886
(± 5,36e-04)

0.0356
(± 1,75e-03)

only be dominated by a specific and small subset of neigh-
boring solutions with classical Pareto-dominance, the usage of
ε-dominance allows a solution to dominate a range of solutions
normally indifferent to it. By enabling a solution to dominate
more solutions within its neighborhood than just in a normal
Pareto sense, we eliminate the need to numerically exactly
find the solutions that dominate the non-optimal ones. In a
neighborhood that contains only a very small set of dominating
solutions, the use of ε-dominance artificially creates a solution
vector that might not be achievable by the normal search
process, since this solution is able to dominate a volume of
solutions that can normally not be dominated by one solution
alone. We depicted this situation for the toy problem and two
decision variables in Figure 3, and the same structure is also
the situation in the Manhattan-DMP. We see that the use ε-
dominance allows a solution to dominate a range of solutions
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TABLE II. AVERAGE IGD VALUES AND STANDARD ERRORS (50 RUNS)
FOR DIFFERENT PROBLEMS WITH 3 OBJECTIVES (120,000 EVALUATIONS).

BEST RESULTS ARE MARKED IN BOLD.

Problem n NSGA-II NSGA-III MOEA/D ε-MOEA

DMP 2 0.0029
(± 6,98e-05)

0.0024
(± 6,34e-05)

0.0013
(± 2,55e-05)

0.0014
(± 3,40e-05)

Toy Problem 2 0.0074
(± 2,43e-04)

0.0045
(± 1,65e-04)

0.0021
(± 5,45e-05)

0.0009
(± 1,07e-05)

20 0.0217
(± 5,18e-04)

0.0992
(± 2,93e-03)

0.0040
(± 9,12e-05)

0.0011
(± 1,06e-05)

40 0.0601
(± 1,10e-03)

0.1714
(± 3,40e-03)

0.0064
(± 1,68e-04)

0.0011
(± 8,48e-06)

100 0.3263
(± 4,54e-03)

0.3767
(± 6,08e-03)

0.0349
(± 6,08e-04)

0.0027
(± 4,29e-05)

WFG3 2 - 4 0.0041
(± 1,16e-04)

0.0042
(± 9,70e-05)

0.0019
(± 4,78e-05)

0.0106
(± 2,62e-04)

10 - 20 0.0047
(± 1,10e-04)

0.0048
(± 2,13e-04)

0.0024
(± 5,16e-05)

0.0328
(± 2,08e-04)

20 - 40 0.0082
(± 2,12e-04)

0.0156
(± 1,04e-03)

0.0053
(± 9,72e-05)

0.0635
(± 2,40e-03)

40 - 60 0.0152
(± 2,72e-04)

0.0354
(± 1,50e-03)

0.0128
(± 2,05e-04)

0.0759
(± 6,49e-04)
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Fig. 6. Objective space of the 2-variable toy problem with 3 objectives. The
Pareto-front is given as a solid line.

which eliminates the difficult structure of the fitness landscape.

Toy Problem: If we take a look at the toy problem, we can see
that the same effect as in the DMP is visible for all numbers of
decision variables. The algorithm that uses ε-dominance can
outperform the other algorithms, especially the ones that use
Pareto-dominance. The second best one is still the MOEA/D
algorithm because it does not rely on Pareto-dominance. The
domination in the toy problem is shown in Figure 3. Also, for
an increase in the number of decision variables, we observe
no change in terms of the GD and IGD values relation among
the algorithms (Tables I and II), as well as visually in Figures
6, 7 and 8.

WFG3: The ε-MOEA is shown to work quite well for the
Manhattan-based DMP and the toy problem. Now, we examine
the WFG3 problem to see whether the advantages of the ε-
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Fig. 7. Decision space of the 2-variable toy problem with 3 objectives. The
Pareto-front is given as a solid line.
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Fig. 8. Objective space of the 100-variable toy problem with 3 objectives.
The Pareto-front is given as a solid line.

MOEA are present in another popular benchmark problem with
a degenerated Pareto-front. From the GD values in Table I we
see that the ε-MOEA performs best as long as the number of
variables is kept small, but when the number of the decision
variables increases, the NSGA-III algorithm takes over and
delivers a closer approximation of the Pareto-front. This is
shown in the Figures 9 and 10. Figure 9 shows the obtained
fronts for the 6-variable problem. On average, the obtained
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Fig. 9. Objective space of the 6-variable WFG3 problem with 3 objectives.
The Pareto-front is given as a solid line.
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Fig. 10. Objective space of the 120-variable WFG3 problem with 3 objectives.
The Pareto-front is given as a solid line.

solutions of the ε-MOEA are closer to the Pareto-front than
the ones of the other algorithms. However, we can see that the
distribution of that fraction of solutions which are closest to
the Pareto-front is much better in the other three algorithms.
This is also clearly observable in Table II, where the NSGA-
II, the NSGA-III and the MOEA/D algorithms obtained much
smaller IGD values. The ε-MOEA in contrast shows some
clustering of the solutions, which might be a side effect of the

ε-grid mechanism that the algorithm uses. It is usually used
to preserve diversity among the population, since in every cell
that is also determined by the ε only one solution is aimed
to be kept. Therefore, it seems to be counterproductive. The
MOEA/D algorithm clearly shows the best IGD values for all
numbers of decision variables, since its mechanism of using
weight vectors is specifically designed for obtaining a good
distribution among the 3 objective functions by weighting the
objectives. However, this also results in a large amount of
solutions found that are far away form the true Pareto-front.
For larger numbers of decision variables, the best GD values
are obtained by the NSGA-III algorithm. The selection based
on the reference directions used in the NSGA-III seems to have
a better exploitation of the search space in higher dimensions
compared to the selection based on ε-dominance.

C. Summary of the Analysis

The above results indicate that ε-dominance implicitly
helps to get rid of pseudo-optimal solutions. We observe this
feature on the two problems with known Pareto-optimal sets
in the decision space. In addition, the MOEA/D approach
also delivers very good results. This indicates the fact that for
problems with degenerated fronts and especially with hidden
Pareto-optimal fronts, we should use other concepts than the
pure Pareto-domination. This result is being confirmed by the
experiments on WFG3 test problem with up to 30 decision
variables. Nevertheless, for the WFG3 test problem with larger
number of decision variables than 30, the results produced by
the ε-MOEA are worse than the other approaches in terms
of the diversity. Also the MOEA/D approach is being outper-
formed by the two other algorithms NSGA-II and NSGA-III in
terms of Generational Distance. This is an important indication
that the shape of the Pareto-optimal set, the hidden fronts and
the number of the pseudo-optimal solutions are different than
in the Manhattan-based DMP and the toy problem and need
to be further investigated.

V. CONCLUSION

In this paper, we analyzed multi-objective problems with
degenerated Pareto-fronts and demonstrated that there may
be certain problems where the Pareto-optimal solutions are
surrounded in the search space by a large set of solutions that
are non-dominated to any Pareto-optimal solutions except one
(Pseudo-optimal solutions). In this work, we examined how
the use of ε-dominance can help to dominate pseudo-optimal
solutions that are difficult to dominate with normal Pareto-
domination. The Manhattan-metric based Distance Minimiza-
tion Problem has this property, and we showed that the ε-
MOEA, an algorithm that relies on ε-dominance, is able to
achieve better approximations of the Pareto-front of this kind
of problem. Our analysis indicates how the elimination of
the need for exact domination contributes to the search, and
showed that in a similar problem with these properties of
solutions the ε-MOEA performs better also with increased
dimensions of the decision space. Finally we performed exper-
iments on the degenerated WFG3 problem, and observed that
ε-dominance can also outperform the other used algorithms to
find the degenerated front in this problem, but performs worse
than the NSGA-III algorithm when the numbers of decision
variables increase.
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Future research might perform a closer investigation of
degenerated fronts in several problems and which mechanisms
can be included into search heuristics to deal with them.
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