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Abstract—To solve dynamic multi-optimization problems, op-
timization algorithms are required to converge quickly in re-
sponse to changes in the environment without reducing the
diversity of the found solutions. Most Multi-Objective Evolu-
tionary Algorithms (MOEAs) are designed to solve static multi-
objective optimization problems where the environment does
not change dynamically. For that reason, the requirement for
convergence in static optimization problems is not as time-
critical as for dynamic optimization problems. Most MOEAs use
generic variables and operators that scale to static multi-objective
optimization problems. Problems emerge when the algorithms can
not converge fast enough, due to scalability issues introduced by
using too generic operators. This paper presents an evolutionary
algorithm CONTROLEUM-GA that uses domain specific variables
and operators to solve a real dynamic greenhouse climate
control problem. The domain specific operators only encode
existing knowledge about the environment. A comprehensive
comparative study is provided to evaluate the results of applying
the CONTROLEUM-GA compared to NSGAII, ε-NSGAII and ε-
MOEA. Experimental results demonstrate clear improvements in
convergence time without compromising the quality of the found
solutions compared to other state-of-art algorithms.

I. INTRODUCTION

MOEAs have been applied in a diversity of different scien-
tific fields spanning from biology to complex control systems.
Complex systems are pervasive and address a challenging
class of problems in terms of multi-objective optimization
[1]. Dynamic optimization problems have complex fitness
landscapes that change over time [2]. The algorithms have
to converge rapidly and continuously, when an environmental
change emerge. Such characteristics make the real-world dy-
namic control optimization problems hard to solve compared
to static optimization problems [2] . An obstacle for MOEAs is
to generate and evaluate all possible solutions in computational
tractable time and to find feasible solutions for dynamic
problems. The inherent design of MOEAs requires a large
number of generations and eventually a large number of func-
tion evaluations. A too generic representation of the decision
variables affects the probability of generating improvement and
lead to a larger search space [3].

In this paper, we address dynamic control optimization
problems for systems that have fitness landscapes that change
dynamically over time. It is the hypothesis of this work, that

it’s possible to find diverse Pareto optimal solutions in a
dynamic environment in tractable time by introducing domain
specific operators into a MOEA.

Research in MOEAs, tends to focus on new algorithms
that can provide potential solutions that support Pareto op-
timality for static problems. This work presents a MOEA
CONTROLEUM-GA enhanced by domain specific operators
and variables to solve a domain specific dynamic greenhouse
climate control problem modelled by Jørgensen et al. [4].

The greenhouse climate control problem is characterized
by nonlinearity, stochasticity, non-convexity, high dimension
of decision variables and an uncertain dynamic environment.
Together, these mathematical properties motivate us to use
a MOEA for discovering and exploiting critical trade-offs
when optimizing the greenhouse climate [5]. An example
of a critical trade-off, is reducing supplemental light energy
consumption without compromising the quality and growth of
the ornamental plants.

Comparisons between CONTROLEUM-GA, NSGAII, ε-
NSGAII and ε-MOEA are performed using performance
indicators, to understand the effect of domain specific operators
and to study the quality of the final solution sets [6], [7]. The
result of executing one algorithm is called the solution set. In
an experimental setting, solution sets obtained by executing
each of the algorithms over a number of settings and a
number of seeds is called approximation sets. All the found
approximations sets are merged into a combined reference set.
Theoretically, an ideal or near-ideal algorithm should be able
to support proximity, diversity and consistency. By definition,
proximity of an algorithm indicates the adjacency of the final
solution set towards the combined reference set found by
all algorithms. Diversity indicates the variation of solutions
provided by each algorithm compared to the the variation of
solutions from the combined reference set. Lastly, consistency
expresses the ability of the algorithm to discover all regions
of the ideal solution space in different system states.

The paper is organised as follows. First, a brief overview
of the work is presented in Section I. Section II describes
the problem domain of the case study, the objectives and
other system properties. The domain specific operators for the
CONTROLEUM-GA are presented in Section III. Section V
provides a detailed description of the experimental setup, such
as the algorithm properties, the performance indicators and the
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TABLE I: The greenhouse climate control subsystems.

Subsystem Description

Lighting Activates artificial light when natural light is not sufficient.

Heating Maintains the sufficient level of temperature.

CO2 Supplies the required level of CO2 to support a desired photosynthesis
rate.

Ventilation Open and closes the windows to achieve the required level of temper-
ature and humidity.

Screen Shades to protect the plants in summer time and to isolate the
greenhouse in winter time.

Irrigation Provides water to achieve the required level for the plant growth.

TABLE II: The greenhouse climate control objectives and
constraints for an optimal light plan.

Name Type Description

PARSumBalance Objective Ensures that plants obtain an optimal photosyn-
thesis by achieving sufficient supplementary light

FixedLightPlan Objective Ensures that the lamps are lit in fixed light time
intervals

CheapLightPlan Objective Ensures the minimum price for the light plan
decision variable based on predicted electricity
prices

PosPARSum Constraint Ensures a positive value for the light sum balance
objective (PARSumBalance)

LightInterval Constraint Ensures the same light switch status during a
specific light time interval

settings of greenhouse climate control system. Experimental
results and evaluation of performance indicators are described
in Section VI. Section VII presents the findings of the research
and provides a discussion about the quality of the solutions.
Finally, conclusions and future research are written in Section
VIII.

II. CASE STUDY

A greenhouse climate control system uses sensors and
actuators to control the greenhouse climate automatically [8].
Input parameters of the control system is read by sensors and
the climate control outputs (decision variables) influence the
physical environment through the actuators. Input parameters
include indoor and outdoor temperature, CO2, light, humidity,
utility prices, weather forecast data etc. The outputs represent
set-point values for controlling heating, lighting, CO2, venti-
lation, screen and irrigation subsystems [8]. The greenhouse
climate control subsystems are described in Table I.

A real control scenario is used based on the input val-
ues, control subsystems and the greenhouse control strategy.
The case study includes three objectives and two constraints,
formulated by domain experts, to optimize a light plan for
a greenhouse. The description of the objectives and the con-
straints is presented in Table II. The MOEAs are responsible
for finding solutions that fulfills the objectives and constraints.

For each objective or constraint, input values are transferred
from the sensors into input variables, that are used in the
formulations.

III. APPROACH

The CONTROLEUM-GA algorithm has two arguments: 1) a
time-stamp time for when the algorithm is executed, and 2) the
population oldPop from previous executions. The time-stamp
time is used for dynamic optimization problems that use the
start time of the optimization. The function III describes the
overall pseudo-code logic of the algorithm. In Line 1 to 5 the
population pop is initialized. A population consist of a number
of non-dominated Pareto optimal solutions. Each solution is
represented by a data-structure, consisting of objective values
solution.objectives and decision variables solution.variables.
A solution can have multiple different types of domain specific
variables; e.g., temperature, CO2 and light plan. Line 1 checks
if the previous population oldPop is empty. The population
oldPop is empty, the first time the algorithm is executed. If
the population oldPop exists from previous executions, it is
copied into the new non-dominated population pop (Line 3).
The population pop is evolved in Line 11-31 also called a
generation. A number of generations, terminated by a termi-
nation criteria, is called an epoch. The different phases of the
evolution is described in subsection III-A to III-E.

CONTROLEUM-GA(time,oldPop)
1 if oldPop. isNotEmpty
2 for each oldSolution ∈ oldPop
3 ADD-NONDOMSOLUTION(COPY(time,solution))
4 for i = 0 to POPSIZE

5 ADD-NONDOMSOLUTION(D-INIT(time))
11 while isNotTerminated
12 for i = 0 to i≤ POPSIZE

13 if RANDOM-DOUBLE()< MUTATIONRATE

14 child = S-MUTATE(RANDOM(pop))
17 else
18 child =
19 S-CROSSOVER(RANDOM(pop),
20 RANDOM(pop))
31 ADD-NONDOMSOLUTION(child)

A. Initialization

In Line 5, the initial population pop is generated based
on domain specific initialization operators D-INIT. Each im-
plementation of the domain specific initialization operators is
called from D-INIT. That is, a domain specific initialization
operator is implemented for each type of decision variable and
each of the operators is called in D-INIT (Line 6). For example,
the supplemental light plan is initialized by the following
domain initialization operator D-INIT-LIGHT that is called
from D-INIT.

D-INIT-LIGHT(time)
6 l p = NEW-LIGHTPLAN(time,END-OF-LIGHTPLAN(time),
7 TIMESLOTINTERVAL)
8 for i = 0 to i < l p.size
9 l p[i] = RANDOM-BOOLEAN()

10 return l p

In Line 6, a new light plan is generated based on the
time-stamp time and the interval TIMESLOTINTERVAL, as the
light plan changes dynamically for each epoch. The variable
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TIMESLOTINTERVAL can be configured by the user to change
the on/off intervals of the light plan. The variable END-OF-
LIGHTPLAN determines the end of the light plan. A light
plan is expressed as an array of ON/OFF light states over
a time period, indexed by the time slots. Line 8-10 initialize
a random light plan to represent the ON/OFF lamp property.
The frequency of which a lamp may be turned on and off,
within a given time period, depends on the type of lamp. For
example, a LED lamp can be lit within short time intervals.
On the contrary, a metal halide lamp requires a cooling phase
before it can be lit again, if its life expectancy is not to be
reduced. These domain specific properties are incorporated
into the LIGHTPLAN-INIT operator to ensure initialization of
variable candidate solutions.

B. Ranking

Line 3, 5 and 31 in CONTROLEUM-GA, calls the
function ADD-NONDOMSOLUTION. The function ADD-
NONDOMSOLUTION sorts all solutions in the population pop
according to the Pareto dominance relation (Line 34). That
is, the objectives are ranked given the proposed decision
variables solution.variables. The results of the evaluations are
assigned to the objective values solution.objectives for each
proposed solution. Only non-dominated solutions are added to
the population pop.

ADD-NONDOMSOLUTION(newSolutionA)
32 for each oldSolutionB ∈ pop
33 flag =
34 PARETO-COMPARE(newSolutionA,oldSolutionB)
35 if f lag == ADOMINATESB
36 REMOVE(oldSolutionB,pop)
37 elseif f lag == BDOMINATESA
38 return f alse
39 elseif DISTANCE(newSolutionA,oldSolutionB)< EPS
40 return f alse
41 ADD(newSolutionA, pop)
42 return true

Line 34 compares if a solution newSolutionA dominates a
solution oldSolutionB or visa verse. If solution newSolutionA
dominates solution oldSolutionB then solution oldSolutionB
is removed from the population pop (Line 36). Contrary, if
solution oldSolutionB dominates solution newSolutionA then
it is not added to the population pop (Line 38). Two solutions
are defined as the same, if the Euclidean DISTANCE between
two solutions, in the objective space, is less than the level of
significance defined by constant EPS. In case newSolutionA is
the same as oldSolutionB then it is not added to the population
pop (Line 40).

C. Mutation

For each generation, solutions are randomly selected a
number of times for mutation. The number of mutations is
determined by the constants MUTATIONRATE and POPSIZE.
For example, if POPSIZE is 100 and MUTATIONRATE is 50%
then 50 randomly selected solutions are mutated. If a mutation
results in a non-dominated solution then it is added to the
population pop.

S-MUTATE(solution)
15 i = RANDOM-INT()
16 solution.variables[i] = D-MUTATE(solution.variables[i])

Mutation is applied at solution level and domain variable
level. At solution level a random decision variable is selected
for mutation in Line 15 using a generic uniform mutation (UM)
operator. Each decision variable has its own domain specific
mutation operator D-MUTATE. The D-MUTATE operator is
applied on the randomly selected variable in Line 16. D-
MUTATE-LIGHT shows the implementation of D-MUTATE for
a light plan variable. The selected light plan variable is copied
and a randomly selected index in the plan is negated. That
is, if the light state for the selected index was ON, then after
mutation it will be set to OFF.

D-MUTATE-LIGHT(lightPlan)
17 l p = COPY(lightPlan)
18 i = RANDOM-INT(l p.size)
19 l p[i] = ¬l p[i]
20 return l p

Implementations of D-MUTATION operators incorporate
domain knowledge to ensure that the values of the decision
variables are always viable. For example, temperature and CO2

variables can operate only within well-defined ranges as they
are constrained by a certain amount of inertia per unit of time.
In case of the light plan variable, the D-MUTATION incorporate
knowledge about which index of the light plan that is viable
for change (Line 18). For example, if a light interval only can
change once for a given period of time, or if a light state is
always fixed, then it is implemented in the implementation
of the D-MUTATE function for the given variable. In case of
greenhouse climate control, several domain mutation operators
are formulated based on the specification sheets for each
actuator. Each domain mutation operator defines a range for a
specific type of decision variable (temperature, energy, CO2,
etc.). The intersection of these ranges defines the viability
space of the decision variable.

D. Crossover

Solutions are randomly selected for crossover for a number
of iterations. The number of crossover iterations is determined
by the constant POPSIZE. Crossover is applied at solution and
decision variable level. The solution level crossover function
S-CROSSOVER is called in Line 20, see CONTROLEUM-GA.
Random variables from two solutions solutionA and solutionB
are selected for crossover at decision variable level using a
generic one-point crossover operator (Line 21-23). At the other
variables from the selected index i + 1 till last index from
solutionB is copied to solutionA.

S-CROSSOVER(solutionA,solutionB)
21 i = RANDOM-INT(solutionA.variables.size)
22 solutionA.variables[i] =
23 D-CROSSOVER(solutionA.variables[i],

solutionB.variables[i])
28 for j = i+1 to j < solutionA.variables.size−1
29 solutionA.variables[ j] = solutionB.variables[ j]
30 return solutionA
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The domain specific D-CROSSOVER operator is applied
on the selected decision variables in Line 23. The function D-
CROSSOVER-LIGHT is the domain specific crossover operator
for two light plans lightPlanA and lightPlanB. The two light
plans are crossed by a one-point crossover operator but can also
include knowledge about the light plan domain. For example,
if the domain property of the lamps demands that light has
to be lit for a continues number of time-slots when first lit,
then this knowledge is implemented in the provided domain
specific operator.

D-CROSSOVER-LIGHT(lightPlanA, lightPlanB)
24 child = COPY(lightPlanA)
25 for i = RANDOM-INT(child.size) to i < child.size
26 child[i] = lightPlanB[i]
27 return child

E. Termination

In CONTROLEUM-GA, Line 11 test if the evolution should
terminate. Evolution is terminated after a specified time limit,
after a number of generations or when the population is stable.

IV. BASELINE ALGORITHMS

The following paragraphs highlight the most significant
differences between the baseline algorithms.

NSGAII: NSGAII is a second generation classic example
of a Pareto-based MOEA, introduced by Deb et al., that
incorporates improvements compared to the original algorithm
NSGA [9]. NSGAII is historically used as a benchmark
MOEA together with its ancestor NSGA. NSGAII can per-
form at least as well as or better than other second generation
MOEAs when solving difficult multi-objective optimization
problems [10], [11], [12]. It is the first MOEA to use the Pareto
dominance relation to search for the Pareto front in a single
run [13]. NSGAII has four significant differences compared
to the original NSGA: 1) less computational complexity, 2)
eliminate the need of parameter sharing, 3) support elitism
by using a selection operator that is able to combine the
parent and offspring populations and select the best N solutions
and, 4) support real and binary decision variables for output
representation.

ε-NSGAII: The ε-NSGAII is an extension of NSGAII
that is improved to make the original NSGAII more efficient,
reliable and easy-to-use. ε-dominance archiving, dynamic pop-
ulation sizing, randomized restart and automatic termination
are the most significant changes in the ε-NSGAII [13].

ε-MOEA: The ε-MOEA uses ε-dominance parameteriza-
tion. This property enables the user to define desired objective
precision and find more diverse solutions and maintain a fixed-
size population [13]. It is worthy to mention that, the dynamic
size for the ε-dominance archive allows the algorithm to grow
and shrink as needed. Furthermore, the ε-MOEA exploits
efficient parent and archive update strategies. Laumanns et
al. claimed that ε-MOEA is able to achieve well-distributed
solution sets, in appropriate time, which support both diversity
and convergence [14]. In other research done by Deb et al.,
it is indicated that ε-MOEA performs as well as, or better
than other second generation MOEAs in terms of convergence,
diversity and computational time [12].

V. EXPERIMENTAL SETUP

To measure the performance of the MOEAs, the exper-
iments are based on the standard procedure introduced by
Coello. The indicators are calculated based on Pareto-optimal
solutions obtain by running each algorithm. A brief description
of each performance indicator is explained in the following
sections. For more details and mathematical formulation of
each indicator see [15].

A. Performance Indicators

Hypervolume: The hypervolume indicator measures the
area of the solution set, found by the MOEA, dominated by
the reference set. It evaluates proximity and diversity.

Generational Distance: The generational distance indi-
cator calculates the average distance between the MOEA
solution set and the nearest solution from the reference set.
This indicator evaluates proximity and coverage of the found
solution set.

Additive ε-indicator: The additive ε-indicator calculates
the additive minimum distance in which the solution set cover
every solution in the reference set. This indicator measures the
consistency of the found solutions.

Maximum Pareto Front Error: The maximum Pareto
front error indicator measures the maximum error band be-
tween found solutions and every solution in the reference set.
This indicator evaluates the coverage of the solutions set found
by the MOEA.

Spacing: The spacing indicator calculates the spread of the
solutions. This indicator is not related to the reference set and
considers the solutions in the found solution set independently.
The spacing indicator measures the diversity of the solutions.

Contribution: The contribution indicator calculates the
percentage of solutions from solution set that is part of the
reference set. The contribution indicator is used to evaluate
whether the MOEA supports optimality or not.

Convergence Time: Convergence time is the time needed
for the MOEA to converge to the reference set. In an ideal
situation, convergence can happen with maximum contribution
to the reference set. That is, all solutions found by the MOEA
are included in the reference set. This indicator is important
when evaluating MOEAs that perform equally well.

B. The Greenhouse Climate Control Strategy Setup

The greenhouse climate control system can have different
settings to achieve different goals. For example, a solution may
has of a set of decision variables (outputs) like periodic light
plan, CO2 plan or temperature plan. To achieve an optimal
value for a decision variable, the MOEA has evaluate the
objectives and constraints for each generated solution. For
each epoch, a number of input values need to be read by
sensors or extracted from external databases or data services.
In this work, a real control scenario is used for the experiments.
The list of objectives and constraints used in the experiments
are presented in Table II in Section II. The input parameters,
objectives and constraints are presented in Table III.
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TABLE III: The greenhouse climate control input parameters,
objectives and constraints.

Name Variables Formulation

PARSumBalance TAP: Total achieved pho-
tosynthetically active ra-
diation (PAR) sum

PARSumBal =

FNP: Forecasted natural
and supplemental light for
a specific period

min((TAP+FNP+T PL)−DLI)

TPL: Total PAR sum
gained by the proposed
light plan
DLI: The PAR day light
integral

PosPARSum PARSumBal PosPARSum ={
true i f PARSumBal ≥ 0
f alse i f PARSumBal < 0

FixedLightPlan Proposed light plan mismatchRate =
Fixed light plan min( NoMismatchedSwitchStatus

NoTotalRequiredSwitchedON )

CheapLightPlan Proposed light plan CheapLightPlan =
min(∑n

i=1 Switchi ∗EPi ∗T LL∗ ti)
EP: Electricity price
TLL: Total lamp load

LightInterval Light switch status Checks if the light switch status
remain in the same state during
a control cycle

TABLE IV: Parameters used for the baseline MOEAs.

Parameter Description Possible
Values

Max. Evaluations Maximum number of evaluation 2000 - 6000

Population Size The size of the population 10 - 100

sbx.Rate The crossover rate for simulated binary
crossover

0.0 - 1.0

sbx.distributionIndex The distribution index for simulated bi-
nary crossover

0.0 - 500

1x.rate The crossover rate for single-point
crossover (for binary encoding)

0.0 - 1.0

bf.rate The mutation rate for bit-flip mutation
(for binary encoding)

0.0 - 500

epsilon The values used by the ε-dominance
archive

0.0 - 1.0

injectionRate Controls the percentage of the popula-
tion injects for restarting the evaluations

0.1 - 1.0

C. MOEAs Parameters Setup

Since the MOEAs are initialized with randomly generated
populations and the operators are probabilistic, it is crucial to
evaluate the algorithms with different configuration settings.
Configuration settings for MOEAs can be different for each
algorithm and are based on the characteristics of the algorithm.
In this work, all MOEAs are genetic-based and have common
configuration settings. For simplicity, we provide the list of
parameters used for evaluating the MOEAs in Table IV. The
parameters are common in all baseline MOEAs, except from
the epsilon parameter that is used for the ε-based MOEAs
ε-NSGAII and ε-MOEA, Among all these parameters, maxi-
mum evaluations, population size, crossover and mutation rate
are used in CONTROLEUM-GA.

The parameters specified for the algorithms are described in
Table IV. Each algorithm is evaluated with 50 different set of
parameter samples and 50 different seeds. These combinations
lead to a around 50 to 150 million executions of the algo-
rithms. It is important to mention that, our experiments are
not restricted to any specific assumption and the parameters
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Fig. 1: Comparison of algorithms based on Hypervolume
indicator for different generations.

used to evaluate the algorithms are not fixed or tuned. This
large number of evaluations with different randomized values
for algorithm parameters, is needed to perform a statistical
analysis without bias from the specific parameter settings.

D. Application Setup

In order to perform the experiments, we used the
MOEAFramework version 2.3 together with a greenhouse
climate control application DynGrow [7], [8]. Integrating the
MOEAFramework with the climate control application makes
it possible to apply the baseline MOEAs algorithms to the
multi-objective optimization problem defined in DynGrow.
DynGrow is an application that provides all the necessary
components for measuring inputs, providing links to external
data sources like weather and electricity price forecast. In ad-
dition, all objectives, constraints and domain specific decision
variables are formulated in DynGrow.

VI. EXPERIMENTAL RESULTS

The reference set is needed to process the results and is
generated by evaluating and merging the final approximation
sets obtained by executing all the state-of-the-art MOEAs
together with CONTROLEUM-GA. To achieve the results, the
five performance indicators hypervolume, generational dis-
tance, additive ε-indicator, maximum Pareto front error and
contribution are evaluated. The experiments are preformed for
a different number of generations, to better understand the
runtime and the end-of-run behaviour of the algorithms . The
maximum number of generations considered is 10, 1500, 2000
and 2500. For each indicator minimum, median and maximum
values are measured to evaluate each algorithm. The median
is considered instead of the average value, to avoid bias from
minimum and maximum values when performing the statistical
analysis.

Fig. 1 illustrates the results for the hypervolume indicator
for a different number of generations. The figure shows that
within first 10 generations, CONTROLEUM-GA is able to gain
a large value for hypervolume compared to other baseline
algorithms. The approximation sets generated by NSGAII
and ε-NSGAII are far from the reference set and has a low
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Fig. 2: Comparison of algorithms based on Generational Dis-
tance indicator for different generations.
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Fig. 3: Comparison of algorithms based on Additive ε-indicator
for different generations.

diversity for generations below 2000. ε-MOEA outperforms
NSGAII and ε-NSGAII. The approximation sets generated by
CONTROLEUM-GA have larger proximity and diversity and
results in a large hypervolume in first 10 generations. The
baseline algorithms are not able to generate optimal or near-
optimal approximation sets in few generations.

The generational distance indicator is shown in Fig. 2. The
generational distance indicator measures the proximity of the
approximation set towards the reference set. In the first 10 gen-
erations, approximation sets are generated by CONTROLEUM-
GA that have large proximity while the other three algorithms
are generating approximation sets far from the reference set.
The three baseline algorithms are able to generate optimal
and near-optimal approximation sets after 2500 generations.
This means, that the baseline algorithms need to evaluate more
populations to obtain approximation sets near to the reference
set.

The additive ε-indicator measures the gap between solu-
tions in the approximation set compared to the reference set.
Fig. 3 shows that CONTROLEUM-GA outperforms the other
three baseline algorithms in 10 generations. Furthermore, the
low additive ε-indicator value for CONTROLEUM-GA indicates
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Fig. 4: Comparison of algorithms based on Maximum Pareto
Front Error indicator for different generations.
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Fig. 5: Comparison of algorithms based on Contribution for
different generations.

the consistency of algorithm.

The maximum Pareto front error indicator calculates the
maximum error band in which the solutions in the approxi-
mation set encompasses every solution in the reference set.
For that reason, a low value for maximum Pareto front error
indicator is desirable for the algorithms. The results obtained
from the statistical analysis, show that the approximation set
generated by CONTROLEUM-GA has the minimum value for
this indicator, see Fig. 4. The maximum error band between
solutions in the generated approximation set towards the refer-
ence set is quite small and it becomes zero after 10 generations
for CONTROLEUM-GA. The three baseline algorithms under-
perform compared to our proposed algorithm and have larger
maximum Pareto front error after 10 generations.

The Contribution indicator calculates the percentage of
solutions from the approximation set that appears in the refer-
ence set. That is, the Contribution indicator indicates whether
solutions found by a MOEA supports optimality or not. The
statistical analysis of the Contribution indicator for different
number of generations and for all algorithms is illustrated
in Fig. 5. CONTROLEUM-GA is able to contribute to the
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Fig. 6: Generational Distance of MOEAs.
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Fig. 7: Hypervolume of MOEAs.

reference set from very early generations while the other
baseline algorithms contribute in around 2500 generations.
That is, the proposed algorithm can outperform all the baseline
algorithms in regard to finding exact solutions that matches the
reference set.

A statistical analysis, considering different maximum num-
ber of generations, is performed to observe progress of conver-
gence and run-time behaviour of each algorithm. The observed
run-time behaviour of each algorithm is presented and ana-
lyzed in Fig. 6 - 10. Five indicators are selected to explain the
run-time behaviour of the MOEAs: hypervolume, generational
distance, additive ε-indicator, spacing and convergence time.
It is possible to justify the quality of the approximation sets
generated by the algorithms using a set of indicators instead
of only one indicator [15]. Each algorithm was executed with
maximum 4000 generations to be sure that all of the algorithms
would converge.

Fig. 6 indicates that after a few generations,
CONTROLEUM-GA is able to generate an approximation
set close to the reference set with a minimum value for
generational distance indicator. Next after CONTROLEUM-
GA, ε-MOEA can outperform the other two baseline
algorithms and obtain an approximation set close to the
reference set after 1300 generations.

Fig. 7 shows that CONTROLEUM-GA can reach the largest
value for the hypervolume indicator before 100 generations
compared to ε-MOEA that reaches this value after 1200 gen-
erations. The results indicate that the proposed CONTROLEUM-
GA and ε-MOEA outperform NSGAII and ε-NSGAII.

The run-time results of executing algorithms for using the
additive ε-indicator is illustrated in Fig. 8. The additive ε-
indicator measures the gap between solutions in the approxi-
mation set compared to the reference set. It is clear from the
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Fig. 8: Additive ε of MOEAs.
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Fig. 9: Spacing of MOEAs.

data in this figure, that CONTROLEUM-GA outperform the
other three baseline algorithms i less than 100 generations.
Furthermore, ε-MOEA reaches the minimum value for the
additive ε-indicator after 1300 generations while NSGAII and
ε-NSGAII obtain the minimum value after 4000 generations.

Fig. 9 indicates that after few generations, CONTROLEUM-
GA is able to generate an approximation set with large
diversity that remains until the end of generations. The other
three baseline algorithms generate very diverse approximation
set in different generations and the spread of the solutions vary
until the end of generations. Only ε-MOEA reaches a stable
unified diversity after 1300 generations.

Fig. 10 illustrates the convergence time for CONTROLEUM-
GA and the three baseline MOEAs. Convergence time is the
time required to obtain a stable approximation set that is as
close as possible to the reference set. Fig. 10 illustrates that
CONTROLEUM-GA can perform about 10 generation within
17 seconds to converge to the reference set. NSGAII, ε-
NSGAII and ε-MOEA converge after about 3000 generations.
ε-NSGAII and ε-MOEA converge in approximately 21 and
22 seconds, respectively. NSGAII is able to converge after 28
seconds.
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Fig. 10: Convergence time for all of the algorithms.
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VII. DISCUSSIONS

The effects of using domain specific operators in a MOEA
to solve a dynamic multi-objective optimization problem was
investigated. Fast convergence is an important property when
solving dynamic optimization problems. Applying domain spe-
cific operators and decision variables, reduced the convergence
time. CONTROLEUM-GA limits the search space to a domain
viable search space by using domain specific operators and
the effect is faster convergence. An important finding is that
the quality of the solutions found by CONTROLEUM-GA is
better or equally as good compared to NSGAII, ε-NSGAII
and ε-MOEA. State of the art indicators have been evaluated
to support this claim and to justify the quality of the algorithms
[15]. According to the results, hypervolume and generational
distance indicators show that CONTROLEUM-GA outperforms
baseline algorithms in terms of proximity in less than 10
generations. Also, generational distance and maximum Pareto
front error indicators indicate that the solutions generated
by CONTROLEUM-GA has better coverage compared to NS-
GAII, ε-NSGAII and ε-MOEA. Furthermore, the additive
ε-indicator shows that CONTROLEUM-GA is consistent in
generating approximation sets close to the reference set.

Based on the evaluated indicators, CONTROLEUM-GA
combined with domain specific operators is able to find high
quality solutions in less time. ε-MOEA outperforms the ε-
NSGAII and NSGAII respectively. The reason for this is that
ε-MOEA is able to achieve a well-distributed approximation
set within appropriate computation time and guarantee both
diversity and convergence [13]. This is consistent with what
Laumanns et al. claimed in [14] about ε-MOEA.

The experimental results indicate that ε-NSGAII out-
performs NSGAII in terms of convergence time. This is
based on the improvement done in ε-NSGAII compared to
NSGAII, to eliminate unnecessary algorithm executions by
terminating the search process automatically [10]. Although
CONTROLEUM-GA is able to generate high quality solutions
in appropriate computation time, the results regarding other
baseline algorithms are consistent with earlier studies [6], [10],
[13], [14]. Hadka and Reed observed, in their experiments,
that ε-dominance archiving used in ε-NSGAII and ε-MOEA
improves the search process [7]. This research will serve as a
base for future studies to improve MOEAs with more domain
specific variables and operators for solving complex dynmaic
control problems.

VIII. CONCLUSIONS

It is fair to state that domain specific variables and opera-
tors enable the proposed algorithm to converge fast enough
to solve the dynamic greenhouse climate control problem.
The most significant finding from this research is that the
proposed enhanced MOEA CONTROLEUM-GA outperforms
the other baseline MOEAs in terms of convergence time
without compromising the quality of the solutions in the
approximation set. Also, the findings have significant impli-
cations for the understanding of how to apply domain specific
operators to enhance state-of-the-art MOEAs. The presented
study confirms previous findings and contributes with a new
MOEA CONTROLEUM-GA, that can solve dynamic multi-
optimization problems based on domain specific operators and
variables.

More research, based on experiments, is required to assess
the efficacy of different domain specific variables and opera-
tors. Future experiments should explore: the effect of a large
number of objective functions, more complex dynamic control
problems, different representations of decision variables and
variations of domain specific operators.
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