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Abstract—An important implementation issue in MOEA/D 
(multiobjective evolutionary algorithm based on decomposition) 
is the specification of a scalarizing function. For its appropriate 
specification, it is necessary to understand the search behavior of 
MOEA/D for various settings of a scalarizing function. Especially, 
it is important to understand the relation between weight vectors 
and obtained solutions. The understanding of this relation is also 
very important for the incorporation of preference information 
into MOEA/D through weight vector specification. In this paper, 
we examine the mapping from weight vectors to solutions by 
monitoring which solution is obtained from each weight vector. 
MOEA/D with a number of different settings of a scalarizing 
function is applied to knapsack problems and DTLZ2 with 2-6 
objectives. As a scalarizing function, we use the weighted sum, 
the weighted Tchebycheff and the PBI (penalty-based boundary 
intersection). We report some interesting observations obtained 
from computational experiments. Among them are the existence 
of many duplicated solutions, their positive and negative effects, 
and a dominant effect of the penalty parameter value in the PBI. 

I. INTRODUCTION 
Evolutionary many-objective optimization [1] has been a 

hot topic in the field of EMO (evolutionary multiobjective 
optimization [2]). Since Pareto dominance-based algorithms 
such as NSGA-II [3] and SPEA2 [4] do not always work well 
on many-objective problems, various approaches have been 
proposed for the use of other fitness evaluation schemes. Most 
of them can be categorized into two classes. One is indicator-
based algorithms where a performance indicator is used for 
fitness evaluation (e.g., IBEA [5], SMS-EMOA [6], HypE [7]). 
Hypervolume has been frequently used as an indicator due to 
its theoretical property called Pareto compliance [8]. However, 
its calculation for many-objective problems often needs heavy 
computation load. The other class is scalarizing function-based 
algorithms. MOEA/D [9] is a representative of this class. The 
popularity of this class has drastically increased after the 
proposal of MOEA/D in 2007 [9]. Scalarizing functions have 
been used for fitness evaluation in memetic EMO algorithms 
since mid-1990s [10], [11]. A cellular EMO algorithm similar 
to MOEA/D was also proposed in 2001 [12]. The main 
advantage of scalarizing function-based algorithms is their 
computational efficiency of fitness evaluation. The simplicity 
of algorithm structure is an additional advantage of MOEA/D.  

A new trend in evolutionary many-objective optimization is 
the use of Pareto dominance-based and scalarizing function-

based fitness evaluation schemes in a single algorithm such as 
NSGA-III [13] and I-DBEA (improved decomposition-based 
evolutionary algorithm [14]). It was reported in these studies 
that better results were obtained from NSGA-III and I-DBEA 
than MOEA/D. However, the use of Pareto dominance together 
with scalarizing functions may degrade the two advantages (i.e., 
efficient fitness evaluation and simple algorithm structure) 
while the search ability of MOEA/D may be improved.  

In MOEA/D [9], the following three scalarizing functions 
were examined: the weighted sum, the weighted Tchebycheff 
with a reference point, and the PBI with a reference point and a 
penalty parameter value. As shown in the literature (e.g., see 
[15], [16]), the performance of MOEA/D depends strongly on 
the specification of a scalarizing function. Good specifications 
for some problems often lead to poor results for other problems. 
Moreover, good specifications for multiobjective problems are 
often inappropriate for many-objective problems. For example, 
it was reported in [15] that the PBI with a penalty parameter 
value � = 5 did not work well on a ten-objective knapsack 
problem while it was the best specification for a two-objective 
knapsack problem. The use of other scalarizing functions such 
as an inverted PBI function [17] was proposed in the literature. 
The decomposition of a many-objective problem into a number 
of simple multiobjective problems was also proposed [18].   

As we have already mentioned, MOEA/D is an efficient 
EMO algorithm with a simple decomposition structure. It also 
has a high flexibility in its implementation (e.g., choice of a 
scalarizing function and weight vectors). However, it seems 
that its high flexibility has not been fully utilized or recognized 
in the literature. For example, a single fixed specification of a 
scalarizing function has often been used for all test problems in 
performance comparison. When a scalarizing function is not 
appropriately specified, high flexibility in the implementation 
of MOEA/D can be viewed as its disadvantage.  

For fully utilizing the high flexibility of MOEA/D, we may 
need to know the behavior of MOEA/D under various settings. 
Especially, it is important to understand the relation between 
weight vectors and solutions. The understanding of this relation 
is also important for preference incorporation into MOEA/D 
through weight vector specification. In this paper, we visually 
examine this relation by monitoring which solution is obtained 
for each weight vector in each run of MOEA/D on knapsack 
problems [15], [19] and DTLZ2 [20] with 2-6 objectives. That 
is, the mapping from weight vectors to solutions is monitored 
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in each run. As a scalarizing function, we use the weighted sum, 
the weighted Tchebycheff, and the PBI. Various specifications 
are examined for a reference point (Tchebycheff and PBI) and 
a penalty parameter value (PBI). Different specifications of the 
number of weight vectors (i.e., the population size) are also 
examined. We report some interesting observations such as 
positive and negative effects of many duplicated solutions in a 
population, which are observed in computational experiments 
by monitoring the mapping from weight vectors to solutions. 
Recently some ideas have been proposed for tackling negative 
effects of duplicated solutions on the diversity of a population 
in MOEA/D (e.g., use of a constraint condition [21] and new 
replacement mechanisms [22]-[24]). Most experimental results 
in this paper support the motivation of those ideas. However, 
some other results show positive effects of duplicated solutions.  

This paper is organized as follows. In Section II, the three 
scalarizing functions are explained. Experimental results on 
knapsack problems and DTLZ2 are reported in Section III and 
Section IV, respectively. In Section V, this paper is concluded. 

II. SCALARIZING FUNCTIONS IN MOEA/D 
In this section, we explain the three scalarizing functions in 

MOEA/D [9] for a multiobjective problem with k objectives: 
f1(x), f2(x), ..., fk(x). In MOEA/D, a multiobjective problem is 
decomposed into a number of single-objective problems. Each 
single-objective problem is defined by the same scalarizing 
function with a different weight vector. Thus the number of the 
single-objective problems is the same as the number of the 
weight vectors, which is the same as the population size. 

Weight vectors w = (w1, w2, ..., wk) are uniformly sampled 
using the following formulations in MOEA/D [9]: 
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where H is a positive integer. The number of weight vectors 
(i.e., population size) can be calculated from (1) and (2) as 
H� k
1Ck
1 (see [9]). In computational experiments, we use two 
settings of H for each test problem as shown in Table I and 
Table II. The population size of 100-200 has been frequently 
used in the literature (e.g., see [13], [14]). Thus we use small 
populations in Table I. However, good results by MOEA/D are 
often obtained from large populations (e.g., see [16]). Thus we 
also examine large populations in Table II.  

TABLE I.  SETTING FOR SMALL POPULATION SIZE. 

Number of objectives: k 2 3 4 5 6
Value of H 99 13 7 5 4

Population size: H+ k -1Ck -1 100 105 120 126 126

TABLE II.  SETTING FOR LARGE POPULATION SIZE.  

Number of objectives: k 2 3 4 5 6
Value of H 4999 98 29 16 11

Population size: H+ k -1Ck -1 5000 4950 4960 4845 4368

The weighted sum is written for a maximization problem as  

Maximize )()()|( 11 xxwx kk
WS fwfwf �������� . (3) 

 This formulation is rewritten for a minimization problem as 
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Tchebycheff for a maximization problem is written as 
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In this paper, we specify the reference point z* in (5) as  
)}()2()1(|)(max{* tfz ii ��������� ���xx� , 

                                                                i = 1, 2, ..., k, (6) 
where � is a real number and �(t) is the population at the t-th 
generation. The value of � is usually specified as � = 1.0. 
However, � = 1.1 was also used in [9]. In this paper, three 
values of �  are examined (� = 1.0, 1.01, 1.1) for maximization 
problems. The use of a value larger than 1.0 for �  is to increase 
the diversity of solutions for maximization problems.  

For minimization problems, (5) can be used after changing 
the definition of the reference point z* in (6) as 

)}()2()1(|)(min{* tfz ii ��������� ���xx� , 
                                                                i = 1, 2, ..., k. (7) 

 For the same reason as in maximization problems, we 
examine three specifications of � : � = 0.9, 0.99, 1.0. 

The PBI function is written as  

Minimize 21
* ),|( ddf PBI ���zwx , (8) 

where �  is a penalty parameter, and d1 and d2 are as follows: 
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The reference point z* is specified in the same manner as in 
the weighted Tchebycheff. The formulation in (8)-(10) can be 
used for both minimization and maximization problems. In [9], 
�  was specified as � = 5. In this paper, we examine four values 
of �  (� = 0.1, 1, 5, 10) for each value of � .  

III. EXPERIMENTAL RESULTS ON KNAPSACK PROBLEMS 

A. Setting of Computational Experiments 
We applied MOEA/D (with no archive population) to 500-

item knapsack problems with 2-6 objectives [15]. Fig. 1 shows 
randomly generated 100 solutions and the Pareto front of the 
two-objective 500-item knapsack problem. As shown in Fig. 1, 
EMO algorithms need a strong convergence property (since 
initial solutions are far from the Pareto front) as well as a 
strong diversification property (since the diversity of initial 
solutions is much smaller than that of the Pareto front). 
Computational experiments in this paper were performed under 
the same setting as in our former study [15] except for the 
neighborhood size (which was specified as 10 in [15]):  
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Fig. 1. Randomly generated 100 solutions (open circles) and the Pareto front 
(red circles) of the two-objective 500-item knapsack problem. 

Coding: Binary string of length 500, 
Population size: Table I and Table II, 
Neighborhood size: 10% of the population size, 
Termination condition: 400,000 solution evaluations, 
Crossover probability: 0.8 (Uniform crossover), 
Mutation probability: 2/500 (Bit-flip mutation),  
Repair: Greedy repair based on the maximum profit ratio [19]. 

As a scalarizing function, we used the above-mentioned 16 
settings: the weighed sum, the weighted Tchebycheff with � = 
1, 1.01, 1.1, and the PBI with � = 0.1, 1, 5, 10 for � = 1, 1.01, 
1.1. In Tables III and IV, we show the average hypervolume 
value over 10 runs by each setting on each test problem. Small 
and large populations in Tables I and II were used in Tables III 
and IV, respectively. The hypervolume was calculated from the 
origin of the objective space. In each table, the best three 
results for each test problem are shown by red, the best result is 
underlined, and the worst result is shown by blue.  

The best results on many-objective problems in Table III 
(small populations) were obtained by the weighted sum while 
the weighted Tchebycheff with � = 1.1 was the best in Table 
IV (large populations). This observation suggests that the 
choice of a scalarizing function depends on the population size. 
In other words, performance comparison results depend on the 
specification of the population size. From Table III and Table 
IV, we can also obtain the following observations. 

Weighted sum: The weighted sum is a good choice for 
many-objective problems with 4-6 objectives in both tables. 
However, it is not a good choice for the two-objective problem.  

Weighted Tchebycheff: The increase of the value of � 
from 1 to 1.01 and 1.1 improves the average hypervolume for 
all test problems in both tables. The weighted Tchebycheff 
with � = 1.1 is a good choice in both tables except for the six-
objective problem in Table III with small populations.  

PBI: The PBI with � = 1 and � = 1 is always the worst in 
both table. This observation is consistent with the poor results 
of the weighted Tchebycheff with � = 1. The effect of the 
value of � is not monotonic. Better results were obtained from 
� = 0.1, 5, 10 than the case of � = 1 for all test problems in both 
tables. The PBI with � = 1.1 and � = 10 is a good choice for the 

problems with 2-3 objectives while � = 1.1 and � = 0.1 are 
good specifications for the problems with 5-6 objectives. 

TABLE III.  AVERAGE HYPERVOLUME BY MOEA/D WITH SMALL 
POPULATION (KNAPSACK PROBLEMS).  

Scalarizing Function
2-obj. 3-obj. 4-obj. 5-obj. 6-obj.
x108 x1012 x1017 x1021 x1025

Weighted Sum 3.991 7.637 1.439 2.664 4.800
Tchebycheff: � = 1.00 3.844 7.141 1.269 2.285 4.015
Tchebycheff: � = 1.01 3.980 7.416 1.331 2.342 4.079
Tchebycheff: � = 1.10 4.024 7.706 1.436 2.607 4.521
PBI: � = 1.00, � = 0.1 3.952 7.448 1.395 2.577 4.640
PBI: � = 1.00, � = 1 3.624 6.329 1.084 1.900 3.232
PBI: � = 1.00, � = 5 3.781 6.971 1.210 2.080 3.427
PBI: � = 1.00, � = 10 3.815 7.123 1.230 2.114 3.474
PBI: � = 1.01, � = 0.1 3.938 7.429 1.396 2.578 4.634
PBI: � = 1.01, � = 1 3.704 6.478 1.105 1.910 3.255
PBI: � = 1.01, � = 5 3.939 7.176 1.242 2.133 3.489
PBI: � = 1.01, � = 10 3.967 7.276 1.257 2.167 3.546
PBI: � = 1.10, � = 0.1 3.953 7.411 1.395 2.579 4.635
PBI: � = 1.10, � = 1 3.834 6.635 1.136 1.937 3.263
PBI: � = 1.10, � = 5 4.032 7.601 1.289 2.151 3.592
PBI: � = 1.10, � = 10 4.029 7.665 1.298 2.190 3.660

 
TABLE IV.  AVERAGE HYPERVOLUME BY MOEA/D WITH LARGE 

POPULATION (KNAPSACK PROBLEMS).  

Scalarizing Function
2-obj. 3-obj. 4-obj. 5-obj. 6-obj.
x108 x1012 x1017 x1021 x1025

Weighted Sum 3.993 7.570 1.412 2.593 4.669
Tchebycheff: � = 1.00 3.825 7.048 1.261 2.261 3.915
Tchebycheff: � = 1.01 3.980 7.421 1.350 2.427 4.213
Tchebycheff: � = 1.10 4.027 7.769 1.483 2.733 4.846
PBI: � = 1.00, � = 0.1 3.947 7.329 1.359 2.462 4.380
PBI: � = 1.00, � = 1 3.631 6.360 1.097 1.904 3.213
PBI: � = 1.00, � = 5 3.765 6.852 1.224 2.127 3.554
PBI: � = 1.00, � = 10 3.801 7.022 1.250 2.169 3.633
PBI: � = 1.01, � = 0.1 3.943 7.341 1.362 2.464 4.395
PBI: � = 1.01, � = 1 3.702 6.526 1.126 1.952 3.257
PBI: � = 1.01, � = 5 3.945 7.259 1.280 2.200 3.672
PBI: � = 1.01, � = 10 3.968 7.322 1.301 2.244 3.741
PBI: � = 1.10, � = 0.1 3.947 7.340 1.355 2.478 4.414
PBI: � = 1.10, � = 1 3.844 6.751 1.153 2.001 3.326
PBI: � = 1.10, � = 5 4.038 7.696 1.348 2.272 3.796
PBI: � = 1.10, � = 10 4.041 7.733 1.367 2.310 3.873

We further examine these observations in the next three 
subsections using the relation between weight vectors and 
obtained solutions for each scalarizing function. As additional 
information, the average percentage of the number of different 
non-dominated solutions over the population size in the final 
population is shown for each setting. The number of different 
solutions is counted in the objective space.  
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TABLE V.  THE AVERAGE PERCENTAGE OF DIFFERENT NON-
DOMINATED SOLUTIONS IN THE FINAL POPULATION WITH SMALL 

POPULATION (KNAPSACK PROBLEMS).  

Scalarizing Function 2-obj. 3-obj. 4-obj. 5-obj. 6-obj.
Weighted Sum   17.5   48.2   63.7   73.1  75.1

Tchebycheff: � = 1.00   75.5   93.0   96.5   97.5  97.5
Tchebycheff: � = 1.01   81.6   92.8   90.1   94.2  97.9
Tchebycheff: � = 1.10   47.6   61.9   61.5   40.1  59.4
PBI: � = 1.00, � = 0.1   16.8   45.3   60.1   66.7   69.8
PBI: � = 1.00, � = 1     7.6   26.4   21.8   12.4   12.3
PBI: � = 1.00, � = 5   58.5   86.6   89.6   86.9   79.7
PBI: � = 1.00, � = 10   62.5   84.9   91.3   91.4   88.1
PBI: � = 1.01, � = 0.1   15.2   46.1   60.2   69.5   70.6
PBI: � = 1.01, � = 1   30.9   36.3   24.3   16.0   14.0
PBI: � = 1.01, � = 5   76.6   82.4   87.8   84.8   75.4
PBI: � = 1.01, � = 10   74.6   82.4   87.9   88.7   83.1
PBI: � = 1.10, � = 0.1   18.6   41.1   61.2   66.5   68.0
PBI: � = 1.10, � = 1   30.8   34.8   20.2   14.4     7.9
PBI: � = 1.10, � = 5   50.8   65.1   75.4   73.2   61.0
PBI: � = 1.10, � = 10   50.6   61.3   79.3   78.1   69.3

 

B. Results by Weighted Sum 
Fig. 2 shows the relation between the weight vectors and 

the solutions in the final population of a single run of MOEA/D 
with the weighted sum on the two-objective knapsack problem 
(population size 100). In Fig. 2 (b), the marked three solutions 
are the best solutions with respect to the first objective (blue), 
the second objective (red) and their sum (green). Fig. 2 (a) 
shows the weight vectors corresponding to each of those 
solutions (e.g., the red solution in Fig. 2 (b) is shared by many 
red weight vectors in Fig. 2 (a)). Since each solution is shared 
by multiple weight vectors, the total number of different 
solutions in Fig. 2 (b) is much smaller than the population size 
100 (see Table V). This is the reason for poor performance of 
the weighted sum on the two-objective problem in Table III.  

In the same manner, we show the results of a single run on 
the three-objective knapsack problem in Fig. 3. In Fig. 3 (b), 
the marked four solutions are the best solutions with respect to 
each individual objective and the sum of the three objectives.  
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                  (a) Weight vectors.                              (b)  Obtained solutions.  
Fig. 2. Results by the weighted sum on the two-objective knapsack problem. 
In (a), weight vectors for each solution in (b) are shown by different colors.  
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Fig. 3. Results by the weighted sum on the three-objective knapsack problem. 
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                  (a) Weight vectors.                                (b)  Obtained solutions.  
Fig. 4. Results by the weighted sum on the six-objective knapsack problem. 

In Fig. 4, we show the results of a single run on the six-
objective problem. Parallel coordinate plots are used for 
visualization. Each axis of the parallel coordinate plot in Fig. 4 
(b) is normalized for each objective using all solutions obtained 
in our computational experiments in Table III and Table IV. In 
Fig. 4 (b), the highlighted four solutions are the best solutions 
with respect to each of the first three objectives and the sum of 
the six objectives. Whereas some solutions (e.g., red and green) 
are shared by multiple weight vectors, the number of those 
weight vectors is much smaller in Fig. 4 (a) than in Fig. 2 and 
Fig. 3 (see Table V). This is the reason for good results by the 
weighted sum on many-objective problems in Table III. 

We can also see from Figs. 2-4 that the obtained solutions 
are directly related to the weight vectors in a straightforward 
manner. For example, by specifying the weight w1 for the first 
objective f1(x) as w1 = 1.0, the solutions with the best value of 
f1(x) were obtained in Figs. 2-4. 

C. Results by Weighted Tchebycheff 
For illustrating the effect of the location of the reference 

point on the obtained solutions by MOEA/D with the weighted 
Tchebycheff, we show results on the two-objective knapsack 
problem for the three settings of � : � = 1.0, 1.01, 1.1 in Fig. 5. 
As shown in Fig. 5 (f), the use of � = 1.1 clearly increased the 
diversity of solutions in comparison with the other cases in Fig. 
5 (b) and Fig. 5 (d). We can also see that the two solutions with 
the best value of each objective were shared by many weight 
vectors in Fig. 5 (e). On the contrary, those solutions were 
shared by only a few weight vectors in the cases of � = 1.0 in 
Fig. 5 (a). These observations suggest that many duplicated 
solutions in Fig. 5 (e) have a positive effect on the diversity of 
solutions in Fig. 5 (f).  
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             (a) Weight vectors (� = 1).              (b)  Obtained solutions (� = 1).  
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             (c) Weight vectors (� = 1.01).           (d)  Obtained solutions (� = 1.01).  
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             (e) Weight vectors (� = 1.1).           (f)  Obtained solutions (� = 1.1).  
Fig. 5. Results by a single run of MOEA/D with the weighted Tchebycheff 
on the two-objective knapsack problem for each value of � .  

In Fig. 6 and Fig. 7, we show the results on the three-
objective and six-objective problems, respectively, for the case 
of � = 1.1. As in Fig. 5, the colored solutions with the best 
values of each objective were shared by multiple weight 
vectors in Fig. 6 (a) and Fig. 7 (a). Those duplicated solutions 
have positive effects on the diversity of solutions. As a result, 
the highest average hypervolume was obtained from � = 1.1 in 
Table III and Table IV among the three settings of � .  

From the comparison between Fig. 3 (b) and Fig. 6 (b), we 
can see that a larger region of the Pareto front is covered by the 
obtained solutions in Fig. 6 (b) than Fig. 3 (b). This seems to 
be consistent with a large number of weight vectors in Fig. 6 
(a) sharing the three extreme solutions in Fig. 6 (b). Actually 
the best result for the three objective problem was obtained by 
the weighted Tchebycheff with �  = 1.1 in Table III.  

In Fig. 7 (b), solutions with good objective values close to 1 
were not obtained except for f2(x) and f5(x). More solutions 
with bad objective values close to 0 were obtained. This is due 
to weak convergence ability of the weighted Tchebycheff for 

many-objective problems (see [15]). As a result, the weighted 
Tchebycheff is not a good choice in Table III for the six-
objective problem. However, the weighted Tchebycheff with � 
= 1.1 is the best choice in Table IV when the population size is 
large. In Fig. 8, we show the result of a single run with this 
setting in Table IV. A large diversity of solutions is observed 
in Fig. 8 (b). In Fig. 8 (a), many weight vectors share the 
extreme solution with the best value of each objective. The use 
of a large population clearly improved the result in Fig. 7 (b). 
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Fig. 6. Results of a single run by the weighted Tchebycheff with � = 1.1 on 
the three-objective knapsack problem.  
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Fig. 7. Results of a single run by the weighted Tchebycheff with � = 1.1 on 
the six-objective knapsack problem (the population size is 126). 
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                  (a) Weight vectors.                                 (b)  Obtained solutions.  
Fig. 8. Results of a single run by the weighted Tchebycheff with � = 1.1 on 
the six-objective knapsack problem (the population size is 4368).  
 
D. Results by PBI 

Fig. 9 and Fig. 10 show the results of the PBI on the two-
objective and six-objective knapsack problems, respectively. 
The value of �  was specified as �  = 1.1. As shown in Fig. 9, 
totally different mappings from the weight vectors to the 
obtained solutions were realized depending on the value of �.  
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             (a) Weight vectors (�  = 0.1).          (b)  Obtained solutions (�� = 0.1).  
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             (c) Weight vectors (�  = 1).              (d)  Obtained solutions (�  = 1).  
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             (e) Weight vectors (�� = 5).               (f)  Obtained solutions (�  = 5).  

w1

w2

1

0
0 1

  f1

f2

2.1

2.0

1.9

1.8

1.7

1.6
1.6 1.7 1.8 1.9 2.0 2.1

(x104)

(x104)

 
             (g) Weight vectors (�� = 10).           (h)  Obtained solutions (�� = 10). 
Fig. 9. Results of a single run with the PBI on the two-objective knapsack 
problem. The value of � is specified as � = 1.1. 

1.0

0.5

0.01 2 3 4 5 6     

1.0

0.5

0.01 2 3 4 5 6  
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             (e) Weight vectors (�� = 5).                  (f)  Obtained solutions (�  = 5).  
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             (g) Weight vectors (�� = 10).             (h)  Obtained solutions (�� = 10). 
Fig. 10. Results of a single run with the PBI on the six-objective knapsack 
problem. The value of � is specified as � = 1.1. 

When � = 0.1, the mapping is straightforward (i.e., the best 
solution with respect to the i-th objective was obtained when 
the corresponding weight wi was 1.0). However, the mapping 
by � = 10 is totally different. The best objective value for each 
objective was obtained when the corresponding weight value 
was very small or zero. When � = 1.0, the diversity of solutions 
is small in Fig. 9 and Fig. 10. These observations suggest the 
difficulty of appropriately specifying the value of �.  

IV. EXPERIMENTAL RESULTS ON DTLZ2 

Many-objective knapsack problems in Section III can be 
viewed as a representative of discrete many-objective 
maximization problems with convex Pareto fronts. In this 
section, we use DTLZ2 test problems with 2-6 objectives. 
DTLZ2 can be viewed as a representative of continuous many-
objective minimization problems with concave Pareto fronts. 
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We use DTLZ2 since it has totally different characteristics 
from knapsack problems. In Fig. 11, we show randomly 
generated 100 solutions together with the Pareto front of the 
two-objective DTLZ2 problem. Fig. 11 may suggest that a 
good solution set will be easily obtained by simply pushing the 
initial population towards the Pareto front shown by the red 
curve. If compared with Fig. 1, Fig. 11 looks an easy problem.  
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Fig. 11. Randomly generated 100 solutions (open circles) and the Pareto front 
(red curve) of the two-objective DTLZ2 problem.  

 
MOEA/D with various scalarizing functions was applied to 

k-objective DTLZ2 problems under the following conditions:  

Coding: Real number string of length (9 + k), 
Population size: Table I and Table II, 
Neighborhood size: 10% of the population size, 
Termination condition: 40,000 solution evaluations, 
Crossover probability: 0.8 (SBX), 
Mutation probability: 1/n where n is the string length (PM). 

Due to the page limitation, experimental results only for 
small populations are shown in Table VI where the average 
hypervolume over 10 runs is reported for each test problem. 
The hypervolume was calculated for the reference point (1.1, 
1.1, ..., 1.1). In Table VI, the best and worst results for each test 
problem are highlighted by red and blue, respectively. Table 
VII shows the average percentage of different non-dominated 
solutions in the final generation. 

The worst results in Table VI were obtained from the 
weighted sum. This is because the weighted sum cannot handle 
concave Pareto fronts (see [25]). As shown in Table VII, many 
solutions were duplicated when the weighted sum was used. 
The best results in Table VI were obtained from the PBI with � 
= 5 independent of the value of � . Since initial solutions in Fig. 
11 have larger diversity, no strong diversification property is 
needed. Thus the value of � has almost no effect in Table VI. 
On the contrary, the value of � has a dominant effect on the 
performance of the PBI in Table VI. When �  is small, the PBI 
is similar to the weighted sum. Thus the PBI with a small value 
of �  did not work well on the DTLZ2 problems with concave 
Pareto fronts. The number of different non-dominated solutions 
was also very small as shown in Table VII when � = 0.1. 

It is interesting to observe that almost the same results were 
obtained from the weighted sum and the weighted Tchebycheff 
for the six-objective DTLZ2 problem in Table VI and Table 

VII. Obtained solutions by a single run are shown in Fig. 12 for 
the weighted Tchebycheff (� = 1.0) and the PBI (� = 1.0 and � 
= 5). In Fig. 12 (b) with the PBI, all solutions are non-
dominated (i.e., 100% non-dominated solutions in Table VII). 
The diversity of solutions in Fig. 12 (a) is much smaller than 
that in Fig. 12 (b). Moreover, some objective values in Fig. 12 
(a) are larger than 1.0. That is, the weighted Tchebycheff has 
difficulties in both diversity and convergence. When large 
populations were used, the best results were obtained from the 
weighted Tchebycheff for DTLZ2 with 2-4 objectives. For 5-6 
objectives, it was inferior to the PBI with � = 1.0 and � = 5. 

TABLE VI.  AVERAGE HYPERVOLUME BY MOEA/D WITH SMALL 
POPULATION (DTLZ2).  

Scalarizing Function 2-obj. 3-obj. 4-obj. 5-obj. 6-obj.
Weighted Sum 0.210 0.334 0.470 0.625 0.715

Tchebycheff: � = 0.90 0.420 0.694 0.763 0.676 0.711
Tchebycheff: � = 0.99 0.420 0.695 0.757 0.703 0.714
Tchebycheff: � = 1.00 0.420 0.694 0.761 0.694 0.706
PBI: � = 0.90, � = 0.1 0.210 0.332 0.472 0.653 0.773
PBI: � = 0.90, � = 1 0.420 0.698 0.752 0.705 0.745
PBI: � = 0.90, � = 5 0.420 0.749 1.031 1.278 1.510
PBI: � = 0.90, � = 10 0.420 0.749 1.031 1.277 1.509
PBI: � = 0.99, � = 0.1 0.210 0.332 0.472 0.650 0.760
PBI: � = 0.99, � = 1 0.420 0.700 0.763 0.710 0.772
PBI: � = 0.99, � = 5 0.420 0.749 1.031 1.278 1.511
PBI: � = 0.99, � = 10 0.420 0.749 1.031 1.277 1.509
PBI: � = 1.00, � = 0.1 0.210 0.332 0.472 0.650 0.771
PBI: � = 1.00, � = 1 0.420 0.702 0.760 0.710 0.762
PBI: � = 1.00, � = 5 0.420 0.749 1.031 1.278 1.511
PBI: � = 1.00, � = 10 0.420 0.749 1.031 1.277 1.509

 
TABLE VII.  THE AVERAGE PERCENTAGE OF DIFFERENT NON-
DOMINATED SOLUTIONS IN THE FINAL POPULATION WITH SMALL 

POPULATION (DTLZ2).  

Scalarizing Function 2-obj. 3-obj. 4-obj. 5-obj. 6-obj.
Weighted Sum    2.4   10.6   20.4  39.4  51.7

Tchebycheff: � = 0.90 100.0   79.1   61.8  54.1  60.0
Tchebycheff: � = 0.99 100.0   79.3   61.1  57.4  60.2
Tchebycheff: � = 1.00 100.0   79.0   59.6  55.0  59.8
PBI: � = 0.90, � = 0.1    2.0     7.4   17.7  24.5  27.9
PBI: � = 0.90, � = 1  99.8   81.8   42.9  28.8  27.1
PBI: � = 0.90, � = 5 100.0 100.0 100.0 100.0 100.0
PBI: � = 0.90, � = 10  99.9 100.0 100.0 100.0 100.0
PBI: � = 0.99, � = 0.1    2.0     7.4   16.9  25.3  27.9
PBI: � = 0.99, � = 1  99.9   83.2   44.3  28.3  26.7
PBI: � = 0.99, � = 5  99.9 100.0 100.0 100.0 100.0
PBI: � = 0.99, � = 10 100.0 100.0 100.0 100.0 100.0
PBI: � = 1.00, � = 0.1    2.0     7.4   17.2  24.0  27.7
PBI: � = 1.00, � = 1  99.9   84.0   43.8  28.3  25.9
PBI: � = 1.00, � = 5  99.9 100.0 100.0 100.0 100.0
PBI: � = 1.00, � = 10 100.0 100.0 100.0 100.0 100.0
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           (a) Weighted Tchebycheff.                                     (b)  PBI.  

Fig. 12. Obtained solutions by a single run with the weighted Tchebycheff (� 
= 1.0) and the PBI (� = 1.0 and � = 5) on the six-objective DTLZ2 problem.  

V. CONCLUDING REMARKS 
We examined the mapping from weight vectors to solutions 

in MOEA/D. Due to the page limitation, we visually explained 
it only for knapsack problems with 2-6 objectives (discrete 
multiobjective maximization problems). Of course, we can 
perform the same examination for other test problems. One 
interesting observation was the existence of many duplicated 
solutions (i.e., many weight vectors sharing the same solution). 
Duplicated solutions seem to have a positive effect on the 
diversity of solutions of the knapsack problems with 2-3 
objectives when each extreme solution with the best individual 
objective value is shared by many weight vectors. Another 
interesting observation was the very strong dependency of the 
mapping by the PBI function on the penalty parameter value �. 
When �  was very small, the mapping was straightforward. An 
extreme solution with the best value of an individual objective 
was obtained by specifying the corresponding weight as its 
maximum value. However, such an extreme solution was 
obtained from small weight values when �  was large (e.g., �  
= 5 and��  = 10). When �  = 1, similar solutions were obtained 
from totally different weight vectors. As a result, the diversity 
of solutions was small. An unexpected observation was low 
percentages of non-dominated solutions in the final population 
when the weighted Tchebycheff was used for the DTLZ2 
problems with 3-6 objectives (i.e., less than 80% of the 
population size). This issue should be further examined since 
all solutions in the final population were different non-
dominated solutions (i.e., 100% non-dominated solutions) 
when we used the PBI with �  = 5 and �  = 10. Poor results of 
the weighted Tchebycheff together with small percentages of 
different non-dominated solutions clearly suggest the necessity 
of its improvement as explained in [21]-[24].  
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