
Collaborative Filtering of Call for Papers

He-Da Wang∗ and Ji Wu†
Multimedia Signal and Intelligent Information Processing Laboratory

Department of Electronic Engineering

Tsinghua University, Beijing, China

Email: ∗wang-hd12@mails.tsinghua.edu.cn, †wuji ee@mail.tsinghua.edu.cn

Abstract—Call for papers (CFPs) are notifications of academic
events that invite researchers to submit their works. Traditionally,
CFPs are handed out to researchers by mailing lists and web
pages. With the number of conferences increasing, finding,
reading and filtering out relevant CFPs become time consuming
and need the assistance from information retrieval techniques.
In this paper, we employ collaborative filtering to match relevant
CFPs to researchers. Non-personalized, neighborhood-based and
class-based methods are applied in CFP recommendation. We
also propose a hybrid approach that utilizes conference series
and submission deadlines of CFPs. The experiments on WikiCFP
data set show that the class-based method outperforms both
neighborhood-based and non-personalized methods, whereas the
proposed hybrid approach has the best overall performance.

I. INTRODUCTION

Conferences and workshops play an important role in
academic communication. Invitations for calling scientists to
submit their works to such events are often named call for
papers (CFP). A typical CFP is a document including the
location, time, submission deadline, and topics of the events.
It is either published as a web page on dedicated conference
websites or distributed by one-to-many emails and mailing
lists. Reading them helps researchers to decide whether to
submit their works to such events and to schedule their
researches.

Today, increasing number of academic events contributes to
a boom of CFPs. Researchers have to spend more time dealing
with them by either going through the mailing lists or searching
the web for relevant CFPs. Efforts have been made to lessen
the burden for researchers by aggregating a lot of CFPs in one
database and providing various kinds of information filtering
service. Such solutions include RSS subscription resources (eg.
CFP Website of Upenn1), mailing lists (eg. DBWorld2), and
dedicated database websites (eg. CFPList3, WikiCFP4).

Finding CFPs from such sources is still not a happy
experience. There are an overwhelming number of CFPs now:
WikiCFP alone has collected over 40,000 CFPs according to
its statistics. Unless you have the name of the conference in
mind, or you have to manually go through the list and find
relevant ones. This is both difficult and time consuming, and
facilitates the need for automatic information filtering methods
to find CFPs relevant to one’s personal interest.

1http://call-for-papers.sas.upenn.edu
2https://research.cs.wisc.edu/dbworld/
3http://www.cfplist.com
4http://www.wikicfp.com

Recommender systems have been employed in many real
world applications to mitigate information overload. There are
applications that find collaborators [1] and recommend new
scientific articles [2] for researchers. It might also be useful if
a personalized recommender can match researchers to relevant
CFPs and save them a lot of effort.

Despite the pain in finding CFPs, scientific discussions
about CFP recommendation are rare. Martı́n et al. [3] proposed
a content-based recommender system of CFPs, which is,
to our best knowledge, the only one trying to address this
problem in recommender system literature. There are others
trying to address this problem by improving CFP retrieval
performance. Xia et al. [4] proposed the use of social tags in
CFP classification to increase the accuracy. Issertial and Tsuji
[5] showed that adding enriched ontology into structure data
of CFPs will increase the recall in CFP retrieval.

So far, collaborative filtering of CFP has not yet been
discussed in the literature of recommender system. This is
partly because the absence of an available user preference
data set. In this paper, we utilize an implicit feedback called
the “track by” relation from a real-world data source in our
recommender system. This kind of feedback allows us to
employ collaborative filtering in CFP recommendation.

Our contributions to CFP recommendation are as follows:
we introduce a novel CFP data set containing implicit feed-
backs; we compare the performances of non-personalized,
neighborhood-based and class-based collaborative filtering al-
gorithms on this data set; we propose a hybrid approach
that blends content information of the CFPs into collaborative
filtering, which outperforms all other approaches.

The next section introduces the date set and the problem
setting of this work. Section III reviews the previous works
about collaborative filtering and CFP recommendation. Section
IV introduces the algorithms we use in CFP recommendation.
Section V explains our experiment settings. Section VI shows
the results of the experiments. We conclude our work and
suggest some open problems for future exploration in the last
section.

II. PROBLEM SETTINGS

A. Dataset

We crawl open-access data from WikiCFP and use it in our
experiments. WikiCFP is a crowd-source database that collects
CFPs and provides retrieval services. One can search for CFPs
by its keyword, add CFPs to one’s own list and get email
notifications before submission deadlines. A sample CFP data
on WikiCFP is shown in Fig. 1.

2015 IEEE Symposium Series on Computational Intelligence

978-1-4799-7560-0/15 $31.00 © 2015 IEEE

DOI 10.1109/SSCI.2015.264

963

Fig. 1. A typical Call-for-Paper on WikiCFP. The meta data consists of a
summary, a description, a link to the conference website, when and where the
event will be held, and several category labels added by the users who upload
or modify it.

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

fr
eq

ue
nc

y

degree

degree of user nodes
degree of CFP nodes

Fig. 2. Degree distribution of the bipartite graph consists of tracked-by
relations follows an approxi-mate power law.

There are three ways to find a CFP on WikiCFP: searching
for a keyword, browsing by category and browsing by confer-
ence series. If you find a CFP that is relevant to your need,
you can add it to your list. Then, you can manage your own
list of selected CFPs and browse the list in a time-line style
user interface. You can also post a new CFP into the database
and everyone will be able to see it after it is reviewed. On
the page of a CFP, you can see which user uploads this CFP
(displays “posted by”) and who have added it to their own lists
(displays “tracked by”).

Such implicit feedbacks of posted-by and tracked-by rela-
tions provide us with the collaborative information in CFP
managing. We extract 389,213 tracked-by relations from
35,725 CFP items to 38,431 users from the crawled pages.
We also extract 29,542 posted-by relations from 29,542 CFP
items to 7,842 users, which is less than the total count of
CFPs since some of them are posted by system. As a CFP will
be automatically tracked by the user who uploads it, we can
only consider the tracked-by relations. The tracked-by relations
between users and CFPs form a bipartite graph, the degree
distribution of which is shown in Fig. 2.

It should be noted that the tracked-by relations in the data
set have no temporal information about when the users track
the CFPs. This makes a recommender system with temporal
dynamics inapplicable.

B. Problem Definition

The data set we use consists of implicit feedbacks. Dif-
ferent from explicit feedbacks like 1-5 star ratings, which
clearly convey intended user preference, implicit feedbacks are
interpreted according to our understanding of the motivation of
the user. That a conference is tracked by a user does not mean
the user likes it or dislikes it. However, as the users depend
on their lists to manage their tracked CFPs, we can reasonably
assume that tracked-by is a sign of relevance.

We choose top-N recommender as the setting of the CFP
recommender system. In this scenario, a recommender system
RS uses feedback set R to learn user profiles. The feedback set
R is a |U | × |I| binary matrix defined by tracked-by relations,
in which U stands for the set containing all users and I stands
for the set containing all CFP items.

rui =

{
1 if CFP i is tracked by user u;
0 otherwise.

(1)

For every user u ∈ U , RS recommends the most relevant
N CFPs to u. The performance of RS depends on the percent
and rank of true relevant one in recommended items.

III. RELATED WORKS

A. Collaborative Filtering

The purpose of collaborative filtering is to recommend
items with highest utility to the active user (the user that
recommender system currently serves) by finding patterns from
the preferences of all users. The approaches of collaborative
filtering can be divided into two categories, the memory-based
and model-based methods.

Memory-based methods keep track of all preferences from
the users and combine them to make predictions. One of
the memory-based approaches is the neighborhood-based ap-
proach [6], [7]. In a user-based neighborhood method, users
who are the most similar to the active user are called nearest
neighbors, and preferences of the nearest neighbors are used to
predict the preferences of the active user. The counterpart is the
item-based neighborhood method, which utilizes similarities
between pairs of items. Interpretations of such methods using
implicit feedbacks are discussed in both industrial [8] and
academic [9] literatures.

Model-based methods learn a model from preferences and
use it in prediction. There are many model-based methods
proposed to address the collaborative recommendation prob-
lem. Among these models, graph-based model and latent class
model are two widely discussed ones. Graph-based models
such as ItemRank [10] and RWR [11] perform random walk
with restart on the bipartite graph consists of users, items and
relations between them. They are suitable for both implicit
and explicit feedbacks. Latent class models are probabilistic
graphic models that cluster users into latent classes [12]. The
original latent class model is applicable to implicit feedbacks
and it is also extended to a version that can use preference
values.

964

B. CFP Recommendation

Martı́n et al. [3] study several content-based methods to
match CFPs to the users. They concatenate the description of
a CFP with the abstracts from the papers wrote by the people
in the program committee of the corresponding conference
to construct item profile for the CFP. They download all the
papers wrote by the users and use the abstracts from these
papers as the user profiles. A total of 13 researchers participate
as the users to test various content-filtering approaches in
their experiment. The relevance scores of CFPs are manually
annotated by these 13 participants.

Despite the meaningful exploratory work of [3], we decide
not to extend their work, as we notice several inconsistencies
between our problem setting and theirs. The major problem is
that a user profile in their setting consists of concatenation of
previously published abstracts of the user, while our data set
contains no identity information that allows us to find previous
papers of the user. Also, the tracked-by relations in WikiCFP
data set are not completely equivalent to relevance scores
annotated by human participants. That a user on WikiCFP
tracks a CFP means that the user considers the conference as a
candidate event to submit her/his works to, while a “relevant”
annotation only means the user thinks the conference’s topic
is relevant to her or his field of interest.

IV. RECOMMENDING CALL FOR PAPERS

We employ four different strategies in our experiment of
CFP recommendation: there are a non-personalized method,
two neighborhood-based methods, and one based on latent
class model. We also propose a novel hybrid approach that
utilizes domain-specific properties of CFP: conference series
and submission deadline.

A. Collaborative Filtering of CFPs

a) Popularity: As CFPs from well-known conferences
will get major attention and attract a lot of researchers to track
them, the number of being tracked reflects the popularity of a
conference. Ranking CFPs by how many users track them is
an intuitive way to do non-personalized recommendation.

This strategy is efficient for its brevity; it is also effective
if popular items are in domination. However, from Fig. 2 we
can tell that the data from WikiCFP have a “long tail”, which
means tracked-by relations from CFPs that are less tracked take
up a major part. We could anticipate that popularity strategy
will perform badly.

b) Neighborhood: As a user’s research interest might
be similar to those who track the same CFPs, the user
might share common interest in other CFPs with these like-
minded users. Therefore, if we find these like-minded users
and let them vote for their most interested CFPs, we might
find relevant CFPs in their voting items. This is the original
intuitive of neighborhood-based collaborative filtering [6]. In
this approach, users most similar to the active user are called
nearest neighbors. The CFPs most tracked by these nearest
neighbors are treated as their votes. The most voted ones are
recommended to the user, weighted by the degree of like-
mindedness between the neighbor and the user:

r̂u,i =
∑

v∈NN

Sim(u, v)rv,i (2)

in which similarity Sim(u, v) represents the like-minded-
ness between the user u and the neighbor v. It acts just as
the vote weight in shareholder meetings. The more alike a
neighbor is to the user, the more weight the vote carries.

We use Jaccard index [13], [14] here to measure the
similarity between two users. This coefficient measures the
similarity between two set of items. We use it to measure the
percent of overlapped items in items tracked by one user and
items tracked by the other user:

Jaccard(u, v) =
|Ru ∩Rv|
|Ru ∪Rv| (3)

in which Ru is the set containing all CFP items that user
u tracks:

Ru = {i ∈ I|rui = 1} (4)

c) Neighborhood-IDF: The Jaccard index between two
users reflects how many of their interested events are com-
monly interested, which means the higher the percent of com-
monly tracked events, the higher their resemblance according
to the similarity measure.

However, this measure fails to reflect the difference be-
tween items. Comparing to CFPs tracked by most of the
users, sharing less tracked CFPs indicates more resemblance.
For example, “IJCAI” is almost tracked by everyone. On the
other hand, “RecSys” is relatively less tracked by. Then it is
reasonable to assume that the similarity between two users
who track “RecSys” is stronger than that between two users
tracking “IJCAI”.

We employ inverse document frequency (IDF) to highlight
the importance of less popular CFPs. IDF is first introduced
as a term weighting technique by [15] which notes “...terms
should be weighted according to collection frequency, so that
matches on less frequent, more specific terms are of greater
value...”.

The IDF of a CFP i is defined as an inverse function of
the frequency of being tracked by the users:

IDF (i) = log(
|U |
|Ri|) (5)

in which Ri is the set of users who track CFP i:

Ri = {u ∈ U |rui = 1} (6)

We integrate IDF into Jaccard index by applying weighting
factors to CFPs:

Jaccardidf (u, v) =

∑
i∈Ru∩Rv

log(|U |
|Ri|)∑

i∈Ru∪Rv
log(|U |

|Ri|)
(7)

965

Fig. 3. Graphical model representation of latent class model.

In this way, we stress the importance of CFPs from more
specific conferences in the computation of user similarity. To
our best knowledge, we are the first to refine the Jaccard
index with IDF weighting. We denote this revised approach
by Neighborhood-IDF.

d) Latent Class Model: It is straightforward to select
like-minded users and use their votes in recommendation.
Whereas, the neighborhood can be small if the user has
only tracked a few CFPs. This would lead to bad quality of
recommendation.

Clustering approaches address this issue by dividing users
into clusters, in a way that two users in one cluster are alike and
two users in different clusters are not. Latent class model [12]
does similar things besides it assigns more than one cluster to
each user, but considers each user as a probabilistic mixture
of representative groups. According to the latent class model,
each user u belongs to a group g ∈ G = {g1, g2, ..., gK} by
probability P (g|u) and each group g considers a CFP i relevant
by probability P (i|g). Then the probability that a user u tracks
a CFP i is:

P (i|u) =
∑
g∈G

P (i|g)P (g|u) (8)

which is derived from the key assumption of latent class
model [12] that u and i are independent conditioned on g:

P (u, i) =
∑
g

P (u, i|g)P (g) =
∑
g

P (i|g)P (u|g)P (g) (9)

Items with the highest possibility of being tracked P (i|u)
are recommended to user u based on the latent class model.
The model parameter P (i|g) and P (g|u) can be estimated
by Expectation Maximization (EM) algorithm [16], [12]. The
graphic model representation of the latent class model is shown
in Figure 3.

B. Series-Deadline Model

Conferences are often denoted by series name and year.
In the expression “RecSys 2015”, the conference series name
is “RecSys”, and the year of the event is 2015. It is natural
to assume that a researcher who is interested in RecSys 2014
will be interested in RecSys 2015. Therefore we can assume
that a researcher would be equally interested in each one of
the conferences of the same series.

The time of the event is also important, a researcher tends
to pay attention to interested conference in one’s active period:
a PhD student enrolled in 2014 might track RecSys 2014, but
she/he is unlikely to track RecSys 2012, which is outdated.

Fig. 4. Graphical model representation of series-deadline model.

��

�����

������

������

������

������

������

������

������

�� ���� ���� ��	� ��
� �	��

��
�

�
��

�

����

Fig. 5. Distribution of the time difference between a pair of CFPs tracked
by the same user.

Therefore we propose a model that describe the probability
that a researcher u will track a conference CFP i by combining
both the interest to the series of the conference and the impact
of time by simply multiplying them:

P (i|u) = P (si|u)P (ti|u) (10)

where P (si|u) is the probability that a researcher u might
be interested with the series of the conference and P (ti|u) is
the probability that a researcher might consider the time of the
conference appropriate. The graphical model representation of
series-deadline model is presented in Figure 4.

We model the probability P (si|u) that describes the interest
of the user u by latent class model:

P (si|u) =
∑
g∈G

P (si|g)P (g|u) (11)

which assigns people to different latent interest groups and
estimates their preferences by adding up the preferences of the
groups they belong to.

The second part P (ti|u) is a probability that describe
whether the time of the conference is appropriate for the user.
The time of the conference can be inappropriate for various
reasons. Paper submission may be closed before the user ever
sees its CFP. Time of the conference may be too late to meet
the user’s plan. A conference has many time-related attributes:
there are the opening date, closing date, submission deadline,
notification due, and final version due. Among these attributes,
we believe that submission deadline is the most concerned time
by a researcher. Therefore, we use the submission deadline as
the time of the conference.

We assume that the conferences whose CFPs are tracked by
the same user should occur in temporal proximity. This means

966

A t1 t2 B t3 C

Fig. 6. A user tracks CFPs whose deadlines are t1, t2, t3, and t4. But the
system only knows three of them. Where should t4 be: A, B, or C?

A t1 t2 B t3 C

Fig. 7. A Gaussian mixture model in which the deadline of every CFP tracked
by the user is used as the center of a component.

a CFP whose deadline is close to the CFPs already tracked by
a user would be more likely to get tracked by the user than
other CFPs.

To validate our assumption, we randomly select several
pairs of CFPs in which each pair of them are tracked by the
same user, and show the distribution of the pair-wise time
difference (of submission deadlines) in a histogram (Fig. 5).
We can see that CFPs tracked by the same user tend to be
temporal proximate to each other. Most intervals between two
deadlines are within 120 days or four months.

Also, a user might track several CFPs that have different
submission deadlines. And the distribution of these deadlines
might not have a unified form, since every user’s tracked CFPs
might be different from one another’s.

A case study shows that a reasonable distribution should
be dependent of the deadline of every CFP the user tracks. As
shown in Fig. 6, the system knowns the user tracks three CFPs
whose deadlines are t1, t2, and t3, but the deadline of another
CFP tracked by the user is unknown. A most reasonable guess
is that the unknown deadline should be at the position of B,
since it is proximate to both t2 and t3. The position of C is
less likely, since it is only proximate to t3 but is a little far
away from t2. A is the least likely one of the three candidate
position, since it is far away from t2 and t3.

We model this temporal proximity by a Gaussian mixture,
as shown in Fig. 7. Every component in the mixture corre-
sponds to a CFP tracked by the user and is centered at the
deadline of the corresponding CFP. If a user ui tracks CFPs
whose deadlines are ti1, ti2, ..., timi , then the probability that
the user ui tracks a CFP whose deadline is t is:

Pσ2(t|ui) =
1

mi

mi∑
j=1

Ntij ,σ2(t) (12)

where every component shares the same height and stan-
dard deviation:

Nμ,σ2(t) =
1√
2πσ2

exp

{
− (t− μ)2

2σ2

}
(13)

If we have other training samples t̂i1, t̂i2, ..., t̂iki
, we can

compute the total log likelihood:

logL =
N∑
i=1

ki∑
j=1

logPσ2(t̂ij |ui) (14)

To maximize the log likelihood, we can derive an iterative
update equation for the squared deviation:

σ2
new =

1∑N
i=1 ki

N∑
i=1

ki∑
k=1

∑mi

j=1(t̂ik − tij)
2Ntij ,σ2(t̂ik)∑mi

j=1 Ntij ,σ2(t̂ik)
(15)

Since we use the paper submission deadline as the time
of the conference, we name this proposed model the series-
deadline model.

V. EXPERIMENTS

We use tracked-by relations extracted from open-access
data on WikiCFP as our major data set. We also crawled a
conference series list from WikiCFP to build links between
a CFP to its correspondent conference series. For CFPs that
can not link to a series in the list, we extract the series names
from the summaries of the CFPs and treat all CFPs with the
same series name as from the same series. For example, for
a conference whose summary is “RecSys’13”, our extractor
based on heuristics will extract “RecSys” as the series name.
The submission deadline is directly extracted from the xml
data on WikiCFP.

We carry on a five-fold cross-validation in our experiment
in order to eliminate the bias in test data selection. In this
evaluation scenario, the data set is randomly split into five
chunks. We run the experiment five times. Each time the union
of four chunks serves as the train set, i.e, the feedbacks that is
already known by the recommender system, and the rest one
serves as the test set, which is compared to the recommended
items to evaluate the performance of the system. Performance
score of cross-validation is the average score of individual runs.

When evaluating the recommended items, CFPs that are
tracked by the currently evaluated user in the test set are treated
relevant, others irrelevant.

In order to evaluate the effects of collaborative filtering
techniques on CFP recommendation, we adopt two different
metrics: RPrecision [17], and normalized Discounted Cumu-
lative Gain (nDCG) [18].

RPrecision is the precision when the system recommends
R items, in which R is the number of items in the test set that
is relevant to the currently evaluated user. It should be noted
that the recall equals the precision when recommending R
items. [17] shows that RPrecision is very stable in comparing

967

different retrieval techniques. RPrecision is computed with
the following equation:

RPrecision =

∑R
i=1 reli
R

(16)

in which reli is the relevance of the ith recommended item.
reli = 1 if the item is relevant to the evaluated user, and
reli = 0 if otherwise.

Normalized Discounted Cumulative Gain (nDCG or nor-
malized DCG) takes not only the relevance of recommended
item into account, but also stresses the importance of the
ranked position of these relevant items. DCG gives relevant
items that ranked high more credit by applying a discounted
factor that reduces the gain from relevant items at lower
position. An idealized DCG (iDCG) is the DCG score under
the condition that we precisely rank items in descending
order of their relevance scores. The magnitude of DCG scores
varies with data, as [18] notes “it is difficult to assess the
magnitude of the difference of two (D)CG curves”. Therefore,
[18] propose a normalized version of DCG that divide DCG
by the idealized DCG.

DCG@N =

N∑
i=1

reli
log2(i+ 1)

(17)

iDCG@N =

min(N,R)∑
i=1

1

log2(i+ 1)
(18)

nDCG@N =
DCG@N

iDCG@N
(19)

VI. RESULTS AND DISCUSSIONS

Table I shows the performance of different collaborative
filtering methods. For the neighborhood and neighborhood-idf
methods, the number of selected neighbors is 15. For latent
class model, number of latent class is 400. For series model
and series deadline model, number of latent class is 100. The
parameters are tuned by manually search over the parameter
space. We only compare nDCG at N=20 for brevity since we
find the rankings of different methods do not change under
both smaller and larger N.

Comparing the result, we can see popularity, as we anti-
cipated, performs badly. We attribute this result to the long-
tailed nature of the data. Also, the modification to Jaccard
index does increase the effectiveness of neighborhood method
as we expected. It also turns out the latent class model
is superior to other baselines. The proposed series-deadline
model outperforms all other methods.

We perform a paired t-test on every pair of methods.
A paired t-test is used when comparing two sets of data
where both sets are from the same set of test subjects but
are outputs from different procedures. In our experiment, the
collaborative filtering algorithms are tested on the same set
of user. The nDCG and RPrecision measurement on the
data set is the mean value of the measurements for all single
users in the data set (Eq. 20-21). We compare the sets of

TABLE I. COMPARISON OF DIFFERENT COLLABORATIVE FILTERING

ALGORITHMS. THE PROPOSED SERIES-DEADLINE MODEL HAS THE BEST

OVERALL PERFORMANCE.

Method RPrecision nDCG@20
popularity 0.0046 0.0203
neighborhood 0.0302 0.1252
neighborhood-idf 0.0309 0.1286
latent class model 0.0354 0.1382
series-deadline model 0.0373 0.1460

per user measurements with a paired t-test. We found that
between methods ”neighborhood” and ”neighborhood-idf” the
nDCG difference is 95% significant and the RPrecision
difference is not significant. The differences between all the
other pairs of methods are 99% significant. In conclusion,
the proposed series-deadline model statistically significantly
outperforms the latent factor model on WikiCFP data set, while
the effectiveness of inverse document frequency in Jaccard
index is not conclusive.

nDCG =
∑
u

nDCGu (20)

RPrecision =
∑
u

RPrecisionu (21)

We also explore the impact that the value of parame-
ters has on the performance of recommender systems. For
neighborhood-based methods, we evaluate the RPrecision
and nDCG@20 of neighborhood and neighborhood-idf al-
goritms under several selected neighborhood sizes. It can be
observed neighborhood size that neither too small nor too large
will generate positive results.

The explanation for this is that neighborhood too small
will produce too few recommendations and decrease recall.
Whereas, increasing neighborhood will include more like-
minded users into the neighborhood and increase precision.
On the other hand, too large neighborhood will include noisy
users into the neighborhood, deteriorate the quality of recom-
mendations, and decrease recall in the end.

For latent class model and series-deadline model, we ex-
plore the relationship between the performance and the number
of latent classes, as shown in Fig. 9. A latent class represents a
virtual community that best describes a mode of user behaviors
on the entire set. Ideally, the more latent classes, the more
accurately the model can describe the data set. However,
adding more latent classes brings slower convergent speed,
which in turn undermines training quality of the model at a
limited budget of time. More latent classes also makes the
model more complex and more likely to end up in overfitting.

The time complexity of latent class model is analysed in
[19]. A single EM iteration takes O(kN) time to compute
where k denotes the number of latent classes and N denotes
the total number of tracking relations. The time complexity
of series-deadline model is dominated by the part that models
the interest of a user to a conference series, which itself is
a latent class model. In our experiment, the series-deadline
model takes shorter time to train compared to the latent class
model. A straightforward explanation is that the optimal latent
class number of the series-deadline model in our experiment
is smaller than that of the latent class model (Fig. 9).

968

��

������

�����

������

�����

������

�����

������

�����

�� ��� ����

�	
�

�
��
�

������������

��������
������������

��

�����

�����

�����

�����

����

�����

�����

�� ��� ����

�	

�

�
��

���������������

�����������
���������������

Fig. 8. The performance of neighborhood-based collaborative filtering
algorithms is closely related to neighborhood size. Neighborhood that either
too small or too big will undermine the performance of neighborhood-
based CF. It can be seen that the refinement to Jaccard index increase both
RPrecision and nDCG.

�����

������

�����

������

�����

������

�����

��� ���� �����

��
�
	

�

�

�������������	�����

�����	���������
��
������
�����

�����

�����

�����

�����

�����

����

�����

�����

����	

����

�����

��� ���� �����

�
��

�
��

������������������������

������������������
��� ��!����� ��������

Fig. 9. Performance vs. number of latent classes. The optimal latent class
number of series-deadline model is smaller than the latent class model since
the number of series is less than that of CFPs.

VII. CONCLUSION

We have employed several most-used collaborative fil-
tering approaches to recommend call for papers (CFPs)
to researchers. We find that popularity, a non-personalized
method, has poor performance, which indicates that the users
of WikiCFP have diverse interests. We find that a proper
weighting to Jaccard similarity improves the performance of
neighborhood-based approaches. We have explored the impact
of parameter to the effectiveness of collaborative filtering
methods. Comparing the baselines in our experiment, we find
that latent class model has better performance over the other
baselines.

We also propose a hybrid approach that melts series and
time of conference into collaborative filtering. Experiment
shows that our method outperforms all other approaches.

The result of our hybrid approach shows that combin-
ing knowledge with collaborative filtering is promising for
CFP recommendation. Though, several aspects about CFP
recommendation remain unexplored. CFPs are documents with
highly topic-oriented texts, which means combining content
information with collaborative filtering may produce better
recommendations. CFPs are also linked data: one typical CFP
is associated with an academic event, which in turn is linked
with the accepted papers in the past. Since integrating ontology
into system can enhance the performance of CFP retrieval. It is
also reasonable to assume that utilizing linked knowledge will
help us to recommend relevant CFPs better. Other attributes
of CFPs, such as when and where the event will be held and
folksonomy categories, are also useful for building a more
effective recommender system.

REFERENCES

[1] T. Huynh, A. Takasu, T. Masada, and K. Hoang, “Collaborator rec-
ommendation for isolated researchers,” in Advanced Information Net-
working and Applications Workshops (WAINA), 2014 28th International
Conference on, May 2014, pp. 639–644.

[2] C. Wang and D. M. Blei, “Collaborative topic modeling for
recommending scientific articles,” in Proceedings of the 17th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, ser. KDD ’11. New York, NY, USA: ACM, 2011, pp. 448–456.
[Online]. Available: http://doi.acm.org/10.1145/2020408.2020480

[3] G. Hurtado Martı́n, S. Schockaert, C. Cornelis, and H. Naessens, “An
Exploratory Study on Content-Based Filtering of Call for Papers,” in
Multidisciplinary Information Retrieval, ser. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2013, vol. 8201, pp. 58–69.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-41057-4 7

[4] J. Xia, K. Wen, R. Li, and X. Gu, “Optimizing academic conference
classification using social tags,” in Computational Science and Engi-
neering (CSE), 2010 IEEE 13th International Conference on, Dec 2010,
pp. 289–294.

[5] L. Issertial and H. Tsuji, “Data management and user interface for a call
for paper manager,” in Computer Software and Applications Conference
(COMPSAC), 2013 IEEE 37th Annual, July 2013, pp. 463–466.

[6] J. S. Breese, D. Heckerman, and C. Kadie, “Empirical analysis of
predictive algorithms for collaborative filtering,” in Proceedings
of the Fourteenth Conference on Uncertainty in Artificial
Intelligence, ser. UAI’98. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1998, pp. 43–52. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2074094.2074100

[7] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl,
“Grouplens: An open architecture for collaborative filtering of
netnews,” in Proceedings of the 1994 ACM Conference on
Computer Supported Cooperative Work, ser. CSCW ’94. New

969

York, NY, USA: ACM, 1994, pp. 175–186. [Online]. Available:
http://doi.acm.org/10.1145/192844.192905

[8] G. Linden, B. Smith, and J. York, “Amazon.com recommendations:
item-to-item collaborative filtering,” Internet Computing, IEEE, vol. 7,
no. 1, pp. 76–80, Jan 2003.

[9] M. Deshpande and G. Karypis, “Item-based top-n recommendation
algorithms,” ACM Trans. Inf. Syst., vol. 22, no. 1, pp. 143–177, Jan.
2004. [Online]. Available: http://doi.acm.org/10.1145/963770.963776

[10] M. Gori and A. Pucci, “Itemrank: A random-walk based
scoring algorithm for recommender engines,” in Proceedings of
the 20th International Joint Conference on Artifical Intelligence,
ser. IJCAI’07. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2007, pp. 2766–2771. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1625275.1625720

[11] H. Yildirim and M. S. Krishnamoorthy, “A random walk method
for alleviating the sparsity problem in collaborative filtering,” in
Proceedings of the 2008 ACM Conference on Recommender Systems,
ser. RecSys ’08. New York, NY, USA: ACM, 2008, pp. 131–138.
[Online]. Available: http://doi.acm.org/10.1145/1454008.1454031

[12] T. Hofmann and J. Puzicha, “Latent class models for collaborative
filtering,” in Proceedings of the Sixteenth International Joint Conference
on Artificial Intelligence, ser. IJCAI ’99. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1999, pp. 688–693. [Online].
Available: http://dl.acm.org/citation.cfm?id=646307.687583

[13] P. Jaccard, “Etude comparative de la distribution florale dans une portion
des alpes et du jura,” Bulletin de la Société Vaudoise des Sciences
Naturelles, vol. 37, pp. 547–579, 1901.

[14] D. J. Rogers and T. T. Tanimoto, “A computer program for classifying
plants,” Science, vol. 132, no. 3434, pp. 1115–1118, 1960. [Online].
Available: http://www.sciencemag.org/content/132/3434/1115.short

[15] K. Sparck Jones, “Document retrieval systems,” P. Willett,
Ed. London, UK, UK: Taylor Graham Publishing, 1988,
ch. A Statistical Interpretation of Term Specificity and Its
Application in Retrieval, pp. 132–142. [Online]. Available:
http://dl.acm.org/citation.cfm?id=106765.106782

[16] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum
Likelihood from Incomplete Data via the EM Algorithm,” Journal
of the Royal Statistical Society. Series B (Methodological),
vol. 39, no. 1, pp. 1–38, 1977. [Online]. Available:
http://web.mit.edu/6.435/www/Dempster77.pdf

[17] C. Buckley and E. M. Voorhees, “Evaluating evaluation measure
stability,” in Proceedings of the 23rd Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval,
ser. SIGIR ’00. New York, NY, USA: ACM, 2000, pp. 33–40.
[Online]. Available: http://doi.acm.org/10.1145/345508.345543

[18] K. Järvelin and J. Kekäläinen, “Cumulated gain-based evaluation of ir
techniques,” ACM Trans. Inf. Syst., vol. 20, no. 4, pp. 422–446, Oct.
2002. [Online]. Available: http://doi.acm.org/10.1145/582415.582418

[19] T. Hofmann, “Collaborative filtering via gaussian probabilistic latent
semantic analysis,” in Proceedings of the 26th Annual International
ACM SIGIR Conference on Research and Development in Informaion
Retrieval, ser. SIGIR ’03. New York, NY, USA: ACM, 2003, pp. 259–
266. [Online]. Available: http://doi.acm.org/10.1145/860435.860483

970

