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Abstract— The set-based concept approach has been 
suggested as a means to simultaneously explore different design 
spaces at both the conceptual and the particular design levels. 
The type of exploration problem, which is dealt with here, aims 
to reveal the approximated concepts' fronts, within a Pareto 
relaxation zone. Based on a resolution-relaxation approach, a 
unique concept-based evolutionary algorithm has recently been 
suggested to tackle this problem. Here, we suggest a modification 
to that algorithm, which aims to provide an adaptive mechanism 
to distribute the computational resources among the evolved 
concepts under a given run-time limitation.  

I. INTRODUCTION 
 The main motivation for the proposed search approach is 
not optimization but obtaining some general knowledge about 
the design space (as detailed in [1]). The work presented here is 
an extension of the study in [1]. For the sake of completeness, 
the primary ideas from [1] are described here as deemed 
necessary.  

 Our approach to design space exploration involves pre-
defined design concepts that are used to explore the design 
space both at the level of the concepts and at the level of 
associated particular designs. This is achieved by the set-based 
concept approach. In this approach, a design concept (in short 
– a concept) is pre-defined by the designers as a set of potential 
solution alternatives, which possess some common features [2]. 
Such a representation has been termed Set-Based Concept 
(SBC). In contrast to the traditional way of evaluating 
concepts, the SBC approach allows concept evaluation to be 
based not only on optimality considerations, but also on 
performance variability, which is inherent to the SBC 
representation [3]. 

 Fig. 1 illustrates the SBC approach. Three concepts of 
aircrafts are shown. The (generally different) design spaces of 
the concepts are marked by ellipses of different gray levels. 

 
Fig. 1 Illustration of the SBC approach 

The associated performance vectors of particular designs, 
from all concepts, are to be compared in a mutual objective 
space. The most studied SBC approach is known as the s-
Pareto approach [4]. It involves finding which particular 
designs, of which concepts, are associated with the Pareto-front 
that is obtained by domination comparisons among all 
individual designs from all concepts.  

In principle, existing multi-objective evolutionary 
algorithms can be easily used to find the front per each 
concept, and consequently a sorting procedure may be used to 
find the s-Pareto front and optimal set. However, such 
algorithms could also be tailored to simultaneously search all 
the concepts' spaces to find the same information. For example, 
NSGA-II, [5], served as a base for finding s-Pareto in [6], and 
�-MOEA [7] was tailored for that purpose in [8]. The reader is 
referred to [6] and [8] for discussions on why the simultaneous 
search approach should be preferred over independent concept 
searches, and why tailoring of the algorithms is needed. 
Although these discussions are done in the context of an s-
Pareto search, they are also valid for the current study. The 
reader is also referred to [6], where a detailed positioning of the 
SBC approach is provided with respect to related approaches. 

In [3], it was suggested that concepts should not be selected 
by the s-Pareto approach. The alternative of a concept-based 
relaxed-Pareto approach was first suggested in [9], and was 
developed into an evolutionary algorithm in [10], using relative 
(dynamic) relaxation. The work in [1] follows the above 
studies, but extends the application of the SBC approach from 
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concept selection to design space exploration. Reference [1] 
involves three main contributions including: a. a description of 
a general approach to design space exploration, b. a related 
search algorithm, and c. a method to assess the algorithm. In 
contrast to previous studies that suggest the SBC approach for 
concept selection, the work in [1], and the current study 
highlights its possible utilization for design space exploration.  

As in [1], the current study employs SBC representations 
and the concept-based relaxed-Pareto approach, as a means to 
explore design spaces. The exploration algorithm in [1] is 
primarily based on two past studies on the SBC approach. The 
first is the study in [10], which combined the use of a relative 
SBC relaxation approach with NSGA-II, to produce Cr1-
NSGA-II. The second is the study in [8], which tailored �-
MOEA to the SBC approach to produce C-�-MOEA. However, 
the study in [1] substantially differs from works such as the 
above mainly by aiming at concept-based exploration rather 
than concept selection. Two types of exploration problems 
have been  defined in [1]. Here, we concentrate on finding the 
concepts' fronts within a relaxation zone (first problem type), 
rather than just on revealing which of the concepts have 
solutions within that zone (second problem type). 

The main contribution of the current work, as compared 
with [1], is the introduction of a novel method to account for 
run-time limitation. In general, hardware capabilities, and the 
averaged time for evaluating a particular design, play an 
important role in the total processing time that is needed to 
obtain meaningful results. Unfortunately, in many engineering 
applications the required time, to search for all the concepts' 
fronts, is expected to exceed the time that engineers may wait 
for the results. In response to the problem of the time 
limitation, it has been suggested in [1] to perform a 
simultaneous search that provides the designer with a means to 
reduce the computational effort by way of a pre-process 
assignment of a relaxation vector.  

To further alleviate the aforementioned problem, we 
suggest a modification to the algorithm in [1]. It involves a 
time control mechanism, based on the difference between the 
allocated run-time and the on-line estimated run-time. This 
difference, which changes during the search process is used to 
dynamically influence both the required amount of 
computational resources and the allocation of the available 
resources among the concepts. It is demonstrated here that 
adding the suggested time control mechanism has a dramatic 
effect on the time required to obtain the sought information, as 
compared with the time it takes for the unmodified algorithm 
of [1].  

The rest of this paper is organized as follows. In section II 
the foundations for the search methodology are described and 
in section III, the pseudo-code of the proposed search 
procedure, with the time control mechanism, is presented. 
Section IV provides a description of the benchmarking 
example, as well as the description and analysis of the results. 
Finally, section V outlines the conclusions of this paper. 

II. PROBLEM DEFINITION 
This paper deals with the implementation of the SBC 

approach for design space exploration. The method has been 

termed, in [1], as Concept-based Design Space Exploration or 
in short C-DSE. The primary difference between using the 
SBC approach for such a motivation, and using it for concept 
selection, is in the definition of the sought information, as 
described in [1]. The fundamental C-DSE problem, which is 
dealt with here, has been described in [1]. It is restated here for 
the sake of completeness.  

Let no be the dimension of the objective-space  �no and nc 
be the number of concepts. Let nm

mX ⊆ �  be the design-space 
of the m-th concept, and : on

m mf X →�  is the concept's 
objective-function. Let nm  be the dimension of Xm . 
Furthermore, let s be any particular design and let ms and xs  
represent the concept index and the design vector of s , 
respectively. Also, ( ), 1,...,s j mx j n=  represents the j-th 

element of xs, and [ ]
ss m sy f x=  represents the performance vector 

of s, with ( ), 1,..., os iy i n=  representing the i-th element of ys. 

Without loss of generality, the complete C-DSE, which is 
based on a Pareto-approach, is about finding all the feasible 
Pareto-optimal solutions and front, for each problem of the 
following nc independent problems: 

 [ ] cmin for 1,...,mf x m n=  (1) 

On the other hand, the s-Pareto search problem is to find 
the non-dominated set of the union of solutions from all the 
above problems. Let P*  be the set of all feasible particular 
designs from all concepts, then the s-Pareto set is defined as 
follows: 

 * *G s P= ∈ ∃{ }* : s ss P y y′′∈ �  (2) 

Where y' � y stands for y' dominates y. 

Let F* be the union of all the solutions of the complete C-
DSE problem (see eq. 1). Then the first C-DSE problem type, 
as described in [1], is to find the concept-based relaxed Pareto-
optimal set, which is defined without loss of generality, for a 
minimization problem, as follows: 

 { }* * * : s sR s F s G y y r′′= ∈ ∃ ∈ +�  (3) 

where vector ( )1,..., o

o

n
nr r r += ∈�  is a vector of 

relaxation, which is defined by the users prior to the search. It 
is noted that the difficulty is that the relaxation zone, which 
contains the sought information, is relative to the s-Pareto 
front, which in itself is unknown prior to the search. In [1], a 
dynamic relaxation approach has been used, which is based on 
a process by which the actual relaxation during the search 
process decreases towards the pre-defined relaxation. Here, as 
explained in subsection III.D, a different approach is used, 
which is hereby termed as generalized relaxation.   
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III. CONCEPT-BASED EVOLUTIONARY EXPLORATION 
Following [1], this section starts, in III.A, with several 

mathematical definitions that are used in the description of the 
algorithm. Next, in III.B, measures are defined concerning the 
utilization of the computational resources and the termination 
condition for the algorithm. These are followed, in III.C and 
III.D, by a pseudo-code description of the proposed 
evolutionary search method, which constitutes a modification 
to the technique in [1]. 

A. Definition of sets used by the algorithm 

The Population History of the m-th Concept ( )Pm , is the 
set of all evaluated designs from all past and present iterations, 
which are associated with concept m. 

The Non-dominated Set of the m-th Concept ( )mF , is 

the current set of all non-dominated designs of mP  : 

 m mF s P= ∈ ∃{ } ( )1,...,: cm nm s ss P y y =′′∈ �  (4) 

Each member s of Fm is assigned with index vector 

( ) 1
0 1, , , n

s nI I I I += ∈� � o

o
 as follows: 

 ,, ,1 ,2

1 1 2

, , , ,
n

s ns i s s
s

i i n

yy y y
I

ε ε ε ε=

� �� �� � � � � �
� �= � �� � � � � �� �� �� 	 � 	� 	 � 	
 �
� �

o
o

o

 (5) 

�i�is the designated tolerance in the i-th objective below 
which the performance difference is insignificant to the user. 
Any non-empty set of designs from Fm with the same index 
vector I is hereby termed as �-Cell. 

Each �-cell (e) is assigned with a typical performance 
vector as follows: 

 ( )1 1 2 2, , ,e n ny I I Iε ε ε= ⋅ ⋅ ⋅�
o o

 (6) 

The �-Cells Set of the m-th Concept (Mm), contains all the 
�-cells of the m-th concept (i.e. �-cell for each unique index 
vector obtained by Fm members). 

Here the Mm  set replaces the role of the �-approximate 
Pareto set used in �-MOEA [7]. This simple and low-cost 
method allows efficient finding of well-distributed 
approximation of the Pareto fronts. It is noted that the number 
of �-cells occupied by each concept and the rate of occupying 
new �-cells during the search process are used to support  the 
distribution of computational resources among the deferent 
concepts. 

Integrated �-Cells Set ( M  ) contains �-cells from all 
concepts: 

 
1

cn

m
m

M M
=

=�  (7) 

The Global Non-dominated Set of �-Cells (G), is the set 
of all non-dominated �-cells of M : 

 G e M= ∈ ∃{ }: e ee M y y′′∈ �  (8) 

The Relaxed Non-dominated Set of �-Cells (R), contains 
G  and all the �-cells of M, which satisfy the proximity 
condition: 

 { }: e eR e M e G y y r′′= ∈ ∃ ∈ +�  (9) 

where vector ( )1,..., o

o

n
nr r r += ∈�  is the vector of 

relaxation. 

B. Measures of resource utilization 
The following measures of resource utilization are defined 

to support balancing the computational resources among the 
various concepts, and to provide a mean for the search 
termination condition. 

Several measures of resource utilization are defined as 
follows: 

• The resource utilization of the �-cell (e): 

 
[ ]SelectionCount

e

e
SelectionLimit

ν =  (10) 

Where, the selection count is defined as the number of 
times any design s from the �-cell has been selected for 
mutation (during the evolutionary process). The 
selection count is limited with a predefined value  
( )SelectionLimit . 

• The resource utilization of the m-th concept: 

 [ ]1

m

m
e Mm

e
M

ν ν
∈

= ⋅ �  (11) 
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C. Main Procedure 
 

1 Perform Initialization Procedure (see subsection III.D.1).
2 Initialize set A with all �-cells of all concepts and empty set 

B. 
3 While run time didn't exceed the time limit: 

 2.1 Perform Generalized Relaxation Update Procedure
(see subsection III.D.3). 

 2.2 Select one �-cell (e) from set A according to Cell 
Selection Procedure (see subsection III.D.2). 

 2.3 Randomly select one design s from e. 
 2.4 Perform Element Mutation (see subsection III.D.4) on s

to produce a new design s'. 
 2.5 Evaluate s' and update all the sets that are defined in 

subsection III.A. 

 

D. Sub-procedures 
1) Initialization Procedure 

Procedure steps: 

 1 Randomly initialize a population of designs with equally 
sized subpopulations for each concept. 

 2 Evaluate each design. 

 3 Initialize all the sets defined in section III.A. 

 4 Start the evolution process by equal distribution of 
resources among the concept for a predefined number of 
iterations.  

2) Cell Selection Procedure 

To ensure a fair selection, this procedure takes into 
consideration the resource utilization (see section III.B) of 
every concept and every selectable �-cell (from set A). The 
proposed rule is that the selected �-cell will be the �-cell with 
the lowest resource utilization from the concept with the lowest 
resource utilization. 

Procedure steps: 

 1 Select the concept m with the lowest resource utilization 
(�m). If there is more than one concept with the same 
lowest resource utilization, then randomly select one of 
these concepts. 

 2 From the selected concept m, select the �-cell e with the 
lowest resource utilization (�e). If there is more than one 
�-cell with the same lowest resource utilization, then 
randomly select one of these �-cells. 

 

 

 

3) Generalized Relaxation Update Procedure 

In [1], a relaxation decay profile has been suggested to 
retain wide relaxation at early stages of the evolutionary 
process, and then to decay on a linear slope until the final 
relaxation value is achieved at an advanced stage of the 
evolutionary process. The profile, in [1], also ensures that, once 
reached, the final value is retained until the end of the 
evolutionary process. 

A general idea for a possible (not the actual) modification 
to the algorithm in [1], is schematically described in Fig. 2. As 
shown in the figure, the size of the relaxation zone may be 
influenced by the "Time Error." Namely, as the difference 
between the current available (desired) run-time and the 
current estimated run-time becomes small, then the relaxation 
vector should be reduced and vice-versa. Presumably, in such a 
case, when an envisioned algorithm predicts that there is no 
sufficient time to complete the search successfully, then the 
algorithm decreases the relaxation, which in turns decreases the 
required resources.  

 
Fig. 2 Illustration of the time control method 

However, here a finer approach to influence the amount of 
required resources, and the allocation of resources among the 
concepts, is suggested. It is based on the �-cells rather than on 
an adaptive relaxation vector. The finer approach is hereby 
termed as a generalized relaxation. 

Given any �-cell e M∈  let T[e] be the estimated needed 
time according to the difference between the selection-limit 
and its selection-count. Also let T be the total estimated time of 
all the �-cells in A (current estimated run-time) and T*  be 
current available (desired) run-time. 

Procedure steps if T > T* (under time pressure): 

 1 Each �-cell in A is assigned with a scalar value derived by 
a non-domination ranking based on its performance 
vector and its resource utilization. 

Let e' be the worst ranked �-cell in A. 

 2 While T > T* and e R′∉  (where R is the relaxed non-
dominated set of �-cells defined in III.A), shift e' to B. 

 Procedure steps if T < T*: 

 1 Each �-cell in B is assigned with a scalar value derived by 
a non-domination ranking based on its performance 
vector and its resource utilization. 

Let e' be the best ranked �-cell in B. 

 2 While T < T* and B ≠ ∅  and [ ]T e T T∗′ ≤ − , shift e' to A.   

Time
Error Relaxation 

Window Size

Run Time
Estimator

Selection 
Mechanism

 +

�

Desired 
Time Limit

Time
Error Relaxation 

Window Size

Run Time
Estimator

Selection 
Mechanism

 +

�

Desired 
Time Limit
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4) Element Mutation 

This operator produces a new offspring design s'  based on 
a parent design s. sx ′  will be identical to sx  except of one 
design parameter, which is randomly selected to be mutated. 

We assume the design space of each concept is bounded 
and divided into hyper-rectangles, which are defined according 
to a desired resolution. Let min

,m jx , max
,m jx  and ,m jN  be the 

lower limit, the upper limit and the number of resolution 
intervals for the j-th component  of the design vector of the m-
th concept, respectively. The mutation is performed as follows: 

 1 Initialized sx ′  to be identical to sx . 

 2 Randomly select one design parameter 1, ..., mj n∈  and 

a direction indicator { }1, 1t ∈ + − . 

 3 Calculate the number of resolution intervals as available 
for the mutation step for the selected parameter and 
direction as follows: 

 

min
, ,

,max min
, ,

max
, ,

,max min
, ,

1

1

s j m j
m j

m j m j

m j s j
m j

m j m j

x x
N t

x x

x x
N t

x x


 −
⋅ = −� −�Δ = � −� ⋅ = +

−��

 (12) 

  If 1Δ<  select a different direction and recalculate �. 

 4 Invoke random value drawn from the standard normal 
distribution Z, and calculate a normalized mutation step 
as follows: 

 min ,1 Zδ = Δ +
 �� 	  (13) 

 5 Set the new value of the selected design parameter of s' 
according to the mutation step: 

 ( )max min
, , , ,

,
s j s j m j m j

m j

x x t x x
N
δ

′ = + ⋅ ⋅ −  (14) 

IV. EXPERIMENTS AND RESULTS 

A. Test Problem 
Similar to the idea that is presented in [1], also here, 

common test functions are transformed by translation and 
scaling in the objective space, as seen in 0 In contrast to the bi-
objective example in [1], which involved ten-concepts, here the 
devised bi-objective test problem involves forty-concepts. Each 
concept’s design-space and objective-function are based on one 
of the standard test-functions, which are commonly used for 
the development of multi-objective evolutionary algorithms 
(e.g., [5]). Table I provides details for forty concepts, which are 
based on nine test functions with different transformations. For 

example, FON is used to produce four different functions by 
four different transformations, which correspond to four 
different concepts. Each transformation type (scale and offset) 
is presented, in  Table I, as a row vector with the 1st and 2nd 
components corresponding to the 1st and 2nd objective, 
respectively. Fig. 3 shows all forty fronts. In the current study, 
the size of each component of the relaxation vector is one. This 
can easily be observed as the gray area in Fig. 4, which shows 
a part of the previous graph in an enlarged scale. Clearly, many 
of the concepts' fronts are actually out of the relaxation zone.  

Obtaining all the fronts as shown in Fig. 3 took approx. 
four hours on a PC with six cores. This is because we have 
incorporated a time delay per each evaluation of a design, to 
make the search characteristics similar to a real-life problem 
search, in which the evaluation time may be significant and it 
may defer from one concept to the other. In the example 
below, the delays ranged between 0.06 to 2 seconds per an 
evaluation of an individual solution, such that each concept 
had a different time-delay associated with it.  

 
 
 
 
 

 
Fig. 3   The concepts' fronts 

 

Fig. 4 Some of the concepts' fronts (enlarged scale) 
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TABLE 1   CONCEPTS' DETAILS 

 
Test  
Fn. nm 

Design-Space 
Bounds 

Obj.  
Scale 

Obj.  
Offset Nm 

FON 3 [ �4, 4 ]  

[ 1.0, 1.0 ] [ 0.0, 0.0 ] 

40 [ 2.0, 2.0 ] [ 0.0, 0.0 ] 

[ 1.0, 1.0 ] [ 3.0, 3.0 ] 

[ 9.5, 9.5 ] [ 0.0, 0.0 ] 

KUR 3 [ �5, 5 ] 

[ 0.3, 0.3 ] [ 8.3, 8.0 ] 

200 
[ 0.2, 0.2 ] [ 6.0, 3.8 ] 

[ 0.2, 0.2 ] [ 8.0, 7.5 ] 

[ 0.2, 0.2 ] [ 4.0, 7.0 ] 

[ 0.2, 0.2 ] [ 9.0, 5.0 ] 

POL 2 [ ��, � ] 

[ 0.2, 0.2 ] [ 1.0, 0.0 ] 

100 
[ 0.1, 0.1 ] [ 1.0, 0.5 ] 

[ 0.5, 0.5 ] [ 6.0, 5.0 ] 

[ 0.3, 0.3 ] [ 5.0, 0.0 ] 

SCH
1 1 [ �1000, 1000 ] 

[ 1.3, 1.0 ] [ 0.0, 0.0 ] 

4x 
104 

[ 1.3, 1.0 ] [ 1.0, 1.0 ] 

[ 2.0, 2.0 ] [ 1.0, 0.0 ] 

[ 3.0, 3.0 ] [ 1.0, 4.0 ] 

ZDT
1 30 [ 0, 1 ] 

[ 1.0, 1.0 ] [ 1.5, 2.0 ] 
11 [ 2.0, 2.0 ] [ 1.5, 1.0 ] 

[ 1.0, 1.0 ] [ 5.0, 5.0 ] 

ZDT
2 30 [ 0, 1 ] 

[ 1.0, 1.0 ] [ 0.3, 0.3 ] 
11 [ 2.0, 2.0 ] [ 0.1, 0.1 ] 

[ 0.5, 1.0 ] [ 4.0, 1.0 ] 

ZDT
3 30 [ 0, 1 ] 

[ 1.6, 1.6 ] [ 0.5, 2.0 ] 

101 

[ 2.0, 2.0 ] [ 0.5, 3.0 ] 

[ 1.0, 1.0 ] [ 3.0, 2.0 ] 

[ 2.0, 2.0 ] [ 4.0, 4.0 ] 

[ 1.5, 1.0 ] [ 2.0, 3.0 ] 

[ 8.0, 5.5 ] [ 3.0, 5.0 ] 

ZDT
4 10 

x1∈ [ 0 , 1 ] 
 

x2,…,10∈ [ �5 , 5 
] 

[ 2.0, 2.0 ] [ 0.0, 0.0 ] 

21 

[ 1.0, 1.0 ] [ 0.0, 0.0 ] 

[ 1.5, 1.5 ] [ 0.0, 0.0 ] 

[ 1.0, 1.0 ] [ 1.0, 0.0 ] 

[ 7.0, 7.0 ] [ 3.0, 3.0 ] 

[ 1.0, 6.0 ] [ 0.0, 5.0 ] 

[ 4.0, 7.0 ] [ 9.0, 3.0 ] 

ZDT
6 10 [ 0, 1 ] 

[ 1.0, 1.0 ] [ 2.0, 1.0 ] 

41 [ 1.5, 1.5 ] [ 0.2, 1.0 ] 

[ 4.0, 4.0 ] [ 0.0, 0.0 ] 
[ 1.0, 5.0 ] [ 5.0, 3.0 ] 

 

B. Results 
The proposed algorithm has been tested as follows. First, 

the desired time-limit was set into three hours, which amounts 
to 3/4 of the time that it took to produce all the fronts. Fig. 5 
shows the obtained fronts when the algorithm is used with 
Selection-Limit = 40, [ ]1,1r = , and � = 0.1.  Fig. 6 shows a 
closer look at a part of the objective space. 

In both Fig. 5 and 6, the curves show the discovery rate of 
the fronts, based on eight independent runs. For example, when 
a curve is shown in black it means that the part of a front, 
which is represented by that curve, has been found in all eight 
runs. On the other hand, a green part means that only in four 
out of the eight runs that part of the front was discovered. It is 
important to note that the sought information is within the gray 
area of Fig. 6, namely within the relaxation zone. It is clear 
from Fig. 6 that most of the information, within that zone, was 
obtained in all runs, and all of it was obtained in at least six 
runs out of the conducted eight runs. Clearly, as seen in Fig. 5, 
the reduced computational resources influenced primarily the 
results far from the relaxation zone.  

 
Fig. 5   Revealed concepts' fronts (time-limit = 3 hours) 

 

 
 

Fig. 6   Part of the revealed concepts' fronts (time-limit = 3 hours) 
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Next, the time limit was set into two hours, which 
corresponds to half of the required time to find all fronts.  The 
results under this restriction are shown in Fig. 7 and 8. The 
results for a one hour restriction (1/4 of the required time) are 
shown in Fig. 9 and 10.   

It is clear from the above series of results that the 
algorithm performs as it was designed for. Namely, the results 
in the relaxation zone, which is the zone of interest, are much 
less influenced by the time restriction, as compared with the 
results outside that zone. 

V.  SUMMARY AND CONCLUSIONS 
This paper employs a non-traditional set-based concept 

approach to simultaneously explore different design spaces as 
associated with design concepts.  A relaxation vector is pre-
defined in a mutual objective space. It serves to find a 
corresponding relaxation zone as related to the s-Pareto front. 
The exploration problem, which is dealt with here, is to find all 
the concepts' fronts that are within that zone. The difficulty is 
that the zone is relative to the s-Pareto front, which in itself is 
unknown prior to the search. In the current study the problem 
is to be solved under a restricted run-time.  

 

 
Fig. 7 Revealed concepts' fronts (time-limit = 2 hours) 

 
Fig. 8 Part of the revealed concepts' fronts (time-limit = 2 hours) 

Following the study in [1], the current work provides a 
solution to the aforementioned problem. It employs a time-
control mechanism, which is shown to allocate the limited 
computational resources in a way that has a smaller effect on 
the revealed information within the relaxation zone, as 
compared with the obtained information outside that zone. 

The above conclusion is based on the results of the given 
test-case. While complicated in a substantial way, this test-case 
must be amended with additional studies using other test-cases. 
It is further noted that there is no common benchmarking 
method for the type of problems that are presented in [1] and in 
the current study. Different transformations of common test 
functions may serve to devise alternative test-cases.  

Finally, it should be noted that we have recently tested the 
algorithm of [1] on a real-world application composed of 
simultaneous exploration of 180 concepts concerning the 
design of aircraft propellers. That study involved a run that 
took a few weeks on a PC. In the near future we plan to test 
that real-life problem with the current algorithm under various 
time-restrictions. Moreover, in the long-run we plan to modify 
the current algorithm into an interactive one.  

 

 

 
Fig. 9 Revealed concepts' fronts (time-limit = 1 hour) 

 
Fig. 10 Part of the revealed concepts' fronts (time-limit = 1 hour) 
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