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Abstract— Independent component analysis (ICA) is a 

statistical method for transforming multidimensional observed 
signals into components, which are statistically independent from 
each other, which is a case of redundancy reduction. In this paper, 
we implement FastICA proposed by Hyvarinen and Oja to 
investigate the relationship between systemic risk and ICA in the 
US financial market. We propose a systemic risk indicator based 
on observing the redundancy level of signals in running ten 
variables including ten S&P 500 sector indices. We find that not 
only the redundancy level of signals becomes larger during a crisis 
than during a normal period, but also the financial system 
becomes more vulnerable when the redundancy level grows up. 

I. INTRODUCTION 

The recent financial subprime crisis showed that financial 
innovations that increased the complexity and 
interconnectedness of aspects of the financial system increased 
as a consequence of system's vulnerability to financial shocks. 
In response to the vulnerability it revealed, governments around 
the globe are acting to improve financial stability and reduce the 
risks posed by a highly interconnected financial system, which 
is systemic risk. As a result, it is important to develop an 
indicator for measuring systemic risk as well as the financial 
stability. 

The Commodity Futures Trading Commission1 (CFTC)  
defined systemic risk as “The risk that a default by one market 
participant will have repercussions on other participants due to 
the interlocking nature of financial markets.” The Financial 
Stability Board [2] stated that “systemic risk can arise through 
direct and indirect interlinkages between the components of the 
financial system so that individual failure or malfunction has 
repercussions around the financial system.” This is also called 
the domino effect, and the term domino effect is sometimes used 
when interconnectedness causes the failure of one entity to result 
in the failure of others. Although there are several different 
definitions of systemic risk, a commonality in the various 
definitions of systemic risk is that a trigger event causes 
financial systems to become unstable because of high 
interconnectedness. 

So, what have we learned from recent research on 
interconnectedness and systemic risk? We have seen lots of 
research studies on how interconnectedness can be a driver of 
systemic risk. The aggregated risk may do little harm or may 
even be irrelevant in normal periods, but they can be devastating 

to a financial system during a crisis. As a result, systemic risk 
measure is a "Too Interconnected to Fail" assessment. On the 
other hand, systemic risk is measured by how correlated the 
entire financial system exists.  

Billio et al. [3][4] and Kritzman et al. [10] used principal 
component analysis (PCA) to gauge the degree of the financial 
system connectedness. They claimed that the markets are much 
more fragile during a tight interconnection than during loose 
interconnections. Although many researchers use PCA to 
identify the key principal components from a large number of 
mixed signals as well as to explain the relationship between the 
interconnectedness and systemic risk, PCA does not use any 
high-order statistics and ignores features such as data clustering 
[8]. As a result, PCA and factor analysis (FA) are not suitable 
for modeling multivariate financial time series because most of 
the financial returns are non-Gaussian distributions; in addition, 
the two random variables that are uncorrelated do not imply they 
are independent. Since ICA takes into account the whole 
dependence structure of the variables, ICA is a preferable 
measure in analyzing multivariate financial time series. Chen et 
al. [5] showed that ICA is a complementary tool compared to 
PCA, allowing the capture of high-order properties of financial 
time series.  

Independent component analysis was originally developed 
to deal with problems that are closely related to the cocktail-
party problem. Comon [6] explained how to obtain a more 
general ICA formulation, which does not need to assume an 
underlying data distribution, and a large number of ICA 
algorithms have been developed. One of the best methods is the 
FastICA algorithm proposed by Hyvarinen and Oja [8]. In the 
FastICA algorithm, the mutual information is used as the 
criterion to estimate independent components, minimizing the 
mutual information between the components corresponds to 
maximizing their negentropy. The algorithm is quite simple, 
converges fast and reliably. 

Until recent years, ICA applications have been used in the 
financial field [1][5], and people usually use ICA to decompose 
multivariate time series into statistically independent time 
series. Although much research has investigated the relationship 
between dependence and systemic risk, there is no research in 
measuring systemic risk based on ICA.  

1. Definition of “Systemic Risk” in the CFTC GLOSSARY. 
http://www.cftc.gov/ConsumerProtection/EducationCenter/CFTCGl

ossary/index.htm#S 
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ICA linearly transforms the original mixed signals to a set of 
independent signals, whose dependence is removed. Since the 
ICA removes the dependence from the original signals, we 
explore the relationship between redundancy 
(interconnectedness) and systemic risk by observing how much 
redundancy has been removed over time. The main finding in 
this paper indicates that the higher the degree of system 
interconnectedness, the more vulnerable the financial stability. 

This paper has four sections. The first section briefly 
introduces existing research regarding systemic risk and 
independent component analysis in the financial field. The 
second section describes the methodology of independent 
components analysis. The third section presents the data and 
outlines how we apply ICA measure to evaluate systemic risk. 
The fourth section concludes our findings. 

II. METHODOLOGY 

A. Independent Component Analysis (ICA) 
Independent component analysis (ICA) is a multivariate 

analysis technique which separates or recovers mutually 
independent but unknown sources from the linear mixtures 
observations [6][8][9]. Let X be an observed m vector. The ICA 
model for X is written as 

 � = ��                      (1) 
where A is called a mixing matrix, S is an n vector of latent 

independent components and � ≤ �. The formula is basically 
the same as classical factor analysis, with the crucial difference 
that the independent components S are assumed to be non-
Gaussian. The main goal of ICA is to estimate the mixing matrix 
A by maximizing independence among the components of S. 
Since the independence is measured by non-normality, the 

estimation is implemented by finding the demixing matrix �	  

such that the components of  �
 = �	 �  have maximum non-
Gaussianity. A typical measure of non-normality is excess 
kurtosis, and the excess kurtosis is zero for a normal distribution 
and non-zero for most non-normal distributions. Although the 
concept of ICA using kurtosis is simple, it can be very sensitive 
to outliers. Therefore, kurtosis is not a robust measure of non-
Gaussianity. 

Entropy is the essential concept of information theory, and it 
interprets the degree of information that the observation of the 
variable gives. Entropy H is defined for a discrete random 
variable Y as 

�(�) = − ∑ �(� = ��) log �(� = ��)�   (2) 
Negentropy is based on the quantity of differential entropy. 

To obtain a measure of non-Gaussianity that is zero for a 
Gaussian variable and always non-negative, negentropy J is 
defined as 

�(�) = ��������� − �(�)      (3) 

where ������  is a Gaussian random variable of the same 

covariance matrix as Y. In addition, negentropy has the property 
that it is invariant for invertible linear transformations [6]. 
Hyvarinen and Oja [8] developed a new approximation for 
negentropy based on the maximum-entropy principle, and it can 
be expressed as 

�(�) ∝ {�[�(�)] − �[�(�)]}�, �~�(0,1)  (4) 
where G is a nonlinear and non-quadratic function, i.e. 

�(�) = log cosh (�).  

B. FastICA Algorithm 
Hyvarinen and Oja [8] proposed a very efficient algorithm 

to estimate W by maximizing negentropy J in (4), called 

FastICA. It is assumed that the random vector x is whitened 

(sphered), uncorrelated and has variance of one. The fixed-

point algorithm for p units is as follow: 

1) Choose an initial random vector for the first unit !" of 

norm one 

2) Let !�# = !� − $ %&'*��+-.*�/2+-3
(&'�4�+-.*�3/2)56 

3) Normalize !�# ← +-8
9+-89. If not converges, go back to 

step 2. 

4) Decorrelate the outputs !:  after every iteration for 

unit ; = 1, … , <. Let !> = !> − ∑ !>?!:!:
>/"
:@"   

5) Back to step 2 to run the one-unit fixed-point 

algorithm unitl p units achieved. 

6) �
 = �	 � 

where $  is a step size, A  is the derivative of G, B =
�{!?�A(!?�)} , and whitening can be accomplished by 

principal components analysis (PCA). Based on the Kuhn-

Tucker condition and the Newton’s method, Hyvarinen and Oja 

[8] showed that the estimations based on the FastICA algorithm 

are consistent. 

C. Systemic Risk Indicator 
At present, there is no better method available to 

automatically determine the optimum number of independent 
components. In our case, we determine the number of 
independent components to be ten because each industrial sector 
cannot be substituted. The centering observations X are ten 
vectors including the returns of ten S&P 500 sector indices, and 

the reconstructed signals are �C, generated by the estimated ten 

independent components �
 and the estimated mixing matrix �
. 
The concept of systemic fragility is the degree of system’s 
susceptibility to structural breakdown, and our paper defines 
evaluating the degree of systemic fragility as a systemic risk 
indicator. On the other hand, an increase in systemic fragility as 
measured in this paper is an indication of elevated 
interdependency risk. The main difference between ICA and 
PCA is that ICA not only decorrelates the signals up to second-
order statistics, but also reduces the dependency up to higher-
order statistics. Therefore, using ICA to capture the dependency
for constructing the systemic risk indicator is more reliable than 
using PCA. In addition, the potential for systemic risk exists not 
only because of the degree of the risk repercussion, but also 
because of the sheer size of an exposure to other participants. 
The larger size of boom tends to increase the probability of 
system breakdown. As a result, the dynamic systemic risk 
indicator (SRI) is composed by the weighted sum of the absolute 
value of the residual time series, and it can be written as 

�DEF = ∑ G�,F ∙ I��,F − �J,FK I"L�@"                                        (5) 
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where G is the weight vectors calculated by the ratio of the 

sector’s capitalization to the market’s capitalization.  

III. EMPIRICAL RESULTS 

A. Data Representation 
Standard and Poor’s corporation divides the 500 members 

from the S&P 500 index into ten different sector indices based 
on the Global Industrial Classification Standard (GICS) shown 
in table 1 below. Table 1 shows that it is reasonable to develop 
the systemic risk indicator by the weighted sum since the size of 
the information technology sector is approximately seven times 
larger than the size of the telecommunication services sector. 

TABLE I.  THE 10 S&P 500 SECTOR INDICES, SNAPPED BY MAR 28, 2014 

Sector Name  Index Weight (%) 

Information Technology 18.6 

Financials 16.4 

Health Care 13.3 

Consumer Discretionary 12.1 

Industrials 10.6 

Energy 10.2 

Consumer Staples 9.7 

Materials 3.5 

Utilities 3.1 

Telecommunication Services 2.5 

TABLE II.  THE STATISTICS OF S&P 500 SECTOR INDICES AND THE S&P 

500 INDEX 

  Mean Sigma Skew Kurt ADF test J-B test 

S&P 500 

Financials 
0.02% 1.91% -0.102 18.08 1 1 

S&P 500 
Information 

Technology 

0.04% 1.82% 0.146 7.716 1 1 

S&P 500 

Consumer 

Discretiona
ry 

0.04% 1.37% -0.112 9.924 1 1 

S&P 500 

Energy 
0.03% 1.60% -0.303 13.4 1 1 

S&P 500 
Health Care 

0.04% 1.20% -0.136 9.255 1 1 

S&P 500 
Industrials 

0.03% 1.33% -0.338 8.571 1 1 

S&P 500 

Utilities 
0.01% 1.17% -0.027 12.933 1 1 

S&P 500 

Consumer 

Staples 

0.03% 0.97% -0.128 11.349 1 1 

S&P 500 

Materials 
0.02% 1.51% -0.245 9.531 1 1 

 S&P 500 
Telecommu

nication 

Services 

0.01% 1.43% 0.056 9.458 1 1 

 

Fig. 1. The S&P 500 sector indices’ returns time series. 

 The daily data is taken from Bloomberg from January 1, 

1995 to June 26, 2015, covering 5156 observations shown in 

Fig. 1. Table 2 presents the summary statistics of the ten S&P 

500 sector indices and S&P 500 index. As shown in table 2, the 

Augmented Dickey-Fuller test (ADF) shows that each series 

returns reject the null hypothesis of a unit root, indicating each 

series of the returns is stationary. The result is 1 if the test rejects 

the null hypothesis at the 5% significance level in our case. 

Meanwhile, the Jarque-Bera (J-B) test shows that each series 

returns reject the null hypothesis that the data comes from a 

normal distribution with an unknown mean and variance, 

indicating each series of the returns does not follow an normal 

distribution. The result is 1 if the test rejects the null hypothesis 

at the 5% significance level. In addition, the statistical analysis 

interprets that it is more appropriate to use ICA to measure 

systemic risk than use PCA because each distribution of the time 

series violates normality. 

 

B. Empirical Results of Systemic Risk Indicator 
In the extending rolling sample approach, the observations 

increase over time. For instance, the first value is calculated by 
the observations from day 1 to day 1000. The second value is 
calculated by the observations from day 1 to day 1001, and so 
on. As for the general purpose, we determine the contrast 
function to be �(�) = log cosh (�) . Fig. 2 interprets the 
estimates of the original source signals, and Fig. 3 provides the 
residual time series between the original signals and the 
replicated signals in the last time window. 
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Fig. 2. The estimates of the original source signals. 

 

 

Fig. 3. The comparison between the original signals and the replicated signals 

in last time window. 

 

 Fig. 3 shows that the information technology sector was 

the major risk contribution to Dot-com bubble in 2000, and the 

financial sector dominated the subprime crisis in 2008. Here, we 

determine 10 PCs and 10 ICs. Table 3 shows that the correlation 

matrix in the last time window. 

 

 

 

TABLE III.  THE CORRELATION MATRIX 
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 By observing the redundancy level, Fig. 4 reports that the 
financial market becomes highly interconnected during financial 
crises and relatively uncoupled during economic expansions. On 
the other hand, it means that the financial market is much more 
fragile during a tight interconnection than during loose 
interconnections. Fig. 4 represents that the global stock market 
crash was caused by the Asian economic crisis in 1997, and the 
Russian government devalued the Ruble and defaulted on its 
debt in 1998. Most recently, the collapse of a technology bubble 
existed in 2000, and the financial crisis was triggered by the 
subprime mortgage in 2008. In our study, we set the threshold 
of the systemic risk indicator be the 99 percentile as the red line 
shown in Fig. 4 (b). 

 

Fig. 4. (a) S&P 500 Index; (b) Systemic Risk Indicator; (c) VIX. 

 

IV. CONCLUSION 

ICA is a distribution-free and general-purpose statistical 
technique in which observed data are linearly transformed into 
components that are statistically independent. Although 
applications of ICA can be found in many different fields, this 
paper is the first to explore systemic risk based on ICA. In this 
paper, the technique has been applied to an econometric 
framework with the objective of estimating the redundancy level 
that reveals a driving mechanism of the financial stability. With 
the technique of removing dependence among multivariate time 
series based on ICA, the main findings are that the US financial 
system not only becomes more interconnected during economic 
recession than during economic expansion, but also becomes 
more vulnerable when the redundancy level grows up. In 

additional, using our methodology to measure systemic risk in 
the US financial market is a simple, efficient and useful method. 
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