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Abstract—In the framework of Ω-sets, where Ω is a complete
lattice, we generalize the notion of a (universal) algebra, and
we investigate its basic properties. Our techniques belong to the
theory of lattice-valued (fuzzy) structures and we use cut-sets.
An Ω-algebra is equipped with an Ω-valued equality instead of
the classical one. We investigate identities and their satisfiability
by these new structures. We prove that a set of identities holds
on an Ω-algebra if and only if the cut-subalgebras over the
corresponding cut-congruences of the Ω-valued equality satisfy
the same identities in the classical setting.

I. INTRODUCTION

The topic of this research are Ω-valued algebraic structures,
where Ω is a complete lattice.

Our research originates in both, in fuzzy structures and
in Ω-sets. Formally fuzzy set theory was found in 1965., by
Zadeh’s known paper [21], and has become a highly developed
theory since then. Ω-sets appeared 1979., in the paper [10] by
Fourman and Scott. Introducing Ω-sets, they intended to model
intuitionistic logic. An Ω-set is a nonempty set A equipped
with an Ω-valued equality E, with truth values in a complete
Heyting algebra Ω. E is a symmetric and transitive function
from E2 to Ω. Ω-sets have been further applied to non-classical
predicate logics, and also to theoretical foundations of Fuzzy
Set Theory ([12], [14]).

We use Ω-sets and in our approach Ω is a complete lattice
(not necessarily a Heyting algebra, or some other residuated
lattice). The main reason for choosing this membership values
structure is our usage of lattice operations meet and join (and
not some additional operations existing in residuated lattices).
Namely, these operations allow us to use cut-sets as a tool.
In this setting, main algebraic and set-theoretic notions and
their properties can be generalized from their classical origin
(appearing on cut structures) to the lattice-valued framework
(’cutworthy’ properties, see [16]). This is not the case if other
operations in residuated lattices are applied: if the operations
are not meet and join, then many properties of cuts could
not be transferred, generalized to fuzzy structures. So we deal
also with lattice-valued sets. These were developed within the
Fuzzy Set Theory in which the unit interval has been replaced
by a complete lattice (firstly by Goguen [11]). This approach
is widely used for dealing with algebraic topics (see e.g.,
[9], then also [18], [19]), and with lattice-valued topology
(starting with [15] and many others). In the recent decades,
along with the development of fuzzy logic, a complete lattice
as a membership (truth values) structure is often replaced by
a complete residuated lattice (see e.g., [1]).

A lattice-valued equality generalizing the classical one has
been introduced in fuzzy mathematics by Höhle in [13], (see
also [14]), and then it was used in investigations of fuzzy
functions and fuzzy algebraic structures by many authors, in
particular by Demirci ([8]), Bělohlávek and V. Vychodil ([2])
and others. Compatible fuzzy relations were also investigated
from the early period (see, e.g., Murali ([17]).

Identities for lattice-valued structures with fuzzy equality
were introduced in [20], and then developed in [3], [4], [5],
[6]. In this framework, an identity holds if the corresponding
lattice-theoretic formula is fulfilled. What is new in this
approach is that an identity may hold on a lattice-valued
algebra, while the underlying classical algebra does not satisfy
the analogue classical identity.

II. PRELIMINARIES

A. Lattices, algebras

A partially ordered set (Ω,�), where every subset M has
both a meet

∧
M and a join

∨
M is a complete lattice. A

complete lattice possesses the least and the greatest elements
0 and 1, respectively. A meet and a join of a two-element
subset {a, b} of Ω are binary operations, denoted by a∧ b and
a ∨ b, respectively.

A language (or a type) L is a set F of functional symbols,
together with a set of natural numbers (arities) associated
to these symbols. An algebra of type L is a pair (A,F ),
denoted by A, where A is a nonempty set and F is a
set of (fundamental) operations on A. An n-ary operation
in F corresponds to an n-ary symbol in the language. A
subalgebra of A is an algebra of the same type, defined on
a subset of A, closed under the operations in F . Terms in a
language are regular expressions constructed by the variables
and operational symbols (see [7]). If t(x1, . . . , xn) is a term
in the language of an algebra A, then by tA we denote the
corresponding term-operation An → A on A (as usual, tA

is obtained by replacing all functional symbols in t by the
corresponding fundamental operations on A, and variables by
elements from A). An identity in a language is a formula
t1 ≈ t2, where t1, t2 are terms in the same language. An
identity t1(x1, . . . , xn) ≈ t2(x1, . . . , xn) is said to be valid
on an algebra A = (A,F ), or that A satisfies this identity,
if for all a1, . . . , an ∈ A, the equality tA1 (a1, . . . , an) =
tA2 (a1, . . . , an) holds. An equivalence relation ρ on A which is
compatible with respect to all fundamental operations, meaning
that xiρyi, i = 1, . . . , n imply f(x1, . . . , xn)ρf(y1, . . . , yn), is
a congruence relation on A.
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B. Ω-valued functions and relations

Throughout the paper, (Ω,∧,∨,�) is a complete lattice
with the top and the bottom elements 1 and 0 respectively.

An Ω-valued function μ on a nonempty set A is a mapping
μ : A → Ω.

For p ∈ Ω, a cut set or a p-cut of an Ω-valued function
μ : A → Ω is a subset μp of A which is the inverse image of
the principal filter in Ω, generated by p:

μp = μ−1(↑(p)) = {x ∈ A | μ(x) � p}.

An Ω-valued (binary) relation R on A is an Ω-valued
function on A2, i.e., it is a mapping R : A2 → Ω.

R is symmetric if

R(x, y) = R(y, x) for all x, y ∈ A; (1)

R is transitive if

R(x, y) � R(x, z) ∧R(z, y) for all x, y, z ∈ A. (2)

Let μ : A → Ω and R : A2 → Ω be an Ω-valued function
an Ω-valued relation on A, respectively. Then we say that R
is an Ω-valued relation on μ if for all x, y ∈ A

R(x, y) � μ(x) ∧ μ(y). (3)

An Ω-valued relation R on μ : A → Ω is said to be
reflexive on μ if

R(x, x) = μ(x) for every x ∈ A. (4)

A symmetric and transitive Ω-valued relation R on A,
which is reflexive on μ : A → Ω is an Ω-valued equivalence
on μ.

Observe that an Ω-valued equivalence R on A fulfills the
strictness property (see [14]):

R(x, y) � R(x, x) ∧R(y, y). (5)

A Ω-valued equivalence R on A is an Ω-valued equality,
if it satisfies the strong separation property:

R(x, y) = R(x, x) implies x = y. (6)

Remark 1: In [10] and then also in [14], the separation
property is introduced by E(x, y) = 1 implies x = y.
Obviously, the strong separation implies the separation.

A lattice-valued subalgebra of an algebra A = (A,F ),
here an Ω-valued subalgebra of A is a function μ : A →
Ω which is not constantly equal to 0, and which fulfils the
following: For any operation f from F with arity greater than
0, f : An → A, n ∈ N, and for all a1, . . . , an ∈ A, we have
that

n∧

i=1

μ(ai) � μ(f(a1, . . . , an)), (7)

and for a nullary operation c ∈ F, μ(c) = 1. (8)

How the term operations behave in the lattice valued
settings is formulated in the sequel. The proof goes easily by
induction on the complexity of terms ([6]).

Proposition 1: Let μ : A → Ω be an Ω-valued subalgebra
of an algebra A and let t(x1, . . . , xn) be a term in the language
of A. If a1, . . . , an ∈ A, then the following holds:

n∧

i=1

μ(ai) � μ(tA(a1, . . . , an)). (9)

�

An Ω-valued relation R : A2 → Ω on an algebra A =
(A,F ) is compatible with the operations in F if the following
two conditions holds: for every n-ary operation f ∈ F , for all
a1, . . . , an, b1, . . . , bn ∈ A, and for every constant (nullary
operation) c ∈ F

n∧

i=1

R(ai, bi) � R(f(a1, . . . , an), f(b1, . . . , bn)); (10)

R(c, c) = 1. (11)

III. Ω-ALGEBRAS

A. Ω-set

The following is defined in [10], and then adopted to a
fuzzy framework in [6].

An Ω-set is a pair (A,E), where A is a nonempty set,
and E is a symmetric and transitive Ω-valued relation on A,
fulfilling the strong separation property (6).

For an Ω-set (A,E), we denote by μ the Ω-valued function
on A, defined by

μ(x) := E(x, x). (12)

We say that μ is determined by E. Clearly, by the strictness
property, E is an Ω-valued relation on μ, namely, it is an Ω-
valued equality on μ. That is why we say that in an Ω-set
(A,E), E is an Ω-valued equality.

Recall that by the definition of a cut, for p ∈ Ω, a p-cut of
E : A2 → Ω is a binary relation on A given by

(x, y) ∈ Ep if and only if E(x, y) � p.

Lemma 1: If (A,E) is an Ω-set and p ∈ Ω, then the cut Ep

is an equivalence relation on the corresponding cut μp of μ.

Proof: We prove reflexivity of Ep on μp: (x, x) ∈ Ep

if and only if E(x, x) = μ(x) � p, if and only if x ∈ μp.
Similarly, one could prove symmetry and transitivity.

B. Ω-algebra; identities

Next we introduce a notion of a lattice-valued algebra with
a lattice valued equality.

Let A = (A,F ) be an algebra and E : A2 → Ω an Ω-
valued equality on A, which is compatible with the operations
in F . Then we say that (A, E) is an Ω-algebra. Algebra A is
the underlying algebra of (A, E).

Next we present some cut properties of Ω-algebras. These
have been proved in [6], in the framework of groups.

Proposition 2: Let (A, E) be an Ω-algebra. Then the fol-
lowing hold:

(i ) The function μ : A → Ω determined by E (μ(x) =
E(x, x) for all x ∈ A), is an Ω-valued subalgebra of A.
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(ii ) For every p ∈ Ω, the cut μp of μ is a subalgebra of A,
and

(iii ) For every p ∈ Ω, the cut Ep of E is a congruence
relation on μp.

Next we define how identities hold on Ω-algebras, accord-
ing to the approach in [20].

Let and u(x1, . . . , xn) ≈ v(x1, . . . , xn) (briefly u ≈ v) be
an identity in the type of an Ω-algebra (A, E). We assume,
as usual, that variables appearing in terms u and v are from
x1, . . . , xn Then, (A, E) satisfies identity u ≈ v (i.e., this
identity holds on (A, E)) if the following condition is fulfilled:

n∧

i=1

μ(ai) � E(uA(a1, . . . , an), v
A(a1, . . . , an)), (13)

for all a1, . . . , an ∈ A and for the term-operations uA and vA

on A corresponding to terms u and v respectively.

Hence, identity u ≈ v holds on (A, E), if the inequality
(13) is fulfilled in the lattice Ω whenever variables are
replaced by elements from A, and the operational symbols
are replaced by the corresponding operations.

If Ω-algebra (A, E) satisfies an identity, then this identity
need not hold on A. On the other hand, if the supporting
algebra fulfills an identity then also the corresponding Ω-
algebra does.

Proposition 3: [6] If an identity u ≈ v holds on an algebra
A, then it also holds on an Ω-algebra (A, E).

Proof: Suppose that x1, x2, . . . , xn are variables appear-
ing in terms u, v. If u ≈ v holds on A, then for any
a1, . . . , an ∈ A, uA(a1, . . . , an) = vA(a1, . . . , an), hence

E(uA(a1, . . . , an), v
A(a1, . . . , an)) =

E(uA(a1, . . . , an), u
A(a1, . . . , an)) = μ(u(a1, . . . , an)) �

n∧

i=1

μ(ai).

In the following we analyze basic properties of Ω-algebras
and how they are related to properties of the corresponding
underlying algebras.

Let (A, E) be an Ω-algebra.

First we deal with nullary operations (constants), if they
exist in A. By formulas (8) and (11), if c is a constant in
A (determined by a nullary operation in the language), then
E(c, c) = μ(c) = 1. The reason for this requirement included
in the definition of compatibility is based on the following
property.

Lemma 2: If (A, E) is an Ω-algebra and c ∈ F a constant
nullary fundamental operation on A, then E(c, c) � E(x, x),
for every x ∈ A.

Proof: Recall that we denote by μ : A → Ω the Ω-valued
mapping defined by μ(x) = E(x, x). By Proposition 2 (ii), for
every p ∈ Ω, we have that μp is a subalgebra of A. Therefore,

being of the same type as A, μp should contain c. Hence, for
every p ∈ Ω, x ∈ μp, if x ∈ μp, then also c ∈ μp. Therefore,
for every x ∈ A, E(x, x) = μ(x) � μ(c) = E(c, c).

Proposition 4: Let (A, E) be an Ω-algebra. For every term
u(x1, . . . , xn) in the language of A,

μ(uA(ci1 , . . . , cin)) = 1,

where uA is the term operation on A, corresponding to the term
u, and ci1 , . . . , cin are constants (not necessarily different) from
the set F of fundamental operations of A.

Proof: Since μ is an Ω-valued subalgebra of A, by (9)
we have

μ(uA(ci1 , . . . , cin)) � μ(ci1)∧ . . .∧μ(cin) = 1∧ · · · ∧ 1 = 1.

If u(x1, . . . , xn) is a term in the language of an algebra A,
then a term operation uA(x1, . . . , xn) on A is idempotent, if
A satisfies the identity u(x, . . . , x) ≈ x.

Theorem 1: A term operation uA(x1, . . . , xn) is idempo-
tent on an Ω-algebra (A, E) if and only if it is idempotent on
A.

Proof: If the identity u(x, . . . , x) ≈ x holds on A, then
for all x ∈ A, uA(x, . . . , x) = x, hence E(x, uA(x, . . . , x)) =
μ(x), and by (13), the same identity holds also on (A, E).

Conversely, suppose that the identity u(x, . . . , x) ≈ x
holds on (A, E) i.e., let E(x, uA(x, . . . , x) � μ(x) for all
x ∈ A. Since E(x, uA(x, . . . , x)) � μ(x) due to (3), we
have E(x, uA(x, . . . , x)) = μ(x), and by the strong sepa-
ration property we conclude that for all x ∈ A, we have
uA(x, . . . , x) = x.

Our main results are characterizations of Ω-algebras in
terms of subalgebras, congruence relations and classical quo-
tient structures. Recall that for an Ω-algebra (A, E), the
function μ : A → Ω, μ(x) = E(x, x) is an Ω-subalgebra
of A. Further, for every p ∈ Ω, the cut μp is a subalgebra of
A, and the cut relation Ep is a congruence relation on μp.

Theorem 2: Let (A, E) be an Ω-algebra, and F a set of
identities in the language of A. Then, (A, E) satisfies all
identities in F if and only if for every p ∈ Ω the quotient algebra
μp/Ep satisfies the same identities.

Proof: Let (A, E) be an Ω-algebra, fulfilling the set F
of identities. For p ∈ Ω, consider the quotient algebra μp/Ep

of the subalgebra μp of A over the congruence Ep on μp. We
prove that this classical algebra satisfies all identities in F .

Let u(x1, . . . , xn) ≈ v(x1, . . . , xn) be an identity from
F . By assumption, for all x1, . . . , xn ∈ A, and for the
corresponding term operations uA, vA, we have

μ(x1) ∧ . . . ∧ μ(xn) � E(uA(x1, . . . , xn), v
A(x1, . . . , xn)).

In particular, for x1, . . . , xn ∈ μp, we have

μ(x1) ∧ . . . ∧ μ(xn) � p,

hence

E(uA(x1, . . . , xn), v
A(x1, . . . , xn)) � p,
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and

(uA(x1, . . . , xn), v
A(x1, . . . , xn)) ∈ Ep,

since Ep is a congruence relation on the subalgebra μp.
Therefore, these values belong to the same congruence class,
in other words

[uA(x1, . . . , xn)]Ep = [vA(x1, . . . , xn)]Ep ,

and by the compatibility of Ep

uA([x1]Ep , . . . , [xn]Ep) = vA([x1]Ep , . . . , [xn]Ep).

Therefore, the identity u ≈ v holds on μp/Ep.

Conversely, assume that for every p ∈ Ω, the quotient
algebra μp/Ep satisfies every identity from F , i.e., if u ≈ v
is an identity from F , then for all x1, . . . , xn ∈ μp, we have

uA([x1]Ep , . . . , [xn]Ep) = vA([x1]Ep , . . . , [xn]Ep),

then obviously

[uA(x1, . . . , xn)]Ep
= [vA(x1, . . . , xn)]Ep

.

For arbitrary x1, . . . , xn ∈ A, we take μ(x1)∧. . .∧μ(xn) = p,
and by the above we get

E(uA(x1, . . . , xn), v
A(x1, . . . , xn)) � p = μ(x1)∧ . . . μ(xn),

which proves that the identity u ≈ v holds on (A, E).

Next we prove that for special Ω-equalities, the underlying
algebra satisfies a set of identities if the corresponding Ω-
algebra does.

We call an Ω-equality E : A2 → Ω quasi-diagonal if for
all x, y ∈ A, such that x �= y,

E(x, y) <
∧

t∈A
E(t, t).

Theorem 3: Let (A, E) be an Ω-algebra, where E is a
quasi-diagonal Ω-equality. If (A, E) satisfies a set of identities
F , then also the underlying algebra A satisfies the same identi-
ties.

Proof: By the strong separation property (6), for every
x ∈ A, we have E(x, x) �= 0. Hence, since E is a quasi-
diagonal Ω-equality, it follows that for q =

∧
x∈A μ(x), μq =

A, and Eq = {(x, x) | x ∈ A} = Δ i.e., Eq is the equality
relation Δ on A. By Theorem 2, for every p ∈ Ω, the quotient
algebra μp/Ep fulfills all identities in F . In particular, μq/Eq

fulfills these identities. Therefore, μq/Eq = A/Δ. Obviously,
A/Δ is isomorphic with A, hence A satisfies all identities in
F .

IV. Ω-SUBALGEBRA

Let (A, E) be an Ω-algebra, and E1 : A → Ω a symmetric
and transitive Ω-relation on A, so that the following holds: for
all x, y ∈ A

E1(x, y) = E(x, y) ∧ E1(x, x) ∧ E1(y, y) (14)

Let also E1 be compatible with the operations in A. Obviously,
(A, E1) is an Ω-algebra and we say that it is an Ω-subalgebra
of (A, E).

The proof of the following proposition is straightforward,
due to the definition μ1(x) = E1(x, x), and since E1 is
compatible with the operations in A.

Proposition 5: If (A, E1) is an Ω-subalgebra of an Ω-
algebra (A, E), and μ1 : A → Ω is an Ω-valued function
on A, defined by μ1(x) := E1(x, x), then μ1 is an Ω-valued
subalgebra of A, i.e., it fulfills (7) and (8).

Next we prove that an Ω-subalgebra (A, E1) of (A, E) fulfills
all the identities that the latter does.

Theorem 4: Let Let (A, E1) be an Ω-subalgebra of an Ω-
algebra (A, E). If (A, E) satisfies the set Σ of identities, then
also (A, E1) satisfies all identities in Σ.

Proof: Let u ≈ v be an identity from Σ, with variables
x1, . . . , xn. Then, since u ≈ v holds in (A, E), by the defini-
tion of E1 and the fact that it is compatible with operations
on A, by the definition of μ1, and by Proposition 1, for all
a1, . . . , an ∈ A, we have
n∧

i=1

μ1(ai) =
n∧

i=1

E1(ai, ai) =
n∧

i=1

E(ai, ai)∧
n∧

i=1

E1(ai, ai) =

n∧

i=1

μ(ai) ∧
n∧

i=1

E1(ai, ai) �

E(uA(a1, . . . , an), v
A(a1, . . . , an)) ∧

n∧

i=1

E1(ai, ai) =

E(uA(a1, . . . , an), v
A(a1, . . . , an)) ∧

n∧

i=1

μ1(ai) �

E(uA(a1, . . . , an), v
A(a1, . . . , an)) ∧

μ1(u
A(a1, . . . , an)) ∧ μ1(v

A(a1, . . . , an)) =

E(uA(a1, . . . , an), v
A(a1, . . . , an)) ∧

E1(u
A(a1, . . . , an), u

A(a1, . . . , an)) ∧
E1(v

A(a1, . . . , an), v
A(a1, . . . , an)) =

E1(u
A(a1, . . . , an), v

A(a1, . . . , an)).

V. CONCLUSION

The paper introduces a new type of algebraic structures, in
the framework of lattice-valued sets and a suitable fuzzy equal-
ity replacing the classical one. We deal with general properties
of these algebras, using lattice-valued (fuzzy) identities. It
turns out that this approach enables investigation of structures
which do not satisfy identities (commutativity, associativity
etc.), but their quotient cut substructures do.

The next task would be investigation of the corresponding
congruences, homomorphisms and product structures.
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identities with application to fuzzy semigroups, Information Sciences,
266 (2014) 148–159.
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