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Abstract—Users newly enter a recommender system can not
get personalized recommendation due to the lack of personal
profiles. An interview process that asks new users to rate a
set of items (the seed set) will help user modeling and improve
user experience. Traditional seed set generation approaches often
concentrate on item-wise properties instead of aiming at finding
the optimal seed set. We propose a simple random optimization
technique to search for the optimal seed set, which considers the
seed set as a whole and performs a random search by reducing
the prediction error on validation set. By off-line experiments
on the MovieLens 10M data set, we show that the proposed
approach performs as well as the state-of-the-art method called
GreedyExtend, and the proposed approach needs significantly
less computational cost to reach the same prediction error as the
best baseline on validation set.

I. INTRODUCTION

The rapid growth of Internet sees an overproduction of
online information. The abundance of web content causes
people harder to make decisions about which one to buy, which
one to read, and which one to watch. Recommendation system
(RS) provides an effective way to handle this problem. RS
records the behaviors of the users and learns profiles from the
feedback collected from the users. It makes recommendations
to the users based on these profiles.

A recommender system needs the previous reviews from
the users to build profiles for them. A new user just enters
the system has no such history information and can not
get personalized recommendations. This intrinsic problem of
recommender system is called the new user cold start problem

(11, [2], [3].

New user problem is common for websites experiencing
growth. For the number of active users to grow, the website
must take in new users to neutralize the impact of customer
churn. Proper welcoming process will allow the system to
understand the users better and to improve user satisfaction.

A bootstrapping process called preference eliciting is usu-
ally used to get the system to know new users. During such
process the system interviews the users with a few questions
in order to get feedback, which is used to construct the initial
user profiles for them.

One of the most popular forms of preference eliciting is a
non-personalized interview, in which every new user will be
asked to rate every item from the same list called the seed set,
as shown in Figure 1. Feedbacks reflecting the preferences of
a new user towards the items in the seed set are then used
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Fig. 1. Preference eliciting for new users allows the system to know new
users better and helps the system make more accurate recommendations.

to construct the user profile. Therefore, a good seed set is
important for accurate new user modeling.

Many researches have been targeted on seed set generation.
Some propose useful heuristics [4]. Others address the problem
by intuitions from information theory [4], [5], [6]. A more
direct approach uses greedy algorithm to search for seed sets
with lower training prediction error [7].

The main challenge of seed set generation is how to reduce
the redundancy of the seed set and maximize its utility as
a whole. Few researches have focused on such optimization
problem. To our best knowledge, the state-of-the-art approach
is the GreedyExtend algorithm [7].

To address the optimization problem of seed set, we pro-
pose an hill climbing approach based on random optimization
algorithms. We find this algorithm generally performs as well
as GreedyExtend with significant less computarion cost in an
off-line experiment on MovieLens 10M data set.

II. PRELIMINARIES

In this section, we will survey the works in the field of seed
set generation. The following notations are used thorough the
rest of this paper: v denotes a certain user; ¢ denotes a certain
item; 7,; denotes the rating that user u expresses to item ¢;
v denotes the value of a rating; U denotes the set containing
all users; I denotes the set containing all items; U; denotes
the set containing all users who rate item ¢; I,, denotes the
set containing all items rated by user u; S denotes a seed
set containing a certain number of items for interviewing new
users.
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A. New User Cold Start

A typical cold start process for a new user consists of 3
procedures:

1. A set of items (the seed set) are presented to the user
for rating. The user rates every item she knows, and
leaves the rest of the item unrated.

2. The system trains an initial profile for the user based
on her feedback in step 1.
3. The system makes recommendations for the user

based on the profile.

The utility of seed set is usually measured by the test
prediction error of the recommender system after preference
eliciting.

In an online experiment, the system can use other feedback
the user expresses after the interview to evaluate the utility of
the seed set. One can carry on an A/B test to compare different
seed set generating strategy.

However, such an experiment is resource-demanding and
requires a large number of human participants. Thus, we
conduct an agent-based off-line experiment to simulate this
process.

In an off-line experiment, as shown in Figure 2, we make
use of an explicit feedback dataset in which every record is a
triple (u, ¢, r) which means a user u rates an item ¢ with value
r. The users are split into two different set: Uy,q;y, for system
training and U}, for testing. We use agents representing users
in the new user interview. An agent that simulates a user knows
all her ratings. The agent rates every item that the user rates in
the seed set with the same value as the user. The system uses
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An example showing how seed set is evaluated in an off-line new user interview. In an evaluation on test set, U4 = Utest and Up = Utyqin. In an

such feedback to build an initial profile for the agent and make
predictions based on it. The ratings not used in the interview
are used in the evaluation of the prediction error.

We use the root-mean-square error (RMSE), a frequently
used measurement of the differences between predicted values
and the sample values, to measure the prediction error. RMSE
for a user u is computed by Eq. 1, in which r denotes the actual
ratings while 7 denotes the predicted values. The computation
is limited to items rated by user u but not in the seed set S.
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The prediction RMSE only depends on the seed set S if
the recommender system RS, the user set Uy qin and Upegst
are fixed. Thus, we denote the aggregated prediction error by
RMSE(S), as shown in Eq. 2.
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Lower prediction RMSE is a sign of more accurate user
modeling which means that the seed set allows the system to
know the new users better.

B. Generating Seed Set

Good seed set can improve the quality of recommendation
and at the same time lessen user efforts. A lot of heuristic cri-



teria are proposed to select items by their item-wise properties
such as Popularity [4], Entropy [4], and Entropy0 [5].

1) Popularity: New users are more likely to give the system
feedback on popular items. Therefore, presenting popular items
in the interview might increase the number of ratings collected.
This is the intuition of Popularity criteria. The downside of this
criteria is that popular items might be loved by everyone and
carry less information than less popular but more controversial
ones.

2) Entropy: Entropy (Eq. 3) is the amount of uncertainty
that one variable contains. Entropy strategy favors items that
are controversial; the rating distribution of such items tend to
be very polemic. Entropy is flawed in that it overlooks the
possibility that a new user might not know of such item. For
example, Entropy strategy will not distinguish an item with
1000 1-star and 1000 5-star ratings from one with one 1-star
and one 5-star ratings, despite the intuition that the former one
is more suitable for new user interview.

5

- Z pn=vl09(pn=v)

v=1

H(i) 3)

3) Entropy0: In a system where rating scales from 1 to 5, a
5-star rating usually stands for fondness; on the opposite, a 1-
star usually means dislike. But what if there is no rating from a
user to an item? Such ratings are called missing values. Miss-
ing values convey unclear but useful information. Entropy0
takes missing values into consideration in the computation of
information entropy as shown in Eq. 4. Every possible value
v of a rating is weighted by w,. A missing value is denoted
by 0 since common rating scale is from 1 to 5. The weight
wp for missing values is set to a smaller value than the other
weights to limit the influence of missing values. Note that in
Eq. 4 if we set wg to 0 and other weights to 1, and multiply
the equation with a factor of 5, we get Eq. 3.
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4) Var: This strategy is proposed in a post in Netflix prize
forum!. The original intention is to find movies that are “both
universally loved and universally hated by different subgroups
of people”. The measure uses standard deviation of ratings
regarding to item ¢ to select movies that are both love and
hated, and amplifies it with the square root of popularity of
item ¢ to introduce universality.
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The heuristic is named “contention” in the original post,
and “Var” in [7]. Experiment [7] shows that this heuristic out-
perform all other baseline methods. We follow such annotation
and call this measure Var.

Uhttp://netflixprize.com/community/viewtopic.php?id=164

959

5) GreedyExtend: This strategy considers the set as a
whole and optimizes the seed set towards a direct goal [7]. It
minimizes the training prediction error of recommender system
bootstrapped by the seed set on the training set. To generate
a seed set containing k items, we hope to find a seed set S
that the prediction RMSE of recommender system RS after
bootstrapping with seed set .S is minimized (Eq. 6). In Eq. 6,
RMSE(S)ya1iq stands for the prediction error on validation
set after new user interview using the seed set .S in cold start
process. An illustration of the evaluation of prediction error
on validation set is shown in Figure 2. Such an evaluation is
similar to one conducted on test set. This optimization strategy
implies that a seed set that performs well on training set will
also does well on test set.

Sy = argmin RMSE(S)vatid
SCI,|S|=k

(6)

Such optimization is hard in reality, since the time com-
plexity of a traversal is O((‘%l)). Therefore, [7] uses a greedy
algorithm that extends the current “best” seed set by searching
for one “best” additional item at a time and names it GreedyEx-
tend (Eq. 7-8).
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Experiment shows [7] that it can achieve lower RMSE than
heuristic strategies including Popularity, Entropy, Entropy0,
and Var.

III. OUR APPROACH

Heuristic approaches tend to select items by their item-
wise properties. However, correlations between items lead to
redundancy in seed sets. Take strategy Var for an example,
it chooses the top ones by an item-wise property. Figure 3
presents an example extracted from MovieLens data set. The
figure shows how Var strategy introduces redundancy and fails
to find the optimal seed set.

GreedyExtend addresses this problem by greedily iterating
over every item and finding the best additional item to the
currently found “best” seed set. However, once an item is
selected, it has no way out. This prevents GreedyExtend from
finding better seed sets which do not contain certain items
already in the “best” seed set, as shown in Figure 4.

Note that in the example shown in Figure 4, the optimal
two-item seed set is not a superset of the optimal one-item
seed set. This shows that the optimization problem of seed
set does not have optimal substructure. Therefore, dynamic
programming methods are also not applicable in finding the
optimal seed set.

To address this problem, we decide to employ a random
searching algorithm, which enables item replacement and is
able to iteratively adjust the seed set. Our approach is based
on random mutant hill climbing.
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Fig. 4. How GreedyExtend will miss better seed sets due to greedy selection.
GreedyExtend selects Three Color: Red for the best seed set with one item
and it cannot discard this item in the selection of seed set with two items, so
it misses a better option.

Random Mutant Hill Climbing (RMHC)

RMHC is a simple hill-climbing algorithm that outperforms
a genetic algorithm on a special problem called “Royal Road”
[8]. The algorithm keeps record of one best individual and
replace it with a randomly mutated one if the mutated one
is better. Mutation introduces random changes to the current
best individual and allows the algorithm to constantly adjust
the individual.

Our random search method is based on RMHC. It adopts
the same optimization goal that reduce training prediction error
of recommender system using the seed set as described in [7].
The algorithm keeps one seed set as the currently found best
one. It mutates a seed set by replacing one item in the seed
set with one out of the set. If the mutation leads to a lower
prediction error on training set, the new seed set will replace
the old one, otherwise it is discarded. In this way redundant
items have a chance to be replaced by better ones and other
items in the seed set will remain intact. Instead of choosing a

960

randomly selected seed set, we use the seed set generated by
Entropy0 as the starting point of hill climbing for the sake of
computational efficiency. The detailed process is described in
Algorithm 1.

generate an initial seed set SEniropyo;
while stop criteria not met do
randomly select an item from the set iy € Spest;
randomly select an item out of the set i, € I\ Spest;
Snew = (Sbest \ {Zd}) U {ia};
if Err(RS(Snew)) < Err(RS(Skest)) then
Shest + Snew:
end
end
return Spest;

Algorithm 1: Random Mutant Hill Climbing for Seed
Set Optimization

For most hill climbing algorithm, the process stops when
the algorithm can not make enough improvement in a certain
amount of steps. But we adopt a simpler stop criteria: we limit
the total steps of hill climbing. This allow us to control the
budget of computational cost.

IV. EXPERIMENTS
A. Evaluation Framework

The data used in our experiments is the MovieLens 10M
data set. It contains 10,000,000 ratings (on a scale of 1 to
5) from 72,000 users on 10,000 movies. We randomly select
60% of the users and use their ratings as the training set
Rirqin. Ratings from another 10% of the users are used as
the validation set R,q;;¢ and ratings from the rest 30% users
are used as the test set Rycq;.

We implement several baseline approaches: GreedyExtend,
Var, Entropy0, and Popularity. They are compared to our
approach RMHC with regard to both prediction error and
computational cost.

Our evaluation framework can be illustrated by Figure 2.
Every user in the test set is evaluated separately. We assume
that the agent simulating a user will complete the interview.
Every item in the seed set in the interview will be assigned
either a rating (if the user has rated the item) or a blank
value. The ratings to the items outside the seed set are used to
evaluate the prediction error of the system. Such assumption is
similar to the real bootstrapping process for new users, except
that in real systems new users may abort the interview, which
is beyond our topic.

Since the user does not need to rate items that she does
not know about, the rating effort needed in the interview is
often much less than the size of the seed set. Thus, such
bootstrapping process does not necessarily place a burden on
the user.

We use root mean square error (RMSE) to evaluate our
seed set selection algorithms. It is the same metrics used by
GreedyExtend [7].

In our experiment, the predictions in both training and
test phases are made with factored item-based collaborative
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Fig. 5. The test prediction error vs. number of movies shown, which is also
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others. RMHC performs as well as GreedyExtend does.

filtering[9]. Whereas, our experiment framework is still valid
using other prediction algorithms.

B. Experiment Setup

We introduce all parameter used in the experiment in this
section. Heuristic approaches including Var, Entropy0, Popu-
larity, and Random do not need any parameter. GreedyExtend
cost a fixed number of computation and need no parameter.
And RMHC has a tunable climbing steps limit C, which is
related to the performance of the algorithm.

Since RMHC performs one evaluation in every climbing
step, the limit of steps in RMHC is set to C = 1500 x
size(seedset). This makes the steps of evaluation of Greedy-
Extend and RMHC comparable.

C. Results and Discussions

We compare RMHC with various baselines at 10 different
seed set length from 10 to 100 to trade off between detailed
comparison and costly computation.

Figure 5 shows the performances of five baselines and
RMHC under different seed set lengths. It turns out that
generally GreedyExtend is the best baseline method in our
experiment. RMHC consistently reaches very low prediction
error as GreedyExtend does.

Unlike GreedyExtend whose computational steps are lim-
ited by the number of items and the size of the seed set, RMHC
can stop optimizing early to compromise between performance
and computational cost. Figure 6 shows the prediction error on
validation set with different amount of computational steps.
It takes RMHC much less computation steps to lower the
prediction error from the starting point to a good point.

We conclude that RMHC is more efficient in generating
high performance seed set for initial user modeling. We
attribute the efficiency to a good selection of starting point
and the effectiveness to the random optimization that allows
for constant adjustments.

Our approach can also be deployed in parallel. It takes
a few hundred steps of evaluation in average to search for
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one item replacement that leads to a better seed set. These
searching steps are independent of each other and can run in
parallel.

D. User Effort Analysis

A usually expressed concern about preference eliciting for
new users is that it may place extra burden on the user. A first
impression is that any barrier or bootstrapping process during
user sign-up may be annoying.

However, various researches [5], [10], [11] shows that what
the users want is not minimized burden, but better recommen-
dations. According to an online experiment conducted by [5],
most of the users reported that after rated 20 movies they found
it “easy” to rate movies. The experiment also found that its
users rather understand the benefit of rating more items as the
only way to learn their preferences. Another interesting exper-
iment [10] shows that “if a more demanding rating process is
balanced by significantly better recommendations, the global
satisfaction is not affected negatively by the increased effort”.

Also, some researches shows that preference eliciting is
beneficial for improving user engagement. In an experiment
conducted by [11], the users actually report that they find the
rating process entertaining with a statistical significance of 1%.
Another user study [2] shows that the users in the group going
through a more time-consuming process is more likely to be
active users after 25 days, which is quite against the common
opinion.

The average number of ratings collected from a user is
often 20 [5] or 30 [2]. Thus we assume that 20 to 30 ratings
are acceptable burden in preference eliciting. We compared
the average numbers of ratings collected while bootstrapping
using different seed sets(Figure 7). As we see, all the measures
meet such a standard when the size of seed set is less than 100.
RMHC and GreedyExtend are the least burdensome methods
among the five ones.

V. CONCLUSIONS

In this paper, we discuss the problem of seed set opti-
mization. We point out that heuristic method will not generate
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quality seed set since it overlooks the correlation between
items. We also point out that a greedy algorithm as Greedy-
Extend may not work well since the optimization problem of
seed set does not have optimal substructure. We address this
problem by a random optimization method based on random
mutant hill climbing. Experiments on MovieLens data set
show that our approach performs as well as the state-of-the-art
GreedyExtend method with significantly less computation. To
achieve a prediction performance as good as GreedyExtend,
our approach needs significantly less computational cost. Our
work provides the evidence that random optimization is more
efficient than greedy selection in seed set optimization.

REFERENCES
(1]

W. S. Lee, “Collaborative learning for recommender systems,” in
In Proc. 18th International Conf. on Machine Learning. — Morgan

Kaufmann, 2001, pp. 314-321.

S. McNee, S. Lam, J. Konstan, and J. Riedl, “Interfaces for eliciting new
user preferences in recommender systems,” in User Modeling 2003,
ser. Lecture Notes in Computer Science, P. Brusilovsky, A. Corbett,
and F. de Rosis, Eds. Springer Berlin Heidelberg, 2003, vol. 2702, pp.
178-187. [Online]. Available: http://dx.doi.org/10.1007/3-540-44963-
924

K. Yu, A. Schwaighofer, V. Tresp, X. Xu, and H.-P. Kriegel,
“Probabilistic memory-based collaborative filtering,” IEEE Trans. on
Knowl. and Data Eng., vol. 16, no. 1, pp. 56-69, Jan. 2004. [Online].
Available: http://dx.doi.org/10.1109/TKDE.2004.1264822

A. M. Rashid, I. Albert, D. Cosley, S. K. Lam, S. M. McNee,
J. A. Konstan, and J. Riedl, “Getting to know you: Learning new
user preferences in recommender systems,” in Proceedings of the 7th
International Conference on Intelligent User Interfaces, ser. IUI ’02.
New York, NY, USA: ACM, 2002, pp. 127-134. [Online]. Available:
http://doi.acm.org/10.1145/502716.502737

A. M. Rashid, G. Karypis, and J. Riedl, “Learning preferences of new
users in recommender systems: An information theoretic approach,”
SIGKDD Explor. Newsl., vol. 10, no. 2, pp. 90-100, Dec. 2008.
[Online]. Available: http://doi.acm.org/10.1145/1540276.1540302

[6] H. J. Ahn, H. Kang, and J. Lee, “Selecting a
small number of products for effective user profiling
in collaborative filtering,” Expert Systems with Applications,
vol. 37, no. 4, pp. 3055 - 3062, 2010. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0957417409008069

N. Golbandi, Y. Koren, and R. Lempel, “On bootstrapping recommender
systems,” in Proceedings of the 19th ACM International Conference
on Information and Knowledge Management, ser. CIKM ’10. New
York, NY, USA: ACM, 2010, pp. 1805-1808. [Online]. Available:
http://doi.acm.org/10.1145/1871437.1871734

S. Forrest and M. Mitchell, “Relative building-block fitness and the
building-block hypothesis,” Ann Arbor, vol. 1001, p. 48109, 1993.

[91 Y. Koren, “Factor in the neighbors: Scalable and accurate
collaborative  filtering,” ACM  Trans. Knowl. Discov. Data,
vol. 4, no. 1, pp. 1:1-1:24, Jan. 2010. [Online]. Available:

http://doi.acm.org/10.1145/1644873.1644874

P. Cremonesi, F. Garzottto, and R. Turrin, “User effort vs.
accuracy in rating-based elicitation,” in Proceedings of the Sixth
ACM Conference on Recommender Systems, ser. RecSys ’12. New
York, NY, USA: ACM, 2012, pp. 27-34. [Online]. Available:
http://doi.acm.org/10.1145/2365952.2365963

F. M. Harper, X. Li, Y. Chen, and J. A. Konstan, “An economic model
of user rating in an online recommender system,” in Proceedings of the
10th International Conference on User Modeling, ser. UM’05. Berlin,
Heidelberg: Springer-Verlag, 2005, pp. 307-316. [Online]. Available:
http://dx.doi.org/10.1007/11527886_40

[10]

[11]



