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Abstract—This article describes an empirical approach to
the macroeconomic modelling of the Euro zone. Data for the
period 1971–2007 has been used to learn systems of ordinary
differential equations (ODE) linking inflation, real interest and
output growth. The equation discovery algorithm LAGRAMGE

was used in conjunction with a grammar defining a potentially
large range of possible parametric equations. The coefficients of
each equation are automatically fitted on the training data and
the ones with the lowest error rates returned as a result. We
have added a tool for out-of-sample error evaluation to the in-
sample evaluation built in LAGRAMGE. The paper compares the
performance of ODE models to previous work on the learning
of ordinary equations for the same purpose.

I. INTRODUCTION

When building mathematical models of economic data, the

approaches often centre on choosing the ‘right’ parametric

equation or system of equations, based on a mixture of theo-

retical reasoning and empirical observations. The task is then

reduced to fitting the parameters of the selected equations in

order to minimise an error criterion, such as the mean squared

error (MSE). An example of this is when each equation is

produced as the result of a linear or a (specific) non-linear

regression on the training data.

Equation discovery [9] is a machine learning approach in

which the learning bias is much weaker in comparison, and a

potentially wide range of possible equations are considered to

find the best fit of the data provided. The LAGRAMGE system

used here is an equation discovery tool in which a context-free

grammar combining variables with mathematical operators

and functions is used to produce parametric equations whose

coefficients are subsequently fitted. The grammar may define

a potentially infinite number of equations, which in practice

requires the use of a threshold limiting the complexity of each

equation considered by the search.

The LAGRAMGE system has already been successfully ap-

plied in the field of ecology [1], [10]. More recently, it was

also used for macroeconomic modelling on the case of the

Euro zone, resulting in complex non-linear models with several

equations showing high fidelity [5]. This article uses the same

data set as a starting point, but tests another instrument in

the LAGRAMGE toolkit, namely the ability to learn ordinary

differential equations (ODE). Quarterly data about inflation,

interest and output is used in a number of experiments to

evaluate this approach. The resulting models provide a link

between monetary policy (in the form of interest) and the state

of the economy as measured by its output and rate of inflation.

II. BRIEF HISTORY OF THE EURO AREA

In order to put into context the data used for learning

macroeconomic models of inflation, real interest and output

growth in the Euro Area a summary of the union’s history is

required. Since the 1970s there have been three main initiatives

towards European monetary union and four oil crises. This

section aims at providing a very brief overview of the events

which occurred in the studied period from 1971 to 2007.1 It

is mainly focused on the events with a direct impact on the

monetary policy in the Euro Area.

The first attempt was the “Snake in the Tunnel” plan

launched in the first quarter of 1971. Its founding countries

were Belgium, Luxembourg, France, Italy, the Netherlands,

and West Germany. It involved setting the maximum difference

between two currencies from the union to be ±2.25%, while

at the same time their maximum margin against the USD was

±4.5%. No single currency was implemented as a result of the

plan. While the plan was in motion the number of members

of the union increased and decreased on a regular basis. For

example, the United Kingdom joined the union and then was

forced to leave only six weeks later. It was followed by

Denmark and Italy—both having joined after initial agreement

was signed—due to certain economic factors as summarised

by Pinsky and Kvasnicka [8]. 1973 marked the beginning of

the first oil crisis. In just six months, until March 1974, the

prices of oil almost quadrupled from $3 to nearly $12 per

barrel. In 1979 a second oil crisis shook up the prices of crude

oil, with prices more than doubling in the span of a year. Such

major events have a great impact on the world’s economy,

and are deemed to create recessions [3], [4]. By 1979 the first

attempt at increased European market cooperation had failed.

This marked an age of great instability in the Euro area which

is reflected in the data for that period.

1This period has been selected to allow for direct comparison of results
with existing work, as the main thrust of this study is on methodology.
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The next attempt was the European Monetary System
(EMS), which became established in 1979. The founding

members of the union were Belgium, Denmark, France, Ger-

many, Ireland, Luxembourg, and the Netherlands followed

by a restricted membership of the UK. A major difference

when comparing it to the “Snake in the Tunnel” plan was

the introduction of the European Central Unit (ECU) and

European Monetary Cooperation Fund (EMCF), the former

being a virtual currency managed by the European Central

Bank (ECB), while the latter is an administrative structure for

increased monetary policy coordination. This second attempt

at cooperation is marked with considerably more success than

the “Snake in the tunnel” plan. As McNamara [6] points out,

EMS has proven to be quite stable and has paved the way for

the European Monetary Union.

What followed was the European Monetary Union (EMU),
which was planned out in the 1989 Delors report as a three-

stage process. Shortly after the 1990 wave of oil price shocks
[11], the 1992 Maastricht Treaty was signed, marking the

beginning of the first stage of the Delors plan. In the context

of this research, it is important to mention that two of the

main Maastricht treaty goals are the convergence of economic

criteria imposed on inflation and interest rates. 1992 is also

associated with a period of spikes in interest rates and short

term instability in the area, which became known as the

European Exchange Rate Mechanism (ERM) crisis and is best

remembered for Britain’s dramatic exit from the mechanism.

Stage 2 started in 1994, further increasing monetary coopera-

tion through the “Stability and Growth Pact”. The stage was

completed in 1999 with the creation of the Euro zone. The

members of the union adopted a single monetary policy, along

with the Euro, which was scheduled to substitute the member

currencies in a three year period.

In conclusion, it was important to show the major events

in the Euro area so the data could be better understood. The

period described above contains a wide range of events from

energy crises to increased cooperation and change in monetary

policies. These variations in the macroeconomics of the Euro

area create a great challenge for any algorithm trying to model

the complex relationships underlying the data.

III. THE DATA

The dataset used consists of quarterly data of the annual

rates of inflation π, output growth y, and the real interest r
for the Euro area in the period 1971Q1–2007Q1. Additional

columns containing the same variables, but with a number

of time lags (t − 1, t − 2, . . . ) were also added to allow

the discovery of equations making reference to such lagged

variables. Time was also included as an explicit variable

(using a step of 1 to represent a move from one quarterly

entry to the next). The dataset was divided into data used for

model estimation (i.e., training sample/dataset, comprising all

readings in the period 1971Q1–2005Q1), and a test dataset

2005Q2–2007Q1, which was used to evaluate the models on

previously unseen data (‘out-of-sample evaluation’). In line

with other studies [5], the real interest rates have been assumed

to be equal to the nominal interest rates minus the realised (i.e.,

actual) inflation one period ahead, the latter being used as a

proxy for the expected inflation rate.

IV. LEARNING ODE WITH LAGRAMGE

When using equation discovery systems for modelling, it is

essential to provide background knowledge [10], which in the

case of LAGRAMGE takes the form of a context free grammar.

The grammar consisting of Rules 1, 3 and 4 below which was

first proposed by Kazakov and Tsenova [5] is used here as a

starting point of our study. It has been shown to successfully

generate accurate systems of non-linear ordinary equations

(which are acquired one at a time). Here these previous results

are replicated, then the same grammar is used for learning

ODEs.

A number of not fully differentiable functions have been

considered for inclusion in the grammar. One function was

eventually added on the basis of its performance. The grammar

was extended with the addition of the step(c, t) function as

defined in Table 1 and incorporated in the grammar through

Rules 2 and 5. This discontinuous function is equal to its

double step(double c, double t) {
return c>t ? t : 0 ;

}

Fig. 1. Definition of step function

second argument t when its value is below the threshold c;
otherwise it is equal to zero. For any equation generated by the

grammar, the constants are varied using the provided range and

step (e.g. [−10, 10] and 0.01) until the best fit is found. The

search algorithm explores all successive derivations starting

with the grammar axiom E up to a set depth, which here was

limited to 7.

E → E + Term|Term (1)

E → ST + E|ST ∗ E (2)

Term → const[−10 : 0.01 : 10]

→ const[−10 : 0.01 : 10] ∗ V
→ const[−10 : 0.01 : 10] ∗ sin(LT ) ∗ sin(LT )
→ const[−10 : 0.01 : 10] ∗ V ∗ sin(LT )
→ const[−10 : 0.01 : 10] ∗ sin(LT ) (3)

LT → const[−10 : 0.01 : 10] ∗ V +

+ const[−10 : 0.01 : 10] (4)

ST → step(const[0 : 0.001 : 10], T erm)

→ step(const[0 : 0.001 : 10], V ) (5)

For example, one possible derivation of depth 3 is: E →
E + Term → Term + Term → const ∗ V + const. It is

obtained by replacing every nonterminal symbol with the right

hand side of a matching grammar rule until the result does
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not contain nonterminals. Every occurrence of the symbol V
in the resulting equation is then replaced by an input variable

(corresponding to a column in the table containing the input

data) and the coefficients const fitted to obtain an optimal fit.

LAGRAMGE returns the top 15 equations minimising the

means squared error (MSE) on the training data. These were

then tested on out of sample data and the best were selected.

As pointed out by Brown [2] time-step choice is a common

problem when modelling dynamic systems with components

unstable in a limited time range. The publication discusses the

range of appropriate values for multistep numerical integration

methods. Based on the study, and some prior experimentation,

the time step was chosen to be 0.05 for all equations. As

a result of running all experiments with the same time-

step value, it is possible to create a system of ODEs as a

combination of equations for π, y and r where each was

obtained with a different grammar.

V. FORECASTING WITH DIFFERENTIAL EQUATIONS

A gap in the literature was identified, namely the absence

of convenient forecasting tools based on ordinary differential

equations. Although LAGRAMGE can find the differential equa-

tions for the dynamic processes underlying the data, no clear

method of forecasting using the ODE models is provided.

The problem is interesting because unlike forecasting with

ordinary equations, differential equations require integration

to create projections about the future. Numerous integration

methods have been developed throughout the years. Some of

the classes that they can fall into are: implicit or explicit, single

or multistep, numerical or analytical. Numerical integration

methods are of interest for this project since they are easily

implementable in any general purpose programming language.

In contrast, not all functions have analytic solutions and even

though advances have been made in the field of analytical

integration a general solver does not exist. The downside

of numerical integration methods, as compared to analytical

method, is that they are all associated with an error. Higher

order integration methods have better accuracy, however they

are more complex for implementation and computation. Two

methods of numerical integration were reviewed, namely

Runge-Kutta and explicit Adams-Bashforth.

The main difference between implicit and explicit integra-

tion methods is the values they required for calculating the

value of yn+1 coupled with their stability. Explicit integration

methods require the current state of the system in order to find

a solution as shown in Equation 6.

Y (t+ δt) = F (Y (t)) (6)

On the other hand, implicit methods require the current

system state and the state at a further point, as shown in

Equation 7. In turn, this requires an extra computation and

also makes these methods harder to implement. The advantage

of implicit methods over explicit is the fact that they are more

stable when working with stiff systems. In fact, Nevanlinna

and Sipilä [7] proved that there are no explicit methods which

are A-stable. This property of integration methods shows

whether a method converges to the true solution when small

changes in the initial values occur.

G(Y (t), Y (t+ δt)) = 0 (7)

Runge-Kutta methods devised in the 1900s by Carl Runge

and Martin Kutta is a family if explicit and implicit methods

for numerical integration. The integration formula for the

implicit method is shown on equation 8. As it could be seen the

term yn+1 is present on the right hand side, thus it is implicitly

defined. As a result, another method, such as Newton-Raphson,

is required for solving the implicit equation. However, implicit

methods allow for the specification of a reasonably sized time

step in order to increase the accuracy.

yn+1 = yn + hf

(
tn +

h

2
,
1

2
(yn + yn+1)

)
(8)

Equation 9 below shows an explicit Runge-Kutta 2 method.

The method uses half steps towards the solution. This requires

the derivatives to be calculable at half steps. This is possible

with a system of equations, however it is not the output of

lagramge is just a single equation. As a result the calculation

of derivatives at midpoint is not possible unless all of the

variables in the system have been modelled.

yn+1 = yn + hf

(
tn +

h

2
, yn +

h

2
f(tn, yn)

)
(9)

Adams-Bashfort is a family of explicit integration methods.

Its second order method is a two-step linear method. Eq. 10

shows the mathematical representation of the method. This

makes it a good candidate for integration method of choice

because only full step derivatives are calculated. One will only

require the differential equation discovered by LAGRAMGE

along with data for two time lags back. Furthermore, the sim-

plicity of the method provides an elegant and straightforward

solution.

yn+2 = yn+1 + h(
3

2
(f (tn+1, yn+1)− 1

2
f (tn, yn))) (10)

VI. RESULTS

First we start by discovering ordinary non-linear equa-

tions using the initial grammar. The input variables explicitly

present in the data (in the form of separate columns) include

lagged values for π, y and r for several steps back in time.

Time t itself is also included explicitly in the data, hence it

could appear as one of the variables in the equations found.

The results below reproduce the equations in Kazakov and

Tsenova’s article [5]. Equations 11, 12 and 13 model the

inflation, output growth and real interest. Note how in the

second term of Equation 11 defining the output growth, the

combination of a sin function and explicit time results in a

term with a periodic behaviour (with period T = 2π/0.21 ≈
30, which for this quarterly data corresponds to a cycle of 7.5

years). Similarly, the equation for the interest rate contains a

term with a period of 2π/0.045 quarters or 35 years approx.
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πt = 6.65 sin(0.60yt−1 − 1.02) sin(0.02πt−1 − 0.04)
−0.62 sin(−0.28πt−1 + 0.71) sin(0.21t− 1.09)
+0.11 + 0.96πt−1

(11)

yt = 10.66 sin(0.56yt−1 − 2.02) sin(0.11yt−2 + 0.88))
+8.84 sin(0.11rt−2 + 1.20) sin(0.58yt−1 + 0.84)
+1.60 + 0.07yt−2

(12)
rt = 8.88 sin(0.09rt−1 − 32.21) sin(0.05πt−1 + 14.18)

+23.14 sin(0.01πt−2 + 0.01) sin(0.045t− 1.78)
+6.98 + 0.05yt−2

(13)

Then we use the same grammar to discover ODE and the

reported equations below are the ones that performed best on

the out of sample dataset.

dπt

dt = 0.78yt − 10πt−2sin(−0.23πt + 1.90)
−0.84− 9.24πt−1 sin(−0.25πt−1 + 5.16)

(14)

dyt

dt = 10 + 8.15yt sin(0.187413yt−2 + 0.92)
+0.22t sin(−0.07πt−2 − 0.05)− 10yt−2

(15)

drt
dt = 1.08t sin(0.02πt − 0.01)− 3.16

+10rt sin(0.14yt + 1.11)− 10rt−1
(16)

As we can see the models found are structurally simpler,

however they still contain lagged variables. For the inflation

π we see a little worsening in the root mean square error

(RMSE) value (see Table 1), however output growth and real

interest models yield better results.

Finally, the equations discovered after the initial grammar

has been modified with the step(c, t) function and all lagged

variables removed from the dataset are reported below. In the

resulting equations, all variables have a time index t, which

has been omitted.

dπt

dt = 0.57y + 0.49π.sin(0.27r + 3.35)
+0.84π.sin(0.77y + 0.70).
step(0.001, π.sin(0.31π − 3.21))

(17)

dyt

dt = 0.74y + 0.94y.sin(0.34π + 2.30)
+step(0.001, r.sin(0.43π − 1.70)).
step(0.001, π.sin(0.44y − 2.55))

(18)

drt
dt = y + step(8.41, 0.60π.sin(0.50π + 3.15))

+0.87r.sin(0.48y + 2.68).
step(0.33, π.sin(0.60π − 3.88))

(19)

The complexity of these models has increased compared

to previous models reported. However, the absence of lagged

values in the data allows for a simpler data input. Furthermore,

these models produced the best results in terms of RMSE.

Fig. 2. One step ahead prediction of inflation with step() function grammar
model.

Fig. 3. One step ahead prediction of output growth with step() function
grammar model.

Fig. 4. One step ahead prediction of real interest with step() function
grammar model.

As we can see from graphs 2, 3 and 4, the forecast values

(dashed red line) follow closely the actual values recorded

for the period (continuous blue line). As with most of the

regression models a lag is observed. The error graphs (subplot

of every graph) show increase in the error of forecasting when

sudden spikes appear.

VII. FURTHER USE OF DISCONTINUOUS FUNCTIONS

There are several reasons for including discontinuous func-

tions in the ODE grammar. For instance, the variables that are

being modelled may be limited in their range, e.g. the economy
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TABLE I
SUMMARY OF THE RESULTS

Name Eqn Var In-Sample RMSE Out-of-Sample RMSE
Ord. 11 π 0.38 0.23
ODE sin 14 π 0.359 0.247
ODE step 17 π 0.723 0.215
Ord. 12 y 0.83 1.13
ODE sin 15 y 0.701 0.851
ODE step 18 y 0.359 0.588
Ord. 13 r 0.56 0.64
ODE sin 16 r 0.701 0.311
ODE step 19 r 0.741 0.299

output cannot be negative. We have therefore experimented

with several other such functions, as defined below:

double step2(double t0, double t) {
return t0>t ? 0 : 1;
}

double upperlimit(double c, double t) {
return c>t ? t : c ;
}

double interval(double c, double delta,
double t) {

% delta > 0
return t>c && t<(c+delta) ? t : 0 ;
}

Fig. 5. More discontinuous functions

Thus, step2 is zero for t < t0 and 1 otherwise. The

function upperlimit caps the value of its second argument.

Finally, the third argument of interval is returned as

its value when within a given interval, or zero is returned

otherwise. LAGRAMGE was then used with each of these

functions in turn (in place of the step function). While some

of the equations approached the ones reported in the previous

section in terms of out of sample accuracy, none of them was

better. Nevertheless, the discontinuous functions described in

this section may be easier to interpret, and one ultimately

needs to make a choice between a focus on accuracy alone,

and the desire to offer a plausible interpretation of the model

described by the equations.

VIII. CONCLUSION

The ODE models provided a good match to ordinary

equations. The results from the table below show that ODEs

performed better for all three of the dependent variables when

the step function was embedded in the domain knowledge.

In case of the initial grammar, ODEs provided better results

for output growth and real interest, with the inflation result

being just slightly worse.

The benefit of using ODEs is that their forecasts range

from comparable to considerably better than ordinary equa-

tions even when the learning dataset is simplified. On the

down side, implementing the forecasting procedure is not as

trivial as with ordinary equations. This study reviewed a good

few integration methods and concluded that linear multistep

methods like Adams-Bashforth 2 are of good fit to compute

the forecast values using LAGRAMGE ODE models. As the

tool produces a single model, rather than a complete system,

Adams-Bashforth was a good starting point. The lower order

method also reduced the number of initial values needed.

Finally, the difference between in-sample and out-of-sample

accuracy, both in absolute terms and in terms of the ranking

of the best equations serve as a reminder that in any practical

application an out-of-sample validation set should be used to

select the best model.
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