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Abstract—Techniques from multi-objective optimization are
incorporated into the stochastic multi-armed bandit (MAB)
problem to improve performance when the rewards obtained
from pulling an arm are random vectors instead of random
variables. We call this problem the stochastic multi-objective
MAB (or MOMAB) problem. In this paper, we study the
analytical and empirical proprieties of MOMABs with the
goal of identifying multiple arms in the Pareto front that
use the partial Pareto dominance relation to compare mean
reward vectors. We introduce three algorithms: 1) Pareto Front
Identification identifies the Pareto optimal arms using a fixed
budget. 2) ε-approximate Pareto Front Identification uses the
Pareto ε-dominance to identify a uniformly spread subset of
the Pareto front. 3) Pareto Subfront Identification combines
the last two algorithms to improve the accuracy of the ε-
approximation Pareto front. We experimentally compare the
proposed algorithms on several Pareto MAB-problems.

I. INTRODUCTION

There are many interesting applications in the field of
automatic control where one wants to simultaneously meet
different objectives. Objectives can be aligned as well as
conflicting and the Pareto front can have any shape, i.e. not
necessarily convex, and any distribution of arms. Further-
more, it is hard to assign prior weights to these objectives
and, as a result, approaches that combine these weighted
objectives into a single objective function, e.g. scalarization,
have problems in identifying the Pareto front.

Multi-armed bandits (MABs) [1] is a machine learning
problem used to analyze resource allocation in stochastic
environments. The stochastic multi-objective multi-armed
bandit problem (or stochastic MOMAB) was introduced
in [2] and can be considered a generalization of MABs
scalar rewards to reward vectors. Some techniques from
multi-objective optimization were already used in other re-
lated learning problems: multi-objective Markov decision
processes [3], [4] and multi-objective reinforcement learning
[5]–[7]. A reward vector of one arm can be better than the
reward vector of another arm according to one objective but
worse according to another objective. Pareto dominance rela-
tion [8], which is a partial order relationship, compares multi-
objective rewards. According to this relation, the quality of
several arms denoted as Pareto front can be considered to be
equal.

The paper is organized as follows: Section II introduces
a ”pure-exploration” approach of Pareto front identification,
or ”EXPLORE”-m algorithms, where the goal is to identify
with a given tolerance the arms in the Pareto front. Unlike
the homologues ”pure-exploration” algorithm [9] for single

objective environments, the number of desired best arms is
not known beforehand. The goal is an algorithm with a small
probability to erroneously select a suboptimal arm after a
number of steps. We propose a straightforward extension of
PAC subset selection problem to Pareto MABs.

There are two classes of ”EXPLORE”-m algorithms
[10]: i) fixed budget, and ii) fixed tolerance algorithms. A
fixed budged best arm identification algorithm, i.e. successive
rejects algorithm [11], uses a limited number of arms pulls
to select the best arm. A fixed tolerance algorithm assumes
that two arms can be ordered only if they are further apart
than a small tolerance value. [12] identifies the Pareto front
using scalarization functions and the best arm identification
algorithm from [11]. [13] uses the Pareto order relation to
identify the Pareto front using the revised UCB algorithm
from [14]. Both algorithms are fixed budget algorithms.

In Section III, we consider a fixed available budget of arm
pulls to identify the Pareto front. Audibert et al. [11] pro-
pose a best arm identification-algorithm to identify a single
optimal arm. Its generalization, the m-best arm identification-
algorithm [15] identifies the m best arms of a MAB-problem.
We extend these algorithms to Pareto MAB-problems. Pareto
front identification is a fixed budget successive reject algo-
rithm that sequentially removes suboptimal arms and stops
after a fixed number of arm pulls. This is the fixed budget
available to the algorithm.

Pareto MOMAB methods, and thus also the proposed
approach, have computational problems when the Pareto
front is large, because, each iteration, Pareto front is stored
and compared. Section IV introduces the fixed confidence
ε-approximation Pareto Front Identification problem where
the ε-dominance relation is used to compare mean reward
vectors. The multi-objective environment is considered to
a hypergrid consisting of D-dimensional rectangles, or D-
rectangles, and the arms are considered to be part of one of
these D-rectangles, where D is the number of objectives.
The algorithm assigns arms to D-rectangles in order to
deterministically delete dominated D-rectangles instead of
dominated arms. In each non-dominated D-rectangle, one
arm, that is at most at an ε-distance from the Pareto front,
is selected at random.

Section V introduces a hybrid Pareto MAB-algorithm
called Pareto subfront identification. A single non-dominated
arm is selected in each D-rectangle using a fixed budget suc-
cessive reject algorithm. Unlike Pareto front identification,
this hybrid algorithm does not assume that the cardinality
of the Pareto front is known beforehand. This allows for
a tighter upper confidence bound since the performance
depends on the number of non-dominated D-rectangles. And
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this is a parameter that can be tuned by the user.

In Section VI, we study the exploration vs. exploitation
trade-off of the Pareto MAB algorithms in complex multi-
objective stochastic environments. We compare the perfor-
mance of the proposed Pareto MAB-algorithms on a bi-
objective environment with a convex Pareto front where the
components of the reward vectors are drawn according to
independent multi-variate normal distributions. Section VII
concludes the paper.

II. THE PARETO-”EXPLORE” PROBLEM

The goal of a Pareto-”EXPLORE” problem is to select
(a subset) of the Pareto front with a small probability error
in a finite number of samples. Thus, a Pareto EXPLORE
algorithm is (ε, δ)-optimal if it selects Pareto optimal arms
with accuracy ε and a small error probability of 1−δ. For an
efficient exploration mechanism, we assume that the size of
Pareto front is controlled by the user. Problem complexity is
defined as the number of pulls an algorithm performs before
termination.

Consider a set of K arms, K ≥ 2, where I is the
set of these K arms. Pulling an arm returns a random
vector of rewards, one component per objective. The random
vectors have a stationary distribution with support in the D-
dimensional hypercube [0, 1]D but the vector of true expected
rewards μi = (μ1

i , . . . , μ
D
i ) is unknown. All rewards ob-

tained from any arm i at time step t are independently and
identically distributed. Rewards obtained from different arms
are also assumed to be independent. The rewards are almost
surely bounded random vectors so that we can apply the
Hoeffding inequality [16].

Pareto dominance for uncertain environments. Pareto
dominance relation is the natural order for the multi-objective
environments allowing ordering the reward vectors directly
in the multi-objective reward space. The usage of the Pareto
dominance relationship in MOMABs is described in [2],
[17] and in multi-objective reinforcement learning in [4].
Since the standard dominance relations are too crisp for
their practical usage in stochastic environments, we import
from multi-objective evolutionary optimisation [18] the
Pareto dominance relation for uncertain environments (PDU)
that is a generalisation of the standard Pareto dominance
relationship. We adapt the original PDU definition that uses
median and percentile to the usage in the MAB framework:
1) the unbiased estimator is a mean reward vector and 2)
a confidence vector represent the uncertainty. The arms are
identified within a confidence value that decreases over time
and number of samples, a common practice in ”EXPLORE”-
m strategies.

For simplicity, we consider equal confidence values in
all objectives ε = (ε, . . . , ε). We say that μi dominates μk,
μk ≺ μi, iff there exists at least one objective j for which

μj
k + εi < μj

i − εi and for all other objectives k, we have

μj
k + εk ≤ μj

i − εi. We say that μi non-dominates μk, μk �≺
μi, iff there exists at least one objective j for which μj

i+εi <
μj
k − εk. We say that μi and μk are incomparable, iff either

μi dominates μk nor μk dominates μi.

Require: δ > 0 error probability, ε accuracy
for all arms i ∈ I do

Sample i for � = 4
ε2 · ln

(
2KD

δ

)
times

Let μ̃i be the empirical reward vector of arm i
end for
return Ĩ∗ is the empirical Pareto front

Algorithm 1: Naive (ε, δ)-Pareto PAC algorithm

In a practical setting, for each arm i, we need an
unbiased estimator of the expected reward vector μi, which
for the general MAB problem it is the empirical mean
vector μ̃i. The estimated sample mean of an arm i is the

vector μ̃i(n) =
(∑ni

s=1
X1

i (s)
ni

, . . . ,
∑ni

s=1
XD

i (s)
ni

)
, where

Xi(s) = (X1
i (s), . . . , X

D
i (s)) is the sample s for arm i and

ni is the number of times a suboptimal arm i has been played
by the policy π during the first n plays. The uncertainty
vector εi for arm i gives the uncertainty, or the probability,
that μ̃i correctly approximates the true reward vector within
a confidence value.

Let the Pareto optimal set of arms I∗ be the set of arms
whose reward vectors are non-dominated by all other reward
vectors1. When compared with the regular Pareto dominance
(PD), the Pareto front generated with PDU is larger and
contains the regular Pareto front. In the limit, when the
confidence value is approaching 0, the two Pareto fronts
coincide.

The usage of PDU is demonstrated on the bi-objective
example with 20 arms. When the standard Pareto domi-
nance relation is considered, there are: i) ten Pareto optimal
reward vectors, and ii) ten suboptimal arms. Naming, the
Pareto front is μ∗1 = (0.562, 0.493), μ∗2 = (0.552, 0.515),
μ∗3 = (0.543, 0.527), μ∗4 = (0.535, 0.535), μ∗5 =
(0.525, 0.555), μ∗6 = (0.523, 0.557), μ∗7 = (0.515, 0.563),
μ∗8 = (0.506, 0.568), μ∗9 = (0.503, 0.571), μ∗10 =
(0.497, 0.573). Suboptimal arms are μ11 = (0.498, 0.567),
μ12 = (0.502, 0.563), μ13 = (0.505, 0.495), μ14 =
(0.508, 0.555), μ15 = (0.512, 0.533), μ16 = (0.514, 0.525),
μ17 = (0.522, 0.554), μ18 = (0.531, 0.531), μ19 =
(0.542, 0.523), μ20 = (0.547, 0.513).

For a very small confidence value ε = 10−4, the size of
the Pareto front does not increase, whereas if ε = 5 · 10−4

there are 2 extra arms in the Pareto front, μ17 and μ19.
When the confidence value increases to ε = 10−3, there is
one more Pareto optimal arm added to the Pareto front, i.e.
μ20. When ε = 5 · 10−3, the number of Pareto optimal arms
is 17 because four extra arms, i.e. μ11, μ12, μ14, and μ18,
are added. If ε = 0.01, then the Pareto front has size 19.
Note that there is one arm that is suboptimal for all these
confidence values, and that is μ13.

Naive PAC for Pareto front identification is the sim-
plest Pareto ”EXPLORE” algorithm . Each arm is pulled for
4
ε2 · ln

(
2KD

δ

)
such that there is a probability of 1 − δ

K the
mean reward vector is an ε approximation of the true mean
reward vector.

1We denote with the symbol ∗ all the quantities that are related to the
Pareto front, e.g. the reward vector of an arm i in the Pareto front is μ∗

i .

870



Require: The number of Pareto optimal arms |I∗|
Let I(1) ← I, and n(1) ← 0, and

n(t) ←
⌈

1
log(K/|I∗|)+1

· N−K
K+1−t

⌉
for all rounds t = 1, 2, . . . ,K − |I∗| do

(1) ∀i ∈ I(t), select arm i for n(t) − n(t−1) rounds
(2) Let argmini∈I(t)μ̃i the arm to dismiss
(3) I(t+1) ← I(t) \ argmini∈I(t)μ̃i

end for
Let the remaining set of arms be Ĩ∗ ← I(K−|I∗|)

Algorithm 2: Pareto successive rejects (PSR) algorithm

Theorem 1: The Naive (ε, δ)-Pareto PAC algorithm,
cf Algorithm 1, has the sample complexity of
O (

K
ε2 · ln

(
2KD

δ

))
.

Proof: Let k be a suboptimal arm and i be a Pareto
optimal arm. Then, for all objectives j and for all Pareto
optimal arms, we have μj

k + ε/2 < μ̃j
i − ε/2. We want to

bound the event that exists an objective j for which μ̃j
k > μ̃j

i ,
thus, that arm k is non-dominated by the Pareto optimal arm
i, μ̃k �≺ μ̃i. Then, the probability of misclassifying the two
arms is

P(μ̃k �≺ μ̃i) = P(∃j, for which μ̃j
k > μ̃j

i ) =

P(∃j, μ̃j
i < μj

i − ε/2 or μ̃j
k > μj

k + ε/2) ≤ 2 ·D · e−(ε/2)2�

where this inequality uses the Hoeffding inequality and union
bound. Since � = 4

ε2 ·ln
(
2KD

δ

)
, we have that P(μ̃k �≺ μ̃i) ≤

δ
K . �

Alternative algorithms that pull preferentially arms that
are close to the Pareto front, or incrementally rule out
suboptimal arms based on their distance to the Pareto front,
have theoretically and empirically a better computational
complexity.

III. PARETO FRONT IDENTIFICATION

In this section, we extend the fixed budget best arm
identification algorithm to vector rewards to identify the
entire set of Pareto optimal arms, or Pareto front. We call
these class of algorithms Pareto front identification (PFI).
We introduce the Pareto successive rejects (PSR) algorithm
which is an extension of the fixed budget successive rejects
algorithm [11] for the single-objective MAB-problem. The
main idea is to successively delete dominated arms until
all the remaining arms are non-dominated. As in [15], the
number of best arms one want to identify is assumed to be
known beforehand.

The pseudo-code for the Pareto Successive Rejects algo-
rithm is given in Algorithm 2. The algorithm has K − |I∗|
phases of increasing length carefully chosen to obtain loga-
rithmic convergence. In the t-th phase, all the active arms,
i.e. the ones that are not deleted yet, are equally pulled for
n(t) − n(t−1) times, where

n(t) =

⌈
1

log(K/|I∗|) + 1
· N −K

K + 1− t

⌉
(1)

To simplify the notation, we denote C = 1
log(K/|I∗|)+1

,

where by definition

log(K/|I∗|) = log(K)− log(|I∗|) =
K∑
t=1

1

t
−
|I∗|∑
j=1

1

j

=
K∑

t=|I∗|+1

1

t
=

1

|I∗|+ 1
+

K−|I∗|+1∑
t=1

1

K + 1− t

C is a positive constant since K ≥ |I∗|.
At the end of each phase, the algorithm deletes the arm

with the estimated mean reward vector dominated by the
other estimated mean reward vectors. In case of a tie, i.e.
when there are several reward vectors that are dominated by
other reward vectors, we chose randomly an arm to delete.
The remaining arms are non-dominated and recommended
as the Pareto front I∗.

The worst arm is pulled n(1) =
⌈
C · N−K

K

⌉
times, the

second worst arms is pulled n(2) =
⌈
C · N−K

K−1

⌉
times, and

the number of times an arm is pulled increases with its qual-

ity. The |I∗| best arms are pulled n(K−|I∗|) =
⌈
C · N−K

|I∗|+1

⌉
times. Note that the fixed budget n which is not exceeded
because

K−|I∗|∑
k=1

n(t) + |I∗| · n(K−|I∗|+1) ≤

K +

K−|I∗|∑
t=1

C · N −K

K − t
+ |I∗| · C · N −K

|I∗|+ 1
≤

K +
N −K

log(K/|I∗|) + 1

⎛
⎝ |I∗|+ 1

|I∗|+ 1
+

K−|I∗|+1∑
t=1

1

K + 1− t

⎞
⎠

= N

The proof of the following theorem follows closely the
proof in [11]. Let us consider the complexity measure

H2 = max
i∈I

iΔ−2
i (2)

where Δi is defined as the Euclidean distance between the
mean reward vector μi of an arm i and its projection νi

onto the Pareto front and H2 quantifies the hardness of the
problem [11]. This projection is obtained as follows: A vector
εi with equal components εi, i.e. εi = (εi, εi, · · · , εi), is
added to μi such that εi is the smallest value for which νi =
μi+εi becomes Pareto optimal, Δi = ‖νi−μi‖2 = ‖εi‖2 =√
Dεi, where the last equality holds because we have D

objectives and all components of εi are equal. The projection
regret is defined as the cumulative difference between always
selecting the best arm and selecting suboptimal arms with an
algorithm of reference.

Theorem 2: The probability of deleting a Pareto optimal
arm after n plays is at most

e(n) ≤ D|I∗|
(
K − |I∗|

2

)
· e−

(n−K)

H2(log(K/|I∗|)+1) (3)
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By a union bound and Hoeffding’s inequality, the prob-
ability of erroneously deleting a Pareto optimal arm results
directly.

The number of times an arm is played depends on the
size of |I∗|. This is a very strong limitation since in many
cases its cardinality is not known. Note that when the Pareto
optimal set is large, i.e. |I∗| ≈ K, the Pareto successive
rejects algorithm uniformly pulls a large number of optimal
arms. As a result it behaves poorly, like Pareto UCB1 in that
case.

There are important differences between PSR, cf. Al-
gorithm 2, and the m-best arm identification algorithm [15]
where the m-best arms can be ordered. The number of times
an arm is pulled is larger for PSR compared with the best
arm identification algorithm for the single-objective MAB.

If I∗ ≈ 1 then that number is close to
⌈

1
log(K)

· N−K
K+1−t

⌉
. If

|I∗| ≈ K then that number reaches its maximum
⌈

N−K
K+1−t

⌉
.

This shows the importance of correctly approximating |I∗|
for the exploration vs. exploitation trade-off. If the size of I∗
is overestimated, the size of the rounds is too large resulting
in poor exploitation. If the size of I∗ is underestimated, then
some of the Pareto optimal arms will be deleted, resulting in
poor exploration.

If the cardinality of Pareto front |I∗| is very large, and
|I∗| ≈ K, then a simple uniform random sampler can
perform similarly with an MO-MAB algorithm. Alternative
best arm identification algorithms [19] are faster because they
eliminate half of the suboptimal arms instead of a single
one. How efficient are these alternatives for Pareto MAB-
problems is subject to future work.

IV. ε-APPROXIMATE PARETO FRONT IDENTIFICATION

The intuition for this algorithm comes from multi-
objective optimization. The goal is to deterministically delete
dominated D-rectangles rather than dominated arms. Unlike
Pareto front identification, this hybrid algorithm does not
assume that the cardinality of the Pareto front is known
beforehand. This allows for a tighter upper confidence bound
since the performance depends on the number of non-
dominated D-rectangles, and this is a parameter that can be
tuned by the user.

D-objective hypergrid. The D-objective reward space is
organized into a hypergrid of D-rectangles as follows. Let
mj and M j be the upper and the lower limit, respectively,
for the j-th objective. Then the interval [mj ,M j ] is divided

in Mj−mj

ε � disjoint subintervals [mj + ojεj ,mj + (oj +

1)εj [ of length εj , where oj ranges from 0 till Mj−mj

ε − 1
and oj is used as index of the corresponding interval. A

D-rectangle is the Cartesian product
∏D

j=1[m
j + ojε,mj +

(oj + 1)ε[ of D such subintervals, one per objective j and
it is indexed by o = (o1, o2, · · · , oD). For simplicity, we
assume that m = (0, . . . , 0) and M = (1, . . . , 1). This way

we get a hypergrid of in total
∏D

j=1M
j−mj

ε � disjoint D-

rectangles. The D-rectangle
∏D

j=1[m
j +ojε,mj +(oj +1)ε[

corresponding with index o is denoted as Ro.

Require: δ > 0
C → ∅
for all arms i ∈ I do

Play it for ni =
4
ξ2
i
ln 2DK

δ times

Let μ̃i be its estimated mean reward vector
Assign i it to the D-rectangle Ri that contains μ̃i
If Ri /∈ C, then C → C ∪ {Ri}

end for
Remove the dominated D-rectangles from C
return The set of non-dominated D-rectangles C

Algorithm 3: ε-approximate Pareto Front Identification (ε-
PFI)

Pareto dominance for D-rectangles. Let o1 =
(o11, . . . , o

D
1 ) and o2 = (o12, . . . , o

D
2 ) be indices. Then D-

rectangle Ro1
is non-dominated by D-rectangle Ro2

iff there

exists an objective j for which oj1 ≥ oj2. And D-rectangle
Ro1

is dominated by D-rectangle Ro2
iff for all objectives

j we have oj1 < oj2. The Pareto front of non-dominated
D-rectangles is denoted with I∗. Note that by definition
the non-dominated relation between D-rectangles is more
relaxed than the non-dominated relation between arms.

The algorithm. Each arm is individually assigned to a D-
rectangle. One arm is assigned to a single D-rectangle but
one D-rectangle can contain several arms. The estimation
μ̃i, based on a number of samples, of the true mean reward
vector μi is used to assign arm i to a D-rectangle. We
want to bound the probability that arm i is assigned to a
wrong D-rectangle, i.e. a D-rectangle that does not contain
its estimated mean reward vector μ̃i. The confidence in
assignment will be higher when the estimation μ̃i is near
the center of a D-rectangle while it will be lower when it is
close to the border.

The pseudo-code for the ε-PFI algorithm is given in
Algorithm 3. Let δ > 0 be the confidence for this algorithm.
Let C be the set of D-rectangles containing at least one
arm. Initially, C is the empty set. Consider and arm i and
the D-rectangle Ri corresponding to the Cartesian product∏D

j=1[i
jεj , (ij +1)εj [ and containing the estimated mean of

the arm i, μ̃i ∈ Ri. We consider that an arm i that is at a
certain distance ξi ·1 from the bounds of the D-rectangle Ri

can be assigned to Ri. Thus, ∃j, such that μ̃j
i > ijεj + ξi

and μ̃j
i < (ij + 1)εj − ξ.

Each arm is pulled for ni = 4
ξ2i

ln 2DK
δ times and the

resulting estimation μ̃i of its true mean reward vector μi is
used to assign the arm to one D-rectangle. Let ξi > 0 be the
accuracy for the arm i, where ξi is the minimal distance to
the corresponding D-rectangle. Thus, if the D-rectangle is
defined by the coordinates [kjεj , (kj + 1)εj [, then

ξi ≤ min
1≤j≤D

min(μ̃j
i − kjεj , μ̃j

i − (kj + 1)εj)

Finally, the D-rectangles that are dominated in all objec-
tives by at least one other D-rectangle from C are deleted.
The computational complexity of determining the relation
between the non-empty D-rectangles is the same as that of
sorting, i.e. O(c log c) where c = |C|. One arm is selected at
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Fig. 1. Twenty reward vectors of which ten belong to a convex Pareto front in a grid for different values of ε: a) ε = 0.03, b) ε = 0.02, and c) ε = 0.01.

random from each non-dominated D-rectangle. These arms
can be at most a distance ε away from the Pareto front.

Example. Let us consider again the mean reward vectors
from Section II. In Figure 1 a), the size of the hypergrid
segment is ε = 0.03. There are five non-empty non-
dominated D-rectangles and two non-empty dominated D-
rectangles. Note that there is one non-dominated D-rectangle
that does not contain any non-dominated arm. Three of
the non-dominated D-rectangles contain two Pareto optimal
arms and one D-rectangle contains four Pareto optimal arms.

In Figure 1 b), the size of the hypergrid segment is
ε = 0.02. Now, there are eight non-empty non-dominated
D-rectangles and two non-empty dominated D-rectangles.
Again, one non-dominated D-rectangle does contain only
one dominated arm but it is now non-dominated since it is
non-empty and it could have contained a Pareto optimal arm.
There is one non-dominated D-rectangle containing three
Pareto optimal arms, one D-rectangle containing two Pareto
optimal arms and the rest of the non-dominated D-rectangles
contain each one Pareto optimal arm.

In Figure 1 c), the size of the hypergrid segment is ε =
0.01. There are ten non-empty non-dominated D-rectangles
and five non-empty dominated D-rectangles. Again, one
non-dominated D-rectangle does contain only a dominated
arm. There is one non-dominated D-rectangle containing two
Pareto optimal arms, and the rest of the non-dominated D-
rectangles contain each one Pareto optimal arm.

Theoretical analysis. ε-PFI, cf. Algorithm 3, is a variant
of the naive (ε, δ)−PAC algorithm [20]. We want to bound
the probability that the true expected reward vector for an
arm i, μi, does not belong to the same D-rectangle like its
estimated reward vector, μ̃i, is bounded with accuracy ξi and
the confidence interval δ.

We want to bound the probability of the event |μj
i −

μ̃j
i | > ξi for all objectives j. If the arm i is close to the

center of the D-rectangle Ri, then it can be assigned easier
to that D-rectangle that an arm that is closer to the border
of the D-rectangle. The following theorem states that ε-PFI,
cf. Algorithm 3, is a naive (ε, δ)-PAC algorithm. The proof
follows directly from the prove of Theorem 1.

Theorem 3: Let ε-PFI, cf. Algorithm 3, having K > 1

arms with arbitrary reward distributions P1, . . .PK with
support in [0, 1]D.

Then ε-PFI, cf. Algorithm 3, is a naive (ε, δ)-PAC with

sample complexity
∑K

i=1
N
ξ2i

log 2DK
δ .

We will always consider the case where ξ � ε. Then,
the mean reward vector μ̃i and its estimation μ̃i are in the
same D-rectangle with high probability.

Note that the derived bound does not depend on the num-
ber of optimal arms but only on the number of dimensions
D. As a result, an arm should be pulled much longer in ε-
PFI, cf. Algorithm 3, than in the standard naive (ε, δ)-PAC
algorithm introduced in [20].

The closer an arm is to the border of a D-rectangle, the
larger the probability to select the wrong D-rectangle. The
Pareto partial order between arms in the same D-rectangle
is independent from the process of assigning these arms to
the right D-rectangle.

NP =
∑
i∈I

ni =
∑
i∈I

4

ξi
2 ln

2DK

δ
(4)

Note that the total budget NP increases when δ decreases,
i.e. when the confidence that a certain arm is assigned to the
right D-rectangle increases.

V. FIXED BUDGET PARETO SUBFRONT IDENTIFICATION

In this section, we combine the two approaches presented
in the last two sections: the ε-Parento Front Identification al-
gorithm that selects a representative subset of non-dominated
D-rectangles with the best arm identification algorithm to
identify a non-dominated arm in each of these non-dominated
D-rectangles. We call the resulting algorithm fixed budget
Pareto Subfront Identification or the ε-PSI algorithm. We
show that the upper confidence bound for this hybrid algo-
rithm depends only on the number of dimensions D and the
number of trials N but it does not depend on the number of
arms K as was the case for Pareto Front Identification.

The pseudo-code for ε-PSI is given in Algorithm 4.
First, each arm is assigned to a D-rectangle according to ε-
Parento Front Identification algorithm, cf. Algorithm 3. The
ε-PSI algorithm deletes the dominated D-rectangles together
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Require: δ > 0
C ← ε-PFI is the not everywhere dominated set of
D-rectangles
Ĩ∗ ← ∅
for all D-rectangles c = 1, . . . , |C| do
i∗ ← ParetoSuccessiveReject(1)
Ĩ∗ ← Ĩ∗ ∪ {i∗}
Delete dominated arms in Ĩ∗

end for
return The empirical Pareto front Ĩ∗

Algorithm 4: Fixed budget Pareto Subfront Identification
(ε-PSI)

with the arms inside these D-rectangles since these arms are
dominated. The resulting list of non-empty non-dominated
D-rectangles is C. Second, the algorithm selects a single
representative optimal arm in each of the non-dominated D-
rectangles using a best arm identification algorithm. Thus,
there is no need to know in advance the number of non-
dominated arms in each D-rectangle. For each D-rectangle
in C, we run PFI, cf. Algorithm 2, on the assumption that
only one non-dominated arm represents that D-rectangle. In
case of arms of equal quality, we remove this time the arm
with the lowest confidence. This way, Pareto optimal arms
near the center of a D-rectangle will more often be selected
than Pareto optimal arms near the border. This is important
since arms near the border have a higher probability of
being assigned to a wrong D-rectangle. The selected optimal
arm in each D-rectangle is then added to the list of non-
dominated arms Ĩ∗. If there are dominated arms in Ĩ∗, they
will be deleted. The algorithm returns a list of arms that are
uniformly spread and approximate well the original Pareto
front Ĩ∗.

The ε-PSI-algorithm, cf. Algorithm 4, has an upper
confidence bound on the probability that all Pareto optimal
arms in a D-rectangle are deleted and that the selected arm
is suboptimal instead.

Corollary 1: The probability of wrongly deleting all
Pareto optimal arms in a D-rectangle after N plays is at
most

eN ≤ |C| ·D
(
K − 1

2

)
· e−

(N/|C|−K)

H2(log(K)+1) (5)

This results immediately from the proof of Theorem 2 if
we take into account that a single best arm is identified in
each of the in total |C| D-rectangles.

Note that the error of wrongly deleting all Pareto optimal
arms in the ε-PSI algorithm, cf. Equation 5, is smaller than
the error of deleting any Pareto optimal arm in ε-PFI, cf.
Equation 3. Furthermore, the error in the ε-PSI algorithm
depends on the number |C| of non-dominated D-rectangles.
This in turn depends on the accuracy ε > 0 that can be
controlled by the user.

In the limit, when all K arms are in a few D-rectangles,
the hypergrid is considered to be too coarse. If |C| ≈ 1, then
the ε-PSI algorithm selects only one non-dominated arm
and it is equivalent to a best arm identification algorithm.
If (almost) all non-empty non-dominated D-rectangles have

only one arm, then the hypergrid is considered too fine. When
|C| ≈ |I∗|, ε-PFI has a performance similar to PFI, cf.
Algorithm 2.

To compare Pareto MAB-algorithms, we need to allocate
the same computational budget to each algorithm. All algo-
rithms have a fixed budget of N pulls. ε-PFI spends NP

pulls to assign arms to D-rectangles, and ε-PSI algorithm
plays NI times to identify one Pareto optimal arm in each
D-rectangle. Thus, the total budget

N = NP +NI (6)

and the number of pulls for ε-PSI algorithm, cf. Algorithm 4,
is

NI = N −NP = N − 4K

ε2
ln

K

δ
(7)

This can be tuned also with different values for ε and δ.
In general, the amount of pulls needed for each of the two
algorithms depends on the characteristics of the environment.
When there are many Pareto optimal arms, we want to
spend less arm pulls on assigning arms to the hypergrid
than on removing arms from a D-rectangle. In case of many
suboptimal arms, it is important to correctly assign arms to
the corresponding D-rectangle.

Example. Let us consider again the mean reward vectors
from Section II. In Figure 1 a), where ε = 0.03, we select in
each non-dominated D-rectangle a Pareto optimal arm. By
design, the arm selected is both Pareto optimal and has the
largest confidence from all Pareto optimal arms in that D-
rectangle. In this example, the resulting Pareto optimal set
of arms has four arms that are part of the Pareto front I∗.

In Figure 1 b), where ε = 0.02, only five Pareto optimal
arms are selected however. That is because the Pareto optimal
arm with the largest confidence in a D-rectangle might be
dominated given the Pareto front I∗.

Remark. It is interesting to note that the ε-PSI algorithm
can be parallelized. The arms are assigned independently
to the hypergrid and the D-rectangles are also processed
independently. This is an important side effect that allows
to exploit the performance of supercomputers.

VI. EXPERIMENTS

In this section, we consider two bi-objective Pareto MAB-
problems where the rewards vectors are drawn according to a
multivariate Bernoulli distribution with diagonal covariance
matrix. And we want to identify the Pareto front I∗.

The goal is to compare experimentally the behavior of the
four introduced Pareto MAB-algorithms and this for different
parameter settings in order to monitor the performance and
the robustness of the proposed algorithms.

The four compared Pareto MAB-algorithms are:

PUCB1 The Pareto UCB1 algorithm introduced in [2];
PFI The Pareto successive rejects algorithm intro-

duced in Section III;
ε-PSI the ε-Pareto subfront identification algorithm

introduced in Section IV;
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Hoef As a base-line, we consider an adaptation of
the Hoeffding race algorithm [21] to the multi-
objective spaces. All arms are pulled equally
often. The arms with non-dominated empirical
mean vectors are selected.

Each algorithm run 100 times with a fixed budged of N =
105, and a small confidence interval δ = 0.01. The number
of pulls, i.e. the budget, for assigning arms to D-rectangles
is set to NP ≈ 32 · 103, and the budget for identifying a
Pareto optimal arm in each D-rectangle is NI ≈ 67 · 103,
almost the double of NP . To calculate NI and NP , we have
considered Equation 7 and 6. These parameters are set based
on trial runs. Automatically tuning these parameters remains
to be done as future work.

We consider the convex problem introduced in Sec-
tion II. In Figure 2, we compare the performance of ε-
PSI for different values of the coarseness of the grid
ε ∈ {0.005, 0.01, 0.02, 0.03} in terms of number of pulls
of Pareto optimal arms. The finest hypergrid has the best
performance in terms of the Pareto projection regret. The
coarsest hypergrid has the worst performance since it iden-
tifies only three to four of the Pareto optimal arms. It is
interesting to note that the best performing ε-PSI algorithms
have the finest hypergrids for which either only one or at
most two Pareto optimal arm are located in a D-rectangle.
This means that the ε-PSI algorithm is efficient because it
deletes dominated D-rectangles rather than dominated arms.
The disadvantage of using a finer hypergrid is the larger
number of arms pulls required to assign an arm to a D-
rectangle for a given confidence value δ = 0.1.

In Figure 3, we compare the performance of the four
Pareto MAB-algorithms listed above. In Figure 3 a), the
algorithm with the smallest Pareto projection regret is ε-PSI.
PUCB1 has the second smallest Pareto projection regret,
followed by PFI. Note the peaks in the beginning of the
runs of ε-PSI. These peaks corresponds to the peaks in the
beginning of the runs for the same algorithm for the criteria
percentage of Pareto optimal arm pulls’ shown in Figure 2.
This is because the ε-PSI algorithm has two phases. In the
first phase all the arms including the Pareto optimal arms are
pulled for a fixed budget in order to be assigned to the right
D-hypercube.

All three algorithms perform better than the baseline
algorithm Hoef meaning that the designed features are
meaningful. The best performing algorithm is ε-PSI, due
to a good exploitation of the entire Pareto front. The size of
the hypergrid has a slight influence on the performance of ε-
PSI. The good performance of ε-PSI is explained by the fair
and intensive use of Pareto optimal arms. The performance
of the convex Pareto front vary more with the choice of ε
than the performance of the non-convex Pareto front. The
second best algorithm is PUCB1 and PFI is third.

VII. CONCLUSIONS

We combined techniques from both the multi-armed
bandit problem and multi-objective optimization to design
multiple arm identification algorithms. The Pareto front iden-
tification algorithm deletes suboptimal arms using a fixed

budget multiple arm identification algorithm, but the size of
the Pareto front needs to be known beforehand.

We incorporated techniques from multi-objective evolu-
tionary algorithms like Pareto ε-dominance to deal with large
Pareto fronts. The ε-approximate Pareto Front Identification
algorithm is a fix confidence multiple arms identification
algorithm that assign first all the arms to D-rectangles of a
hypergrid. The performance of this algorithm is independent
of the size of the Pareto front, instead it depends on the
coarseness of the hypergrid that is tuned by a user.

The last proposed algorithm combines the fixed budget
and the fixed confidence Pareto front identification algo-
rithms. The ε-approximate Pareto Subfront Identification
algorithm identifies a proper subset of the Pareto front that
is uniformly spread over that front.

Finally, we compared the algorithms introduced in this
paper on an artificially two bi-objective generated problem
with convex Pareto front. ε-approximate Pareto Subfront
Identification was the most efficient algorithm, as was to be
expected from the theoretical analysis.
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Fig. 2. The performance of the four ε-PSI algorithms on the convex bi-objective problem for different values of ε, where ε ∈ {0.005, 0.01, 0.02, 0.03}.
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Fig. 3. Performance of the four Pareto MAB-algorithms on the bi-objective convex problem: i) Pareto UCB1 (PUCB1), ii) Pareto successive rejects
that is an instance of Pareto front identification (PFI), iii) ε-Pareto subfront identification algorithm (ε-PSI) for ε = 0.005, and iv) the Hoeffding race
algorithm (Hoef).
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