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Abstract—This research focuses on two problems. First, we
investigate the prediction of social media users’ spatial trajec-
tories. Recent work on this task has focused on the use of
cellular network traces and location-based social network services
such as Foursquare, all of which emit structured geospatial
information (e.g., cellular tower identifiers, GPS coordinates, and
venue identifiers). Less attention has been paid to the rich textual
content that users often publish in tandem with the structured
information. We investigate methods of integrating textual content
into existing next-place prediction models, and we demonstrate
a significant improvement in next-place prediction compared to
several baselines derived from published research. Second, we
examine the correlation between these next-place predictions and
the occurrence of crimes in a major United States city, with the
goal of aiding future research into automatic crime prediction.

I. INTRODUCTION

Crimes are more likely to happen at the space-time conflu-
ence of attackers, victims, and absence of protective elements
[23], [28]. Thus, being able to predict individuals’ movement
patterns could be a useful aspect of effective crime prediction
and policing. This paper presents research on automatically
predicting users’ spatial trajectories, a problem known as next-
place prediction [1]. Services such as Foursquare and Facebook
Places allow users to “check in” at venues and broadcast this
information to their social network. Most recent work on next-
place prediction has used these check-ins to predict users’
next-place trajectories. This work, which will be reviewed
in more detail in Section II, has largely ignored the rich
textual content of social media posts, which we hypothesize
can substantially improve the accuracy of next-place prediction
models. Specifically, our first hypothesis is as follows:

e HI: An individual’s future venue trajectory correlates

with his or her historical tweets.

Twitter has strong potential in predicting and describing
election results [29], natural disasters [30] and crime [15],
[32]. Thus, we propose to investigate the correlation between
our text-enriched next-place predictions and the occurrence of
crimes. Specifically, our hypothesis is as follows:

e H2: Crime rates correlate with the density of users’

movement trajectories in the same area.

The primary challenge in using Twitter for next-place pre-
diction and crime prediction is that the textual content of tweets
does not typically bear any overt connection with geospatial
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locations. Occasionally, a user will mention a specific address
or business, or the user will attach a Foursquare check-in to
their tweet. More often, indicators of future movement are
left implicit. Consider the following tweets, which demonstrate
these cases:

Mention of a specific address: Thanks to the “lady”
at 3737 North Western Avenue, I’ll never order Pete’s
Pizza again. And @GrubHub, done with you.

Foursquare check-in: Check out ESPNChicago -
#StateStreetStudio (190 N State St, at Lake St,
Chicago) on @foursquare: http://t.co/PnFFbkTQ3m

Implicit trajectory hint: @joshua_ocampoo: I'm hun-
ery

The primary contribution of this research is to address posts
such as the third one above (implicit). In this case, we are
uncertain about the user’s future spatial trajectory, but the tex-
tual content presents information that might imply movement
of the user from his or her current location to a local dining
establishment.

We present two models for text-enriched next-place pre-
diction. The first predicts the type of venue (e.g., restaurant
or transport hub) the user will visit next. The second predicts
how far the user will be from each type of venue (e.g., 100m
from a restaurant and 3500m from a transport hub). We then
test the correlation between predicted concentrations of users
at these venue types and the occurrence of future crimes at
such venues. Thus, our contribution is twofold:

e We develop and test a text-enriched model for next-
place prediction based on social media posts.
e We formally test the correlation between next-place

concentrations and the occurrence of actual future
crimes in a large United States city.

This paper is structured as follows: in Section II, we review
research on next-place and crime prediction. In Section III, we
describe our data sources and preparation steps. In Sections
IV and V, we describe our models and results for next-place
prediction. In Section VI, we examine the correlation between
next-place trajectories and crime, and we move toward a better
crime prediction model in Section VII. In Section VIII, we
conclude with a summary of our research and ideas for future
work.
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II. RELATED WORK

A. Next-Place Prediction

In general, there are two types of work in this area. First
is the prediction of an individual’s home location, motivated
by the fact that few users post their locations in social media
[9]. The current work in home prediction uses content from
social media check-ins [9], [18], [2]. Second is the prediction
of an individual’s location at any time, which is the focus
of our work. Most work utilizing mobile network data such
as location information from GPS sensors or WiFi focuses
on movement trajectories. There are a variety of applications
for next-place prediction, including mobile advertising [3] and
disaster relief [17].

Researchers have investigated many explanatory variables
for next-place prediction, including cell phone data usage
[24], [21], [10], visiting frequency and contextual information
from smart phone sensors [11]. Also, with the rapid growth
of location-based social networks (LBSN), researchers have
used check-in patterns to predict the next check-in. In [25],
researchers further investigated the problem by using a set of
features describing users’ movement patterns. Moreover, re-
searchers have measured and compared the similarity between
different users in social media for next-place prediction by
collaborative filtering [20].

Researchers have proposed a variety of algorithms for next-
place prediction, but most focus on classification [21] and
Markov-based models [10]. In order to more carefully consider
movement patterns, [12] extend the traditional Markov model
to Mobility Markov Chain which demonstrates improved pre-
dictive performance. Researchers have investigated the use
of social ties in social media to predict check-in patterns
[13]. Researchers have also developed location-based recom-
mendation systems using venue review and check-in histories
[19]. Lastly, researchers have incorporated time into spatial
prediction models [27], [14].

B. Crime Prediction

The criminological theory of routine activities suggests
that crime is likely to occur at the space-time confluence of
offenders, targets, and the absence of capable guardians [28].
Traditional hot-spot maps [6] produce retrospective visualiza-
tions of crimes, which can be predictive of future crime in
cases where the occurrence of crime is stationary in space.
Other research [15] integrates layers of geospatial information
with historical crime records to improve these predictions.
The present research provides preliminary evidence that these
models could be further improved by including predicted
concentrations of users at various venue types.

III. DATA PREPARATION

We choose to use Twitter content for next-place prediction
because Twitter users often provide clues about their daily
activities using this platform. We prepared the data in three
steps: tweet collection, tweet preprocessing, and matching
tweets with Foursquare venues.
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TABLE L. DISTANCE BETWEEN EACH GEOTAGGED TWEET AND THEIR
NEAREST VENUE (M)
[ Average [ Standard Deviation [ Max [ Min |
[ 5843 | 60.18 [ 276847 [ 0 |

A. Tweets and Foursquare Venues Collection

We extracted geotagged tweets from Twitter and obtained
typed venue locations from Foursquare. We collected geo-
tagged tweets with textual contents, user ID and geograph-
ical coordinates of longitude and latitude through Twitter’s
streaming API. All geotagged tweets are taken within the city
boundary of Chicago, Illinois, USA in January 2014. We re-
tained users who posted at least 20 tweets in this month. Thus,
there are 1,233,076 tweets from 9,567 users in our data set.
The venues in Chicago are extracted from check-in histories
on Foursquare, which include the following ten categories:
Travel & Transport, Food, Residence, Outdoor & Recreation,
Professional & Other Places, Arts & Entertainment, Nightlife
Spot, College & University, Shop Services and Event. In total,
there are 224,124 venues in Chicago.

B. Tweet Preprocessing

We first apply part of speech (POS) tagging using the
TweetNLP tool configured with 25 coarse POS tags [16].
We apply Tweet NLP to tokenize the textual content and
tag the tokens. Since tweets are informal and short, we filter
the text contents by removing the following parts-of-speech:
determiner, postposition, coordinating conjunction, predeter-
minters, punctuation and numeral. Then we removed stop
words according to the list provided by [5]. We also tagged
@ symbols for replies and mentions in tweets, which identify
social relationships within the data.

C. Matching Tweets with Foursquare Venues

To fill the gap between tweets and the physical environment
for the next-place prediction problem, we propose two ways
to anchor tweets to the physical environment:

e Nearest venue type (categorical)

e Minimum distance to each venue type (continuous)
We matched each observed geotagged tweet with the type of
its nearest venue from Foursquare and calculated the distance
between the tweet and venue. These values constitute the
responses for our two next-place prediction problems (nearest
venue type and distance to all venue types, respectively).

IV. NEXT-PLACE PREDICTION PROBLEM

In this section, we present our approaches for incorporating
textual content into next-place prediction models. When an
individual posts a tweet, we define the next-place prediction
problem as the task of predicting the location where this
individual will post his or her next tweet. We formulate the
next-place prediction problem in two ways: predicting the
nearest venue type and predicting distances to each type of
venue.



A. Text-Enriched Classification Model

Our text-enriched classification model predicts each user’s
nearest next venue type. The model has two parts. First is a
binary classification model to determine whether an individual
will maintain the current nearest venue type or move such
that a different venue type becomes the nearest. Second, for
users predicted to transition to a new venue type, we build a
multivariate classification model to predict the venue type that
will become nearest. The general forms of these models are:

Stepl : P(cpy1 = cnlx) = F(f1, fo, ey fn),
StepQ : P(Cn+1 = V|X) = F(f17f27 ----’fn)

where x = ¢y, ¢a, ..., ¢y, 1S the user’s visiting history and ¢, 41
is the next venue type. For each ¢; in X, ¢; is a venue type,
rather than a particular venue instance. Predictor variables
f1, foy ..., fn are the features extracted from historical venue
trajectories and tweets associated with the user. We model each
of the above classification problems with linear support vector
machines implemented by LibLinear [7]. We have studied two
classification models, which are the Text-Enriched Model and
the Text-Enriched with @-link Model.

1) Text-Enriched Model: We extract features from the
textual content of a user’s tweets and the locations of these
tweets to build the Text-Enriched Model.

e  Hypothesis: Individuals’ historical textual content cor-

relates with his or her future venue trajectory.

Under this hypothesis, f; is the current venue type and
fo, f3, ..., fn are TE-IDF features from textual content of the
user’s recent tweets so that the general forms of the models
become

Stepl : P(cnt1 = culX) = F(cn, tfidf (tn)),
Step2 : P(cp1 = Vv|x) = F(cn, tfidf (tn)),

where  is defined as the historical visiting history, ¢,y is
the next venue type, ¢, is the tweet posted from the current
venue, and tfidf(t,) is the set of features extracted from
the current tweet’s textual content. Features extracted from
textual contents are represented with Term Frequency Inverse
Document Frequency (TF-IDF) as a vector space model, where
the IDF component is calculated from all historical tweets.

2) Text-Enriched with @-link Model: The Text-Enriched
with @-link Model extends the Text-Enriched Model with
features extracted from tweets that mention the current user.
This model starts with the feature set described above for
the Text-Enriched Model, and it adds to this set features that
capture the following hypothesis:

e  Hypothesis: The current user’s next location will
correlate with the location of other users who have

recently mentioned the current user.

Intuitively, users might travel to locations where their friends
are located. We use the @-link in tweets to capture a rough
notion of friendship. For each tweet, there are two groups
of features. The first is the set used by the Text-Enriched
Model, which includes the current venue type and the TF-IDF
features. Features from the second group are extracted from
other tweets that mention the current user: f, 11, ...f2, are the
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venue type and TF-IDF features extracted from recent tweets
that mention the current user. From all the venue types within
tweets mentioning the current user, we use the venue type that
is most recent as the value of f, 1. The general form of this
model as follows:

Stepl . P(qu+1 = Cn|X) - F(C'mtfidf(tn)v m(u))’

Step2 : P(cp+1 = v|x) = F(cn, tfidf (t,), m(u)),

where m,, is set of features extracted from recent tweets that
mention the current user.

B. Text-Retrieval Model

Intuitively, tweets posted near the same venue type should
contain similar textual content. Thus, it should be possible
to retrieve tweets corresponding to a venue type based on
textual content. We build a collection of documents, one for
each venue instance in the city. If we consider a user’s current
tweet as a query against this document collection, then the
top-ranked document with respect to this query might be the
user’s targeted next place. For example, if the user mentions
food in his or her tweet, this would presumably match tweets
from food establishments, leading to a prediction of Food as
this user’s next venue type.

We implemented the above ideas with a simple vector space
model of individual tweets (queries) and documents derived
from tweets posted at particular venues. We used the BM25
[26] query model, which is defined as follows:

f(gi, D) - (ki +1)
f(@i, D)+ k- (1—b+b-

|D]
avgdl

n
score(q, D) = Z IDF(q;)-
i=1

where g is the textual content of a tweet, and D is the collection
of historical tweets in one venue type. We will get a score
for the tweet and the document for each specified venue. For
any words ¢; in ¢, we get f(g;, D) as term frequency in the
document and IDF(g;) is inverse document frequency for
the query term. | D | is the length of document D, avggl
is the average document length in all venues. k£, and b are free
parameters. Without further optimization, we set k1 = 1.5 and
b = 0.75 [22]. The venue type with the highest score will be
the output of the Text-Retrieval Model.

C. Text-Enriched Regression Model

The features and formulation of the Text-Enriched Re-
gression Model are similar to those of the Text-Enriched
Classification Model, except that the response is vector of
continuous distances, one for each venue type. The general
form of the regression model is,

y = Flen, tfidf (tn), m(u))f + €,

where,
Y1 B1 €1
Y2 B2 €2
Yy = . 7ﬂ = . , € = . 3
Y10 B1o €10



F(cn, tfidf (tn), m(u))

The FT are feature vectors capturing the user’s nearest dis-
tance to each venue type and features from textual content. We
build two regression models. The first is a main effects model
that uses all of these features, and the second is a model that
contains interaction terms for the venue distances.

D. Baseline Models

To evaluate the classification-based approaches for next-
venue prediction, we built baseline models chosen from state-
of-the-art published research.

1) Most Frequent Check-in Model: [8] showed that check-
in frequency is the strongest predictor of users’ next locations.
We use this as our first baseline model. Considering each
user’s check-in history, the model generates a probabilistic
distribution on venue types based on the visiting history. For
the next location v, the probability is defined as,

_ # check —ins tov
" # total check —ins

P(Cn-l—l = V|X)

2) Markov Model: Gambs et al. propose to address the
problem by developing a Markov model to incorporate the
k previously visited locations [12]. The Markov Model with
order 2 performed the best in their experiments. In our exper-
iments, we take both order-1 and order-2 as baseline models
and the Most Frequent Check-in Model is the Order-0 Markov
Model.

3) Classification Model with Historical Visiting Informa-
tion: In [4], multiple algorithms were compared in the predic-
tion of next-place with mobility data. The authors showed that
the historical visiting frequency to each venue is useful for
next-place prediction. Thus, we use a support vector machine
to build a baseline classification model with features quan-
tifying the historical visiting frequency to each venue type.
The comparison between this classification model and our text-
enriched model shows whether these features are useful.

Since the regression approach to distance prediction is new,
a previously developed baseline does not exist. As a baseline
for the regression models, we used the average distance from
each venue type as the baseline prediction. We computed the
average distance in the following way: We first calculate the
distance to each venue type for all historical tweets. Then we
get the average distance from the distances in these tweets.

V. NEXT-PLACE PREDICTION RESULTS AND DISCUSSION

We measure the performance of our models as follows. For
the prediction of nearest venue type, we define the prediction
accuracy to be the ratio of the number of correct predictions
and the total number of predictions:

Number of Correct Predcitions
Total Number of Predictions

For all experiments, we use the first 20 days in January,
2014 to train the model and the final 11 days to evaluate the

PredictionAccuracy =
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TABLE II. RESULTS FOR NEXT-VENUE-TYPE CLASSIFICATION.

MODELS WITH * ARE BASELINE MODELS

Models Prediction ~ Accuracy
(95% confidence
interval)

Most Frequent Check-in Model* [8] (0.5886,0.5915)

Order-1 Markov Model* [12]

Order-2 Markov Model* [4]
Classification model with historical
visiting information*

Text-enriched Model

Text-enriched with @-link model

(0.5575, 0.575%)
(0.5282, 0.5661)
(0.6333, 0.6476)

(0.7122, 0.7158)
(0.7098, 0.7130)

TABLE III. TEXT-RETRIEVAL MODEL PREDICTION ACCURACY

Current Visiting Venue
0.1241

Next Visiting Venue
0.1321

performance of the model. Table II shows the results. We used
bootstrapping to obtain the 95% confidence interval for each
accuracy score. In our experiments, the Text-Enriched Model
and the Text-Enriched with @-link Model produce statistically
similar results. They both have better performance than the
state-of-the-art baselines that we implemented.

The results in Table II support our hypothesis (H1) that
the content of geotagged tweets correlates with users’ future
venue trajectories. The text-enriched model demonstrates bet-
ter prediction performance than the classification model that
uses historical venue trajectories. Although most users do not
overtly mention their intent to move to a new venue type,
they do reveal clues about this movement in the words of
their messages. Extracting information pertaining to social
relationships from @ mentions in tweets did not improve the
text-enriched model, suggesting that people’s movement plans
may not be influenced by the textual content of messages
posted by their network peers.

Table III shows the performance of the Text-Retrieval
Model, which retrieves a venue type based on the similarity
between the user’s tweet and tweets posted from each venue
type. We evaluated the accuracy of this model to determine
whether the textual content of tweets correlates more with a
user’s current location or next location. We find that the textual
content of users’ tweets correlates more strongly with their
next venue type instead of their current venue type. These
results suggest that the Text-Enriched Model of next-venue
classification might be improved in the future by incorporating
a measure of similarity between a user’s current tweet with
tweets that have been posted from various venues (we leave
this model for future work).

TABLE IV. REGRESSION MODEL (MSE)

Venue Types MSE MSE (Main | MSE (interac-
(Baseline) Effects) tion)

Transport 37365 10460 10262
Food 30433 12073 11795
Residence 26861 9831 9650
Recreation 30091 10665 10416
Professional 16127 8693 8450
Entertain 85713 18727 18443
Nightlife 40084 12482 12148
University 131126 26570 26404
Shop 20734 9233 9077
Event 745612 141189 140985




We used Mean Squared Error (MSE) as the performance
metric for the venue-distance regression models. Table IV
shows MSE results for the regression models on each of the
10 venue types in our data. We found that the University &
College and Event venue types performed the worst, both in the
baseline as well as the regression models. These venue types
are typically concentrated in small areas of the city. As a result,
tweets are often posted at great distances from these venue
types, making accurate prediction a difficult task. However,
both the main effects and interaction regression models showed
improved performance in predicting the distances to venue
types compared to the baseline model. These results support
our hypothesis (H1), indicating that individuals’ historical
textual content correlates with the physical environment of
his/her future trajectory. The regression model with interaction
terms performs slightly better than the main effects model for
each venue type. This suggests possible correlation between
venue type distances, which is consistent with the intuition that
certain venue types cluster together (e.g., food and shopping).

VI. CORRELATION ANALYSIS OF CRIMES AND
NEXT-PLACE PREDICTIONS

We hypothesized (H2) that crime counts would correlate
with the predicted concentration of users at various venue
types. This section presents analysis and results for this hy-
pothesis.

A. Methodology

Users’ movement patterns are defined as the predicted
concentration of users at each venue type. When an individual
posts one tweet, his/her movement pattern is the movement
from the current location to the next location where a tweet
is posted. We utilize the output of the next-place classifier to
determine the concentration of users at their next venue types.
For each venue type, we define the predicted occupants as
follows:

Pre(p) = {c1(p), c2(p), ...c1o(p) }

where p is a spatial point in a grid of evenly spaced 2000-
meter squares across the city, ¢;(p) is the count of predicted
occupants for venue type % within the 2000-meter square that
covers p. We performed these calculations at all points on every
hour in January, 2015 in Chicago.

For crimes, we collected all records from Jan 1, 2014 - Jan
31, 2014 from the Chicago Data Portal. There are 25 crime
types including 19,691 instances in total. Table V shows the
crime count for each type in the city from January 2014. For
the purposes of our study, we retained crime types with at
least 1,000 instances. Similar to the next-place concentrations
described above, we count the frequency of each crime type
within a grid of 2000-meter squares that cover the city, on an
hourly basis. These squares are identical to the squares used
for next-place concentrations, allowing us to calculate basic
correlation statistics as follows.

With the paired counts of crimes and users’ movements to
each venue type, we calculate the correlation between crime
count and venue type occupancy. We used Pearson’s Product
Moment Correlation:
cov(z,y)

cor(x,y) = pg
x0y
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TABLE V. COUNT OF CRIMES IN CHICAGO, JANUARY 2014
Crime Type Count
Gambling 1
Stalking 7
Intimidation 10
Kidnapping 20
Homicide 20
Arson 21
Liquor Law Violation 31
Sex Offense 65
Prostitute 68
Crime Sexual Assault 81
Interference with the Public Officer 90
Public Peace Violation 169
Weapon Violation 201
Offense Involving Children 230
Criminal Trespass 575
Robbery 797
Motor Cycle Violation 806
Burglary 1134
Assault 1036
Deceptive Practice 1138
Other Offense 1407
Criminal Damage 1789
Narcotics 2222
Battery 3335
Theft 4438

TABLE VI. CORRELATION SCORES WITH ASSAULT, * ARE WITH
BASELINE FEATURES
Features Correlation p-value
Distance to Schools * -0.032 0.000
Distance to Small Business * -0.007 0.000
Arts and Entertainment 0.023 0.000
College and University 0.029 0.000
Event -0.002 0.744
Food 0.026 0.000
Night Life Spot 0.011 0.048
Outdoors and Recreation 0.016 0.003
Professional and Other Places 0.035 0.000
Residence 0.024 0.000
Shop and Services 0.026 0.000
Travel and Transport 0.010 0.063

We calculated this correlation for ground-truth next-place
trajectories as well as the predicted next-place trajectories
from our Text-Enriched Classification Model. We estimated the
exact p-value via the asymptotic ¢ approximation to evaluate
the significance of the correlation. The null hypothesis is that
there is no correlation between crime count and venue type
occupancy.

B. Results and Discussion

The results of our analysis are shown in Tables VI through
XIV, where each table shows the correlation between crime

TABLE VIIL CORRELATION SCORES WITH BATTERY, * ARE WITH
BASELINE FEATURES
Features Correlation p-value
Distance to Schools * -0.055 0.000
Distance to Small Business * -0.041 0.000
Arts and Entertainment 0.006 0.240
College and University 0.005 0.346
Event -0.003 0.522
Food 0.017 0.002
Night Life Spot 0.009 0.093
Outdoors and Recreation 0.013 0.016
Professional and Other Places 0.030 0.000
Residence 0.012 0.027
Shop and Services 0.018 0.001
Travel and Transport 0.012 0.022




TABLE VIII. CORRELATION SCORES WITH BURGLARY, * ARE WITH
BASELINE FEATURES
Features Correlation p-value
Distance to Schools * -0.035 0.000
Distance to Small Business * -0.033 0.000
Arts and Entertainment 0.005 0.318
College and University -0.005 0.367
Event -0.003 0.517
Food 0.001 0.813
Night Life Spot 0.005 0.388
Outdoors and Recreation -0.004 0.472
Professional and Other Places -0.004 0.418
Residence 0.007 0.170
Shop and Services 0.014 0.012
Travel and Transport -0.002 0.659

TABLE IX. CORRELATION SCORES WITH CRIMINAL DAMAGE, * ARE
WITH BASELINE FEATURES
Features Correlation p-value
Distance to Schools * -0.040 0.000
Distance to Small Business * -0.033 0.000
Arts and Entertainment 0.018 0.001
College and University 0.009 0.091
Event 0.001 0.822
Food 0.007 0.201
Night Life Spot 0.006 0.231
Outdoors and Recreation 0.002 0.748
Professional and Other Places 0.021 0.000
Residence 0.012 0.068
Shop and Services 0.013 0.000
Travel and Transport 0.007 0.306

counts and predicted concentrations of users at the various
venue types. Across the tables, we see that many crime types
have significant correlations with predicted venue occupancy
concentrations (indicated by p-values). The significant corre-
lations support our hypothesis that crime is correlated with
transition among venue types. For example, the occurrence
of burglaries (Table VIII) is positively correlated with the
transition of users to Shop & Services destinations. At this
point in our work, we are not clear on the causal mechanism
that underlies this correlation; however, it is consistent with
the intuition that burglaries are prevalent in places where
residents have left their homes, e.g., to travel to shopping or
service centers. We also noticed that transitions to Residence
and Professional & Other Places are informative in almost all
types of crimes, suggesting an increase in general activity is
correlated with crime count. However, the best approach for
integrating these features into a full crime prediction system
[15] remains an open question for future work.

From Tables VI - XIV, we should also note that most
correlation scores are positive. These results are consistent

TABLE X. CORRELATION SCORES WITH DECEPTIVE PRACTICE, *
ARE WITH BASELINE FEATURES
Features Correlation p-value
Distance to Schools * -0.028 0.000
Distance to Small Business * -0.037 0.000
Arts and Entertainment 0.063 0.000
College and University 0.114 0.000
Event 0.000 0.948
Food 0.048 0.000
Night Life Spot 0.032 0.000
Outdoors and Recreation 0.047 0.000
Professional and Other Places 0.095 0.000
Residence 0.037 0.000
Shop and Services 0.053 0.000
Travel and Transport 0.064 0.000
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TABLE XI. CORRELATION SCORES WITH NARCOTICS, * ARE WITH
BASELINE FEATURES
Features Correlation p-value
Distance to Schools * -0.054 0.000
Distance to Small Business * -0.029 0.000
Arts and Entertainment 0.006 0.261
College and University -0.012 0.024
Event -0.004 0.483
Food 0.013 0.017
Night Life Spot 0.006 0.286
Outdoors and Recreation 0.006 0.239
Professional and Other Places .039 0.000
Residence 0.010 0.068
Shop and Services 0.025 0.000
Travel and Transport -0.006 0.306

TABLE XII. CORRELATION SCORES WITH THEFT, * ARE WITH
BASELINE FEATURES

Features Correlation p-value
Distance to Schools * -0.058 0.000
Distance to Small Business * -0.069 0.000
Arts and Entertainment 0.058 0.000
College and University 0.106 0.000
Event 0.000 0.981
Food 0.066 0.000
Night Life Spot 0.059 0.000
Outdoors and Recreation 0.050 0.000
Professional and Other Places 0.112 0.000
Residence 0.047 0.000
Shop and Services 0.072 0.000
Travel and Transport 0.064 0.000

with the hypothesis that mere concentration of individuals,
regardless of the venue type, increases risk of crime. The
only exception to this observation is Narcotics (Table XI)
and its negative correlation with transitions to College and
University venues. One possible explanation for this is the
increased security presence at such venues, which could deter
such activity.

Based on our results, we also note that certain venue types
exhibited similar correlation scores. For example, Food and
Night Light Spot venue types show similar correlations across
many crime types. One possible explanation for this is the
spatial correlation of venue types: Food and Night Life Spots
are often located near each other.

VII. TOWARD A BETTER CRIME PREDICTION MODEL

Having demonstrated an ability to predict the types of
next venues as well as statistically significant correlations
between next-place occupancy patterns and crime rates, we
sought to move closer to a full crime prediction model such
as the one developed by [15]. We laid points down across the

TABLE XIII. CORRELATION SCORES WITH OTHER OFFENSE, * ARE
WITH BASELINE FEATURES
Features Correlation p-value
Distance to Schools * -0.020 0.000
Distance to Small Business * -0.027 0.000
Arts and Entertainment 0.011 0.044
College and University 0.007 0.176
Event -0.001 0.830
Food 0.012 0.021
Night Life Spot 0.001 0.875
Outdoors and Recreation 0.006 0.239
Professional and Other Places 0.024 0.000
Residence 0.024 0.000
Shop and Services 0.008 0.155
Travel and Transport 0.008 0.152




TABLE XIV. CRIME PREDICTION WITH NEXT VISITING VENUE
COUNT
Result All Crimes
Accuracy 0.3456
Precision 0.1623
Recall 0.8006
F1 0.1349

city boundary of Chicago, evenly spaced points at 2000-meter
intervals. The label for point p is true if, in the past one
hour, a crime occurred in the square covering p; otherwise,
the label for point p is false. Thus, we established a binary
classification problem for differentiating areas with crime from
those without crime on an hourly basis. The general form of
this classification problem is as follows:

Label(p)|c1(p), ca(p), ...c10(p)

where features ¢ (p), c2(p), ...c10(p) come from our next-place
prediction models and represent concentrations of users at the
10 venue types. We used support vector machines to optimize
the weights of the venue types [7].

Table XIV shows classification performance for the SVM
described above. As shown, by only examining the predicted
concentrations of individuals at the 10 venue types, the SVM
classifier is able to differentiate crime from non-crime points
with an accuracy of 35%. Thus, we believe that overall crime
prediction performance might be improved by incorporating
c1(p), ca(p), ...c10(p) into a fuller model of crime that controls
for many other spatiotemporal explanatory variables [31].

VIII. CONCLUSION AND FUTURE WORK

Our experimental results support our hypotheses: We find
that the textual content of tweets improves next-place predic-
tion compared with baselines that do not consider tweets’ tex-
tual content. We further find evidence of correlation between
predicted next-place concentrations at various venue types and
the occurrence of crime.

Future work should consider a few major aspects of these
problems. It would be interesting to give further consideration
to the network of relationships present in the Twitter data.
In our experiments, we did not find benefit in using the @-
link information for next-place prediction, but this was just
a preliminary model and we believe that further investiga-
tion might uncover interesting correlations between the venue
trajectories of users’ friends and the users’ themselves. In
the venue distance regression setting, one might expect to
observe correlations between distances to certain venue types.
For example, one might expect to see restaurants near arts &
entertainment venues. Thus, the prediction of a user’s future
distances to such venue types should be constrained to take
such correlations into account. Regarding crime, we have
found preliminary evidence of correlation between predicted
next-places and the occurrence of crime; however, we have
yet to incorporate these correlations into a full crime prediction
model, such as the ones described by [15].

REFERENCES

[1] D. Ashbrook and T. Starner. Learning significant locations and pre-

dicting user movement with gps. In Wearable Computers, 2002.(ISWC

947

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

2002). Proceedings. Sixth International Symposium on, pages 101-108.
1EEE, 2002.

L. Backstrom, E. Sun, and C. Marlow. Find me if you can: improving
geographical prediction with social and spatial proximity. In Proceed-
ings of the 19th international conference on World wide web, pages
61-70. ACM, 2010.

S. J. Barnes and E. Scornavacca. Mobile marketing: the role of permis-
sion and acceptance. International Journal of Mobile Communications,
2(2):128-139, 2004.

P. Baumann, W. Kleiminger, and S. Santini. The influence of temporal
and spatial features on the performance of next-place prediction algo-
rithms. In Proceedings of the 2013 ACM international joint conference
on Pervasive and ubiquitous computing, pages 449-458. ACM, 2013.

S. Bird, E. Klein, and E. Loper. Natural language processing with
Python. ” O’Reilly Media, Inc.”, 2009.

S. Chainey, L. Tompson, and S. Uhlig. The utility of hotspot mapping
for predicting spatial patterns of crime. Security Journal, 21(1):4-28,
2008.

C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector
machines. ACM Transactions on Intelligent Systems and Technology,
2:27:1-27:27, 2011. Software available at http://www.csie.ntu.edu.tw/
~cjlin/libsvm.

J. Chang and E. Sun. Location 3: How users share and respond to
location-based data on social networking sites. In Proceedings of the
Fifth International AAAI Conference on Weblogs and Social Media,
pages 74-80, 2011.

Z. Cheng, J. Caverlee, and K. Lee. You are where you tweet: a
content-based approach to geo-locating twitter users. In Proceedings of
the 19th ACM international conference on Information and knowledge
management, pages 759-768. ACM, 2010.

T. M. T. Do and D. Gatica-Perez. Contextual conditional models
for smartphone-based human mobility prediction. In Proceedings of
the 2012 ACM Conference on Ubiquitous Computing, pages 163-172.
ACM, 2012.

T. M. T. Do and D. Gatica-Perez. Where and what: Using smartphones
to predict next locations and applications in daily life. Pervasive and
Mobile Computing, 12:79-91, 2014.

S. Gambs, M.-O. Killjjian, and M. N. del Prado Cortez. Next place
prediction using mobility markov chains. In Proceedings of the First
Workshop on Measurement, Privacy, and Mobility, page 3. ACM, 2012.

H. Gao, J. Tang, and H. Liu. Exploring social-historical ties on location-
based social networks. In ICWSM, 2012.

H. Gao, J. Tang, and H. Liu. Mobile location prediction in spatio-
temporal context. In Nokia mobile data challenge workshop. Citeseer,
2012.

M. S. Gerber. Predicting crime using twitter and kernel density
estimation. Decision Support Systems, 61:115-125, 2014.

K. Gimpel, N. Schneider, B. O’Connor, D. Das, D. Mills, J. Eisenstein,
M. Heilman, D. Yogatama, J. Flanigan, and N. A. Smith. Part-of-speech
tagging for twitter: Annotation, features, and experiments. In Proceed-
ings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies: short papers-Volume 2,
pages 42-47. Association for Computational Linguistics, 2011.

M. F. Goodchild and J. A. Glennon. Crowdsourcing geographic
information for disaster response: a research frontier. International
Journal of Digital Earth, 3(3):231-241, 2010.

B. Hecht, L. Hong, B. Suh, and E. H. Chi. Tweets from justin bieber’s
heart: the dynamics of the location field in user profiles. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems,
pages 237-246. ACM, 2011.

D. Jiang, X. Guo, Y. Gao, J. Liu, H. Li, and J. Cheng. Locations
recommendation based on check-in data from location-based social
network. In Geoinformatics (Geolnformatics), 2014 22nd International
Conference on, pages 1-4. IEEE, 2014.

D. Lian, V. W. Zheng, and X. Xie. Collaborative filtering meets next
check-in location prediction. In Proceedings of the 22nd international
conference on World Wide Web companion, pages 231-232. Interna-
tional World Wide Web Conferences Steering Committee, 2013.

Z. Lu, Y. Zhu, V. W. Zheng, and Q. Yang. Next place prediction by
learning with multiple models.



[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

C. D. Manning, P. Raghavan, H. Schiitze, et al. Introduction to
information retrieval, volume 1. Cambridge university press Cambridge,
2008.

F. Mir6. Routine activity theory. The Encyclopedia of Theoretical
Criminology, 2014.

A. Monreale, F. Pinelli, R. Trasarti, and F. Giannotti. Wherenext: a
location predictor on trajectory pattern mining. In Proceedings of the
15th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 637-646. ACM, 2009.

A. Noulas, S. Scellato, N. Lathia, and C. Mascolo. Mining user mobility
features for next place prediction in location-based services. In /ICDM,
volume 12, pages 1038-1043. Citeseer, 2012.

S. Robertson and H. Zaragoza. The probabilistic relevance framework:
BM?25 and beyond. Now Publishers Inc, 2009.

S. Scellato, M. Musolesi, C. Mascolo, V. Latora, and A. T. Campbell.
Nextplace: a spatio-temporal prediction framework for pervasive sys-
tems. In Pervasive Computing, pages 152-169. Springer, 2011.

L. W. Sherman, P. R. Gartin, and M. E. Buerger. Hot spots of predatory
crime: Routine activities and the criminology of place*. Criminology,
27(1):27-56, 1989.

A. Tumasjan, T. O. Sprenger, P. G. Sandner, and I. M. Welpe. Predicting
elections with twitter: What 140 characters reveal about political
sentiment. ICWSM, 10:178-185, 2010.

S. Vieweg, A. L. Hughes, K. Starbird, and L. Palen. Microblogging
during two natural hazards events: what twitter may contribute to
situational awareness. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pages 1079-1088. ACM, 2010.

X. Wang and D. Brown. The spatio-temporal generalized additive model
for criminal incidents. In Intelligence and Security Informatics (1SI),
2011 IEEE International Conference on, pages 42-47. IEEE, 2011.

X. Wang, M. S. Gerber, and D. E. Brown. Automatic crime pre-
diction using events extracted from twitter posts. In Social Com-
puting, Behavioral-Cultural Modeling and Prediction, pages 231-238.
Springer, 2012.

948



