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Abstract— This paper presents CrisisModeler as a tool for 
exploring financial crisis predictions. Despite wide interest in 
crisis prediction, little attention has been given to generalizable 
modeling solutions, real-time implementations, thorough 
comparisons among methods and interactive interfaces to 
explore models and their output. CrisisModeler combines many 
approaches used in predicting financial crises within a fully-
fledged framework for modeling and evaluation, and provides an 
implementation of a general-purpose tool with a web-based 
interactive interface to explore model output. We present the 
underlying framework behind CrisisModeler and illustrate the 
use of it with a case study on European banks, including a horse 
race of methods and investigations of different specifications. The 
case study illustrates the versatility and suitability of the tool for 
supporting exploration and communication of models for crisis 
prediction. 

I. INTRODUCTION 
This paper provides a general-purpose tool for exploring 

financial crisis predictions. The global financial crisis has 
stimulated a multitude of efforts into deriving new models and 
techniques for measuring systemic risk and predicting various 
types of adverse financial scenarios. Despite wide interest in 
models, little attention has been given to generalizable 
modeling solutions, real-time implementations, thorough 
comparisons among methods and interactive interfaces to 
explore models. The provided CrisisModeler enables 
interactive means for deriving and exploring predictive models 
within a unified framework for modeling and evaluation. 

While not being a new invention, the literature on 
predictive models, or so-called early-warning models, has 
exploded in the past years. The first early-warning models 
relied less on advanced statistical methods and computers, as 
financial ratio analysis was more of a handcraft (e.g., Ramser 
and Foster [28]; Fitzpatrick [18]). After contributions by 
Beaver [7] on univariate discriminant analysis (DA), next steps 
moved toward multivariate analysis in Altman [3]. After the 
early applications by Frank and Cline [20] and Taffler and 
Abassi [36] of DA for predicting sovereign debt crises, a large 
wave of currency crisis models were introduced in the mid-
1990s, including Eichengreen and Rose [16] and Frankel and 
Rose [19]. Likewise, the recent wave of banking and systemic 
financial crises has triggered a large number of efforts targeted 
on these specific events, such as Alessi and Detken [1], Lo 

Duca and Peltonen [25] and Holopainen and Sarlin [23]. Event 
with the existence of abundant methods ranging from 
conventional statistics to more recent machine learning, as well 
as a multitude of other general advances, little work has 
targeted improvements in the general framework behind 
modeling. 

The CrisisModeler tool introduced in this paper fills the gap 
of a general-purpose framework for crisis prediction. It 
provides a fully-fledged modeling and evaluation framework 
targeted for early-warning models, including a large number of 
different modeling and evaluation approaches. CrisisModeler 
extends this with a visual interface that allows end-users to 
interactively manipulate parameters while observing how 
models and their output change. The broader contribution of 
CrisisModeler is to support awareness, transparency and 
accountability of modeling. Further, the framework as such 
enables easy integration of new modeling approaches into pre-
existing evaluations and visualizations. This allows relative 
model comparisons given identical data and modeling and 
evaluation setups. CrisisModeler is in this paper illustrated 
with an extensive European dataset on a large number of 
banks. Hence, we provide real-world evidence of 
CrisisModeler at work, which allows us to showcase how the 
tool can be applied as well as results for a large number of 
different modeling parameters. Due to a large number of tables, 
we provide most of the results tables in a web appendix. In the 
same vein, we accompany the paper with an online browser-
based implementation of the CrisisModeler application.1 The 
paper is structured as follows. Section II presents the 
CrisisModeler tool, while Section III provides its application to 
European banks. Section IV concludes. 

II. CRISISMODELER 
The text-book example of a classification problem is 

simple in its essence, yet the process for reaching final model 
output still involves a multitude of decisions. Following the 
conceptual framework in Lang et al. [24], deriving an early-
warning model requires a large number of decisions related to 
pre-modeling, modeling and post-modeling steps. In line with 
these three process steps, the tasks can be summarized as 
follows: 

                                                           
1  The browser-based implementation of CrisisModeler can be found at 
http://cm.infolytika.com/ and the web appendix at www.risklab.fi/cm. 
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• Aim & objective: modeling purpose, forecast horizon 
and events, indicators and sample 

• Estimation & evaluation: evaluation criterion and 
exercise, modeling technique and model selection 

• Transformation & visualization: policy-relevant output 
and exploring and communicating models 

The motivation behind CrisisModeler lies in streamlining 
the tasks and potential bottlenecks between steps in this 
process. The underlying machinery of CrisisModeler is a 
generalized framework designed for modeling and evaluation 
in line with the second step of the above process. The interface 
to this framework allows integrating the tasks of the first and 
third steps into those in the second. Hence, parameters related 
to the modeling purpose interact with the estimations and 
evaluations, which then feed into policy-relevant 
representations of model output.  

A. The decision problem in crisis prediction 
Early-warning models are in need of evaluation criteria 

that account for the nature of the underlying problem, which 
relates to events with high impact, yet low probability. It is 
thus crucial that the evaluation framework, which sets the 
classifier threshold, accounts for the decision problem faced 
by a decisionmaker. The signal evaluation framework focuses 
on a decisionmaker with relative preferences between type I 
and II errors, and the usefulness that she derives by using a 
model, in relation to not using it. In the vein of the loss-
function approach proposed by Alessi and Detken [1], the 
framework applied here follows the updated version of Sarlin 
[32]. 

For the problem at hand, we need two types of data: 
historical distress events and indicators of distress. To mimic 
an ideal leading indicator, we build a binary state variable Cn 
(h)  {0,1} for observation n (where n = 1,2,…,N) given a 
specified forecast horizon h. Let Cn (h) be a binary indicator 
that is one during pre-crisis periods and zero otherwise. For 
detecting events Cn using information from indicators, we 
need to estimate the probability of being in a vulnerable state 
pn  [0,1]. Herein, we make use of a number of different 
methods m for estimating pm

n, ranging from the standard 
logistic regression approach to more sophisticated techniques 
from machine learning. The probability pn is turned into a 
binary prediction Bn, which takes the value one if pn exceeds a 
specified threshold �  [0,1] and zero otherwise. The 
correspondence between the prediction Bn and the ideal 
leading indicator Cn can then be summarized into a so-called 
contingency matrix. 

The frequencies of prediction-realization combinations in 
the contingency matrix can be used for computing measures of 
classification performance. A decisionmaker can be thought of 
to be primarily concerned with two types of errors: issuing a 
false alarm and missing a crisis. The evaluation framework 
described below is based upon that in Sarlin [32] for turning 
decisionmaker’s preferences into a loss function, where the 
decisionmaker has relative preferences between type I and II 
errors. While type I errors represent the share of missed crises 
to the frequency of crises T1  [0,1] = FN/(TP+FN), type II 

errors represent the share of issued false alarms to the 
frequency of tranquil periods T2  [0,1] = FP/(FP+TN). Given 
probabilities pn of a model, the decisionmaker then finds an 
optimal threshold �* such that her loss is minimized. The loss 
of a decisionmaker includes T1 and T2, weighted by relative 
preferences between missing crises (�) and issuing false 
alarms (1-�). By accounting for unconditional probabilities of 
crises P1 = Pr(C=1) and tranquil periods P2 = Pr(C = 0)  
= 1–P1, as classes are not of equal size and errors are scaled 
with class size, the loss function can be written as follows:  

 L(�) = �T1P1 + (1 – �)T2P2, (1) 

where �  [0, 1]  represents the relative preferences of 
missing crises and 1–� of giving false alarms, T1 the type I 
errors, and T2 the type II errors. P1 refers to the size of the 
crisis class and P2 to the size of the tranquil class. Further, the 
Usefulness of a model can be defined in a more intuitive 
manner. First, the absolute Usefulness (Ua) is given by: 

 Ua(�) = min(�P1, (1 – �)P2) – L(�),  (2) 

which computes the superiority of a model in relation to not 
using any model. As the unconditional probabilities are 
commonly unbalanced and the decisionmaker may be more 
concerned about the rare class, a decisionmaker could achieve 
a loss of min(�P1, (1–�)P2) by either always or never 
signalling a crisis. This predicament highlights the challenge 
in building a useful early-warning model: With an imperfect 
model, it would otherwise easily pay off for the decisionmaker 
to always signal the high-frequency class. Second, we can 
compute the relative Usefulness Ur as follows: 

 Ur(�) = Ua(�) / min(�P1, (1 – �)P2),  (3) 

where Ua of the model is compared with the maximum 
possible Usefulness of the model. That is, the loss of 
disregarding the model is the maximum available Usefulness. 
Hence, Ur reports Ua as a share of the Usefulness that a 
decisionmaker would gain with a perfectly-performing model, 
which supports interpretation of the measure. It is worth 
noting that Ua better lends to comparisons over different �.  

Beyond the above measures, the contingency matrix may 
be used for computing a wide range of other quantitative 
measures. 2  Receiver operating characteristics (ROC) curves 
and the area under the ROC curve (AUC) are also used for 
comparing performance of early-warning models. The ROC 
curve plots, for the complete range of �  [0, 1], the 
conditional probability of positives to the conditional 
probability of negatives: 

 ROC = Pr(P = 1 | C = 1) / (1 – Pr(P = 0 | C = 0) ).  (4) 
                                                           

2 Some of the commonly used evaluation measures include: Recall positives 
(or TP rate) = TP/(TP+FN), Recall negatives (or TN rate) = TN/(TN+FP), 
Precision positives = TP/(TP+FP), Precision negatives = TN/(TN+FN), 
Accuracy = (TP+TN)/(TP+TN+FP+FN), FP rate = FP/(FP+TN), and FN rate 
= FN/(FN+TP). 
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B. Modeling techniques 
This section presents a sample of classifiers that have been 

implemented into CrisisModeler. Generally, classification is 
considered an instance of supervised learning, out of which we 
make use of a number of probabilistic classifiers, whose 
outputs are probabilities indicating membership to two 
qualitative classes (pre-crisis or tranquil periods). Machine 
learning has provided a broad palette of approaches for the 
task of classification. Thus, it is worth noting that the 
individual methods described herein provide only a sample of 
approaches to derive classifiers for the task at hand. In 
addition to the benchmark method of logistic regression, we 
cover five machine learning approaches. 

1) Logit analysis (LA): Through a log-linearized 
regression, LA describes the probability of an observation 
belonging to one of two classes based on one or more 
predictors. For the case with one predictor, the logistic 
function is p(X) = e�

0
+�

1
X / (1+e�

0
+�

1
X), which is obvious to 

extend to the multivariate cases. Logit and probit models have 
frequently been applied to predicting financial crises, 
including Eichengreen and Rose [16], Frankel and Rose [19], 
Sachs et al. [29]),  Barrell et al. [6] and Lo Duca and Peltonen 
[25]. 

2) k-Nearest Neighbors (KNN): KNN is a nonparametric 
classifier (see, e.g. Altman [4]) that assigns observations to the 
class most common among its k nearest neighbors. 
CrisisModeler makes use of the Minkowski distance to 
determine the nearest neighbors, as well as a kernel function 
(see e.g. Hechenbichler and Schliep [22]) which returns 
similarity measures of the neighbors based on proximity. The 
framework uses the 'optimal' weighting kernel proposed by 
Samworth [30], and considers two free parameters, the integer 
k and a parameter p which determines the order of the 
Minkowski distance. The KNN method was shown to perform 
well in the horse race by Holopainen and Sarlin [23]. 

3) Classification tree (CT): A CT (e.g., Breiman et al. 
[10]) implements a tree-type structure to classify by 
performing a sequence of tests on the values of the predictors. 
Conjunction rules segment the predictor space into a number 
of regions, allowing for decision boundaries of complex 
shapes. Pruning is oftentimes used to reduce size and improve 
generalization ability, which the CrisisModeler adjusts with a 
free parameter steering complexity. In the early-warning 
literature, the use of the CT has been fairly common, including 
Schimmelpfennig et al. [35], Chamon et al. [11] and 
Duttagupta and Cashin [15]. 

4) Random forest (RF): The RF (Breiman [10]) uses the 
CT as a building block to construct a more sophisticated 
ensemble-like method. The RF grows a pre-defined number of 
CTs with randomly sampled subsets of the data and subgroups 
of predictors. The randomness in predictors increases diversity 
in model output, which has been shown to reduce variance in 
the average. CrisisModeler considers two free parameters: the 
number of trees, and the size of the randomly sampled 
predictor subgroup. As to our knowledge, the RF has only 
been applied to early-warning exercises in Alessi and Detken 
[2] and Holopainen and Sarlin [23]. 

5) Artificial Neural Networks (ANN): ANNs are 
characterized by a system of nodes or units connected by links 
(e.g., Venables and Ripley [38]). Weights associated with the 
links are iteratively tuned network parameters. CrisisModeler 
implements a basic single hidden layer feed-forward neural 
network with two free parameters: the number of units in the 
hidden layer and the weight decay. The first parameter 
controls the complexity of the network, while the second is 
used to control how the learning algorithm converges. ANNs 
have been applied to crisis prediction since the 1990s, 
including Nag and Mitra [26], Peltonen [27], Fioramanti [17] 
and Sarlin and Marghescu [33]. Further, Sarlin [31] used an 
ANN optimized with a genetic algorithm for predicting 
systemic financial crises. 

6) Support Vector Machines (SVM): The SVM (Cortes 
and Vapnik [14]) can be devised as a nonparametric classifier 
by using hyperplanes in a high-dimensional space to construct 
a decision boundary. CrisisModeler considers the following 
free parameters: cost, which affects the tolerance for 
misclassified observations when constructing the separator; 
and gamma, defining the area of influence for a support 
vector. In the horse race of Holopainen and Sarlin [23], SVMs 
were shown to be among the best-in-class approaches for 
predicting systemic banking crises. 

7) Ensemble learning (EL): As is common in machine 
learning, CrisisModeler implements four approaches for 
concurrent use of multiple models. These four ensemble 
learning approaches are mainly based on so-called bagging 
and boosting. Boosting [34] refers to computing output with 
several models and averaging results, whereas bagging [9] 
uses resampling from the original data and aggregates into one 
model output. We follow the ensemble approaches proposed 
in Holopainen and Sarlin [23], which were applied to banking 
crisis prediction. Even though not being an aggregation of 
models, EL I nevertheless uses mutliple models in that it 
chooses the single best method for each estimation, as 
determined by largest in-sample Usefulness. EL II is based on 
the principle of voting, and simply utilizes the signals of all 
methods via a majority vote. The two final approaches 
aggregate instead probabilities of methods to a mean 
(arithmetic or weighted), after which these aggregated 
probabilities are treated as if they were outputs of a single 
method. EL III is simply an observation-wise arithmetic mean 
of the probabilistic outputs of all individual methods. Finally, 
EL IV is calculated as a weighted mean of the probabilistic 
outputs of all individual methods. For each observation j, the 
weight of method i out of n models is calculated as 

 wi,j = Ui,j / �n
k=1 Uk,j ,  (5) 

where Ui,j  is the in-sample Usefulness for observation i of 
method j. In the event of one or more methods having negative 
Usefulness, the following changes are made to the weights. If 
one or more methods have negative Usefulness, their weights 
are set to zero, removing them from the ensemble. If the 
Usefulness-values of all methods are negative, only the best 
method is used (as equal to Ensemble I). If the Usefulness-
values of all methods are missing, all methods are given 
identical weights (as equal to Ensemble III). 
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C. Modeling strategies 
With the objective of deriving models for out-of-sample 

prediction, we outline herein the strategies used in the 
framework. We tackle the problem in two separate parts: the 
model selection procedure and the evaluation exercise.  

As five of the methods presented in Section II.B include 
free parameters which in different ways control the complexity 
of each of these methods, they need to be optimized based on 
the data set at hand. For this task the framework includes a so-
called grid search. A set of values to be tested are selected 
based on common rules of thumb for each parameter (i.e., 
usually minimum and maximum values and regular steps in 
between), after which a grid search is performed on the discrete 
parameter space of the Cartesian product of the parameter sets. 
To avoid overfitting as the result of parameters of too high 
complexity, the framework employs 10-fold cross-validation 
and ranks the parameter choices of each method based on out-
of-sample Usefulness. After this the single parameter (or the 
parameter combinations, for methods with several free 
parameters) yielding the highest out-of-sample Usefulness are 
chosen and used to calibrate the model. 

As pooled models with panel data are common in the 
literature, data generally include a cross-sectional and time 
dimension. Thus, we ought to consider that data is likely to 
exhibit temporal dependencies. Although the cross-validation 
literature has put forward advanced techniques to decrease the 
impact of dependence (see e.g. Arlot and Celisse [5]), the most 
prominent approach is to limit estimation samples to historical 
data for each prediction. In order to test models from the 
viewpoint of real-time analysis, CrisisModeler implements the 
recursive exercise as in Holopainen and Sarlin [23], which 
derives a new model at each quarter using only data available 
up to that point in time. The exercise enables testing whether 
the use of classification models would have provided means for 
predicting future events, and how different techniques rank in 
terms of performance for the task. The recursive algorithm 
proceeds as follows. For each quarter q (or other chosen 
frequency), we estimate a model based on all available 
information up to that point t = 0 , 1, ... , q – 1 and predict the 
out-of-sample values for t = q. The in-sample probabilities for t 
= 0 , 1 , ... , q – 1 are used to find an optimal threshold �*, 
which is used for t = q to generate out-of-sample signals. Thus 
both the optimal threshold and the models themselves are time-
varying. At the end, CrisisModeler collects all predictions and 
evaluates how well the model has performed in out-of-sample 
analysis. The same exercise is then performed for all separate 
methods as well as for the ensembles, as outlined in Section 
II.B. 

Following the reasoning in Bussière and Fratzscher [12], 
the framework accounts for post-crisis and crisis bias by not 
including the period when an actual crisis occurs or one year 
thereafter. These periods of time are not considered useful 
data for training, as they represent neither a vulnerable pre-
crisis period nor a period of tranquility. These observations are 
thus dropped from all in-sample data used, whereas testing 
data for each recursion is kept intact. For comparability 
reasons, the out-of-sample probabilities are transformed in the 
framework to reflect the distribution of the in-sample data, 

utilizing the empirical cumulative distribution function. Using 
this function, both the in-sample and the out-of-sample 
probabilities are converted to percentiles of the in-sample 
probabilities for each recursion. 

D. Interaction with CrisisModeler 
The CrisisModeler tool is implemented in R with a web-

browser interface, allowing for easy interaction with the 
methods, settings and preferences, as shown in Fig. 1. The 
motivation for this solution is that a web-server 
implementation requires no further installation of software or 
in-depth technical knowledge on the user end. All calculations 
are carried out by the server, which also diminishes 
computational burden on the end-user’s machine. 

The main view of the application consists of a left-side 
panel with settings and parameters, and a main page for the 
output of the exercise. As changes in exercise or method 
parameters are made in the left-hand panel, the main page 
calculates a new output based on the chosen parameters. The 
user is given the possibility to load their own data with specific 
indicators and distress events. Based on the data, 
CrisisModeler constructs an ideal leading indicator (with the 
chosen forecast horizon), trains the selected probabilistic 
classifiers, computes their optimal thresholds and returns 
binary classifications. The models account for the preference 
between type I and II errors, as specified by the user.  

The left panel includes manual input of data, a number of 
parameters relating to the exercise output (such as the pre-crisis 
and post-crisis horizon intervals, and the preference between 
type I and II errors), as well as checkboxes enabling the choice 
of single methods along with their corresponding parameters. 
The main page output is, by default, the performance results of 
the recursive exercise with the chosen exercise parameters and 
methods in a table format. The performance measures include 
Usefulness, the area under the ROC curve (denoted AUC), as 
well as a large number of other common measures. This table, 
as well as the out-of-sample data, including output 
probabilities, thresholds and predictions, is downloadable in 
csv format for reference and further analysis. Additional views 
include various other model details, including visualizations of 
model output of individual methods, summaries of modeling 
parameters for chosen methods, and model descriptions for 
more details of each method. 

III. CRISISMODELER AT WORK 
This section presents an application of CrisisModeler to 

predict bank distress in Europe. In the following, we describe 
the used data and prediction results for a number of model 
specifications. 

A. Crises and indicators 
In order to derive early-warning models for European 

banks, we use a data set based on a large number of different 
sources of publicly available data (following Betz et al. [8] 
and Lang et al. [24]). The data is collected, for an observation 
period from 2000Q1 to 2014Q3, on 546 banks with a 
minimum of EUR 1bn in total assets, resulting in a total of 
29547 quarterly observations. Thus, the data set covers large 

920



banks relevant to systemic risk due to interlinkages and 
interconnectedness. We utilize information which would have 
been accessible at each specific point in time. Data reported 
annually are used in the data set for the subsequent four 
quarters, and publication lags are accounted for. 

As European direct bank failures have been rare, the 
scarcity of event data would not allow focus on only 
bankruptcies and other failures alike. To tackle this, the data 
set used herein also accounts for state aid and forced mergers, 
in addition to bankruptcies, liquidations and defaults. 

Direct bank failures are captured as follows. A bankruptcy 
is defined to occur if the net worth of a bank falls below the 
guidelines of the country in question, and a liquidation is 
defined to occur if a bank is sold according to the guidelines 
of the liquidator, in which case shareholders may not be 
compensated in full. Defaults are defined as either when a 
bank has failed to pay interest or principal on at least one 
financial obligation outside any grace period specified in the 
terms, or when a bank finalizes a distressed exchange, in 
which at least one financial obligation is repurchased or 
replaced by other instruments with a diminished total value. 
The data source for the bankruptcies and liquidations is 
Bankscope, whilst annual default data is retrieved from 
Moody’s and Fitch. A distress event is defined to start when 
distress is announced, and ends when the actual event occurs. 
Next, we include data on state intervention to identify banks in 
distress. A bank is defined to be in distress if it receives a 
capital injection by the state or participates in an asset relief 
program. The events are based on data from the European 
Commission with accompaniments market sources 
(Bloomberg and Reuters). As above, the events are defined to 
start from the time of announcement to the execution of the 
state support program. Finally, merged entities are defined to 

be in distress if either a parent receives state support within 12 
months after the merger, or if a merged entity has a coverage 
ratio below zero within 12 months before the merger. The 
reasoning behind only including this rule for mergers is that a 
single bank may still survive with a negative coverage ratio, 
whereas merged entities may have been forced to do so due to 
distress. The coverage ratio is calculated as the ratio of capital 
equity and loan reserves minus nonperforming loans to total 
assets. Merger data is obtained from Bankscope, and data for 
the coverage ratio is retrieved from Bloomberg. The events 
obtained are cross-checked using market sources (Reuters and 
Bloomberg) to avoid possible mismatches. The events are 
defined as to start when a merger occurs and to end when the 
parent receives state support, and to start when the coverage 
ratio falls below zero and to end when the merger occurs. 

CrisisModeler allows for arbitrary selection of the forecast 
horizon. For this case study, we use a forecast horizon of 8 
quarters, meaning that the binary pre-distress variable is 
defined as the value 1 in 1-8 quarters prior to the actual 
distress event as defined above, and 0 otherwise.  

The explanatory variables used are chosen from three 
separate classes following a micro-macro perspective with the 
aim to capture underlying vulnerabilities. In addition to bank-
specific balance-sheet and income-statement indicators, we 
complement the data with country-specific indicators for the 
banking sector, as well as with country-specific measures of 
macroeconomic and financial imbalances. The bank-specific 
indicators chosen account for all dimensions in the CAMELS 
rating system and are constructed using Bloomberg data. The 
banking-sector-specific indicators proxy for imbalances at the 
banking system level and are calculated using statistics from 
the Balance Sheet Items of the Monetary, Financial 
Institutions and Markets as obtained from the ECB. The third 

 

FIGURE 1. A SCREENSHOT OF CRISISMODELER 

921



and final category of variables consists of selected internal and 
external indicators of the EU Macroeconomic Imbalance 
Procedure (MIP) which identify country-specific macro-
economic imbalances. They are obtained from Eurostat and 
Bloomberg, complemented with house price indicators from 
the ECB.  

From the large number of indicators covering the above-
mentioned classes, we follow [24] in identifying the (twelve) 
most relevant with the LASSO (Least Absolute Shrinkage and 
Selection Operator, see Tibshirani [37]) procedure. These are 
presented ordered by class in Table I. This choice of variables 
leads to a data set with 9776 quarterly observations with no 
missing values, containing 292 distress observations and 1052 
pre-distress observations. 

TABLE I. VARIABLES 

Class Variable 

Bank 

Tangible capital to assets 
Interest expenses to liabilities 
Reserves to assets 

Sector 
Financial assets to GDP 
Mortgages to loans, 1-year change 
Securities to liabilities, 1-year change 

Macro 

Total credit to GDP 
Total credit to GDP, 3-year change 
House price deviation from trend 
International investment position to GDP 
Private sector debt to GDP 
10-year bond yield, 1-year change 

TABLE II. MODEL SELECTION 

Method Parameters 

Trees Complexity parameter = 0.01 

KNN k = 17 Distance = 4 
Random 

forest No. of trees = 20 No. of predictors sampled = 9 

NN No. of units = 100 Weight decay = 0.01 

SVM Gamma = 0.05 Cost = 15 
 

B. A horse race of modeling techniques 
As above discussed, we perform model selection with a 

grid search using the framework. This provides a set of 
optimal model parameters given the selected horizons and 
preferences. These optimal parameters are summarized in 
Table II. Following the reasoning that a positive signal is only 
a call for internal investigation and that the negative 
repercussions of false alarms are low, we assume the 
benchmark preference � to be 0.9. The recursive exercise, as 
outlined in Section II.B, is performed for all quarters from 
2007Q1 to 2013Q1. 

Table III shows the results of the recursive horse race with 
all six methods. It may firstly be noted that the more complex 
machine learning methods outperform methods designed for 
interpretability, namely classification trees and the 
conventional logit method, when ranked by descending 
Usefulness. The AUC for the top two methods, KNN and 
Random forest, is significantly higher than the rest, suggesting 
robust performance. 

C. Aggregating model output 
In addition to using a single technique or many techniques 

alongside each other, the logical next step is to aggregate the 
methods into one output. As outlined in Section II.B, we 
derive four ensembles, which consist of two averages 
(arithmetic mean and weighted mean) of all probabilities, as 
well as an in-sample best-of-method and finally an ensemble 
based on a majority vote. In CrisisModeler, the ensembles 
may be constructed based on any combination of the methods 
supported by the framework. In this case study, we use 
ensembles based on all six methods. The results of the 
ensemble horse race are shown in Table IV. In general, the 
ensembles perform well across the board. The voting 
ensemble has a higher bias towards false positives due to its 
construction as it signals distress based on positive signals 
from at least three methods. However its’ Usefulness is still 
the highest out of all ensembles. The best-of ensemble is 
identical to the Random forest method, which has experienced 
the best in-sample performance over all recursive quarters. For 
all probability-based ensembles, the AUC is also high (AUC 
cannot be calculated for the voting ensemble as it is not 
probabilistic). 

D. Varying model specifications 
CrisisModeler lends itself well to swift comparisons over 
different preferences or specifications, by varying one 
specification component from the benchmark and studying its 
effects on model output. Next, we study the robustness of our 
results by looking at two more interesting aspects of model 
specification; country-specific versus pooled models, and 
models trained using data of large banks versus small banks. 
As in the benchmark results of Tables III and IV, the 
decisionmaker’s preference � is 0.9.3 

1) Country-specific vs. pooled models: The notion of 
preferring pooled models (see e.g. Fuertes and Kalotychou 
[21]) originates from the desire to model a wide variety of 
crises, as well as the common shortage of distress events in 
individual countries. We compare the effects of the pooled 
models with their country-specific equivalents by first 
separating the signals of the recursive horse race by individual 
countries, and then recalculating their out-of-sample 
performance. For comparison, we then set up new country-
specific recursive horse races using only data from one 
country at a time. These are evaluated out-of-sample, and 
compared country-wise to the models which have been trained 
using the entire pooled data set. 

                                                           
3 We accompany the paper with a web appendix, in which we provide all 
tables for the results with varying model specifications. The web appendix can 
be found here: www.risklab.fi/cm.  

922



The data set comprises banks from 27 European countries, 
however, only nine countries are usable for performing the 
country-specific recursive horse races due to lack of data. Of 
these nine countries, we present the horse races of German 
and French banks in Tables A.I and A.II, and Tables A.III and 
A.IV, respectively. These countries each represent an 
adequately large sample, with 764 and 796 observations. For 
both countries, the un-pooled models outperform the pooled 
models. However, performance of the pooled models is 
generally good and country-specific models can only be 
computed for a few countries. 

2) Large vs. small banks: Using the same notion as above, 
we want to investigate the effects of models trained using data 
only from large or from small banks, compared to models 
trained using pooled data. The banks are split according to the 
median of a variable related to their size, resulting in two 
samples, with 155 small banks and 163 large banks. The out-
of-sample signals of the benchmark pooled models are 
separated into categories “large banks” and “small banks” and 
their performance is re-evaluated. These results are then 
compared to models trained using only data of large banks and 
data of small banks, respectively. 

The results of the horse races for small banks are shown in 
Tables A.V and A.VI in the Appendix, where the former is 
based on the benchmark pooled models, and the latter is the 
corresponding where data of small banks has been used for 
training of the models. The differences in Usefulness overall 
are minor between the two approaches, notably the SVM does 
not perform well in the models trained with small bank data 
(Table A.VI) and consequently affects the performance of the 
arithmetic mean ensemble. In general, the ensembles perform 
well. 

The corresponding results for large banks are shown in 
Tables A.VII and A.VIII in the Appendix, where the former is 
based on the pooled models and the latter trained using data 
from large banks only. The SVM does not perform well, 
probably due to an overfit, but when comparing the two tables 
over all other techniques there are only minor differences. It 
may be noted that the Usefulness values are slightly lower 
than both the benchmark results and the results for the small 
banks, suggesting that distress prediction of larger banks is 
more challenging for this sample. 

IV. CONCLUSION 
Despite a multitude of recent approaches for modeling 

financial crises, little attention has been given to generalizable 
modeling solutions, real-time implementations, thorough 
comparisons among methods and interactive interfaces to 
explore model output. This paper presented the CrisisModeler 
tool along with its underlying machinery – a fully-fledged 
modeling and evaluation framework targeted for early-
warning models – which is accessed through a web-based 
interface. Through this visual interface, CrisisModeler 
provides access to a large number of different modeling 
approaches and allows end-users to interactively manipulate 
parameters while observing how models and their output 
change. The paper stressed the underlying motivation of 
CrisisModeler – the streamlining of the numerous tasks and 
decisions related to the estimation and evaluation steps of the 
modeling process. Further, as the framework enables easy 
integration of new modeling approaches into pre-existing 
evaluations and visualizations, the tool lends itself particularly 
well to relative model comparisons given identical data, 
modeling and evaluations setups, thus supporting awareness, 
transparency and accountability. 

As a case study, we have applied CrisisModeler to a 
European bank-level data set with the goal of predicting bank 
distress. The used data set features low probability, high 
impact distress events, thus underlining the relevance of 
accounting for decisionmaker preferences when optimizing 
classifier thresholds. In addition to the horse race – allowing 
for direct comparison between different methods – the tool 
was used to investigate a few different setups, such as 
country-specific versus pooled models and the use of only 
small versus large banks for model training. The data set, 
spanning a relatively short period of time due to data 
availability, causes an ambiguous scenario where general 
performance is not optimal. This highlights the importance of 
interactive means for exploring model performance over 
different modeling specifications. Some methods were shown 
to perform slightly better than others, but notably the 
ensembles were consistently among best-in-class methods. For 
a selected sample of countries, we have shown that country-
specific models outperform pooled models in a bank-level 
setting, yet this is far from a generalizable feature. As an 

TABLE III.     RECURSIVE HORSE RACE

      Positives Negatives             
Method TP FP TN FN Precision Recall Precision Recall Accuracy FP rate FN rate Ua(�) Ur(�) AUC 
KNN 573 1108 4892 165 0.34 0.78 0.97 0.82 0.81 0.18 0.22 0.05 57 % 0.858 
Random forest 472 491 5509 266 0.49 0.64 0.95 0.92 0.89 0.08 0.36 0.05 52 % 0.870 
Neural network 452 1127 4873 286 0.29 0.61 0.94 0.81 0.79 0.19 0.39 0.03 38 % 0.788 
SVM 497 1639 4361 241 0.23 0.67 0.95 0.73 0.72 0.27 0.33 0.03 37 % 0.781 
Logit 471 1518 4482 267 0.24 0.64 0.94 0.75 0.74 0.25 0.36 0.03 35 % 0.788 
Trees 352 956 5044 386 0.27 0.48 0.93 0.84 0.80 0.16 0.52 0.02 26 % 0.636 

TABLE IV.      RECURSIVE HORSE RACE, ENSEMBLES 

      Positives Negatives             
Method TP FP TN FN Precision Recall Precision Recall Accuracy FP rate FN rate Ua(�) Ur(�) AUC 
Voting  547 1063 4937 191 0.34 0.74 0.96 0.82 0.81 0.18 0.26 0.05 54 % NA 
Best-of  472 491 5509 266 0.49 0.64 0.95 0.92 0.89 0.08 0.36 0.05 52 % 0.870 
Weighted  499 942 5058 239 0.35 0.68 0.95 0.84 0.82 0.16 0.32 0.04 48 % 0.857 
Non-weighted 486 882 5118 252 0.36 0.66 0.95 0.85 0.83 0.15 0.34 0.04 48 % 0.851 
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application of the CrisisModeler tool, this case study 
illustrated the versatility and suitability of the tool for 
supporting exploration and communication of models for 
crisis predictions. 
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