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Abstract— Software effort estimation is very crucial and there is 
always a need to improve its accuracy as much as possible. Several 
estimation techniques have been developed in this regard and it is 
difficult to determine which model gives more accurate estimation 
on which dataset. Among all proposed methods, the Radial Basis 
Function Neural (RBFN) networks models have presented 
promising results in software effort estimation. The main objective 
of this research is to evaluate the RBFN networks construction 
based on both hard and fuzzy C-means clustering algorithms using 
cross-validation approach. The objective of this replication study is 
to investigate if the RBFN-based models learned from the training 
data are able to estimate accurately the efforts of yet unseen data. 
This evaluation uses two historical datasets, namely COCOMO81 
and ISBSG R8. 

I. INTRODUCTION 
Software development effort estimation is very important for 

the successful completion of any software project. Hence, 
software development effort and schedule can be predicted on the 
basis of past software project datasets. Effort estimation of 
software projects can be done basically in three ways [1,2,3]: 

Judgment based on experts: That aims to derive estimates 
based on experience of experts on similar projects. It is based on 
a tacit (intuition-based) quantification step [4]. Therefore, it is not 
repeatable. According to Gray et al. [5] although expert judgment 
is always difficult to quantify, it can be an effective tool to adjust 
both machine learning (ML) and non-ML techniques. 

Non-machine learning (Non-ML) techniques: They are based 
on mathematical formulae linking effort with effort drivers to 
produce an estimate of the project [6,7]. Usually the principal 
effort driver used in these models is software size measured in 
terms of function points or source lines of code. 

Machine learning (ML) techniques: Effort estimation is based 
on applying various machine learning algorithms such as 
artificial neural networks (ANN) [8,9], case-based reasoning 
(CBR)[10,11,12], decision trees [13,14] and fuzzy logic [15,16]. 

These models have received recently increasing attention from 
researchers [2,3]. 

 ANNs have been investigated in software effort estimations 
because they can interpret the complex relationships among 
software project features. Moreover they have learning ability 
and are good at modeling complex non-linear relationships but 
they are still hard to understand and/or to interpret [3,17,18,] 
However, the use of ANNs in software effort estimation is far 
from mature. Among all types of ANNs, feedforward ANNs have 
been widely used for software effort estimations [19-23]. Usually 
the number of layers, number of neurons in each layer, selection 
of activation function, quality of data, over-fitting, and outliers 
are the main subjects to build an ANN-based software effort 
estimation model [3]. 

 In our earlier works [24-26], three clustering techniques (i.e., 
APCIII, hard C-means and fuzzy C-means, were empirically 
evaluated to design the middle layer of RBFN for software effort 
estimation. It has been illustrated that: 1) the RBFN designed 
with C-means performs better, in term of effort estimates 
accuracy, than the RBFN designed with APCIII algorithm; and 2) 
an RBFN using fuzzy C-means performs better, in terms of 
accuracy and tolerance of imprecision, than an RBFN using hard 
C-means. However, the importance of these findings is limited 
since the accuracy of any estimation technique (for instance 
RBFN), is highly depended on the characteristics of the used 
dataset, especially its sample size. Consequently, that study [27] 
used the International Software Benchmarking Standards Group 
repository-ISBSG release 8 dataset [28] which contains more 
than 2000 historical software projects from which 151 software 
projects were retained to evaluate the estimation accuracy of 
RBFN-based effort estimation models. The results showed that 
the accuracy of RBFN construction-based on fuzzy C-means 
generates more accurate estimates than an RBFN using hard C-
means especially when decreasing the number of clusters. 
Moreover, we have found that an RBFN using fuzzy C-means 
better tolerates imprecision than an RBFN using hard C-means 
and hence may avoid the over-fitting problem. Since all our 
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previous studies on RBFN-based effort estimation used the same 
data for learning and testing stages of the model, this paper 
revisits them by means of a specific cross-validation approach on 
two different datasets. Therefore, this study evaluates the 
estimates accuracy of the RBFN-based models on both learning 
and testing sets in order to analyze their strengths and 
weaknesses in terms of accuracy, robustness and generalization. 

 The rest of the paper is organized as follows: Section 2 
presents how an RBFN network may be used for software effort 
estimation. Section 3 describes the two datasets and the accuracy 
performance measures used in this study. Section 4 describes our 
approach to estimate required software effort with the 
experimental setup i.e., datasets preparation and implementation 
details using cross-validation approach. Section 5 presents the 
results obtained when applying different RBFN-based effort 
estimation models on the datasets. Finally, Section 6 summarizes 
our findings. 

II.  RBFN NETWORK FOR SOFTWARE EFFORT ESTIMATION 
 Radial Basis Function Networks are a special case of artificial 
neural networks, rooted in the idea of biological receptive fields 
[29]. Figure 1 shows a RBFN architecture configured for 
software development effort. An RBFN is a three-layer feed 
forward network consisting of one input layer, one middle layer 
and an output layer. The RBFN generates output (effort) by 
propagating the initial inputs (cost drivers) through the middle-
layer to the final output layer. Each input neuron corresponds to a 
component of an input vector. The input-layer contains M 
neurons, each input neuron is fully connected to the middle-layer 
neurons. The activation function of each middle neuron is usually 
the Gaussian function. The Gaussian function decreases rapidly if 
the width �i is small, and slowly if it is large. The output layer 
consists of one output neuron that computes the software 
development effort as a linear weighted sum of the outputs of the 
middle layer. Clustering is the key technique to be used as a 
preprocessing phase in the design of the RBFN networks. This 
procedure initially distributes the respective fields of hidden layer 
neurons across the space of input variables. 

  
Fig.  1. Radial basis function network. 

III. DATASETS DESCRIPTION AND PERFORMANCE EVALUATION 
CRITERIA 

 This section describes the datasets used in this study and the 
evaluation criteria used to compare the predictive accuracy of the 
designed models. 

A. Datasets Description 
Two datasets are used in this empirical study. Table 1 

provides some statistics on these datasets including the total 
number of projects, the number of attributes taken into 
consideration, minimum, maximum and the mean of real efforts. 

TABLE I.  STATISTICS ON DATA SETS. 

 
 

Dataset #Projects #Attributes 

Real effort (Person-
Months for COCOMO81 

and Person-Hours for 
ISBSG) 

Min Max Mean 

ISBSG 151 6 24 60270 5039.13 

COCOMO81 252 13 6 11400 683.44 

 

ISBSG repository. The International Software Benchmarking 
Standards Group is a multi-organizational dataset [28] containing 
different projects gathered from different organizations in 
different countries. Major contributors come from Australia 
(21%), Japan (20%) and United States (18%). ISBSG repository 
release 8 contains more than 2000 software projects from which 
151 software projects were retained. The selection of software 
projects bas been performed by choosing the software projects 
with high quality data according to the following four criteria: 
Data Quality Rating field, Resource levels, Unadjusted Function 
Points (UFP) and Development Type [27]. The selection of the 
attributes to be used as the inputs (effort drivers) of an effort 
estimation model based on an RBFN network has been 
conducted by allowing the estimators to use the attributes that 
they believe best characterize their projects and are more 
appropriate in their environment. The projects in ISBSG dataset 
are described by more than 50 attributes. Moreover, the use of 
hard or fuzzy C-means requires numerical attributes. 
Consequently, the selected attributes must be numerical. Table 2 
shows the six attributes that have been selected since they were 
usually considered in the previous studies [27] as relevant cost 
drivers. 

TABLE II.  SOFTWARE PROJECT ATTRIBUTES FOR ISBSG DATASET 

Attributes Description 
Value Adjustment Factor/ 
VAF 

The adjustment of the function points 

Unadjusted Function Points/ 
UFP 

The unadjusted function point count   

Max Team Size The maximum number of people that 
worked at any time on the project 

User Base/ Business Units Number of business units that the 
system services  

Input layer                      Hidden layer                Output layer 
 

CostDriver 1 
 
 
 
CostDriver 2 

 
 

 
CostDriver 3 
 
 
CostDriver 4 

 
 
 

Effort 

βi 

ci, σi 

 
Y1 
 
Y2 
 
 

Y3 
 
 
 
YM 
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Attributes Description 
User Base/ Locations Number of physical locations being 

serviced by the installed system.  
User Base/ Concurrent 
Users 

Number of users using the system 
concurrently. 

Value Adjustment Factor/ 
VAF 

The adjustment of the function points 

 

Artificial COCOMO81 dataset. The original COCOMO81 
dataset contains 63 projects which are mostly scientific 
applications developed by Fortran [6]. However, it is suitable that 
the use of ANNs in any field should be based on a sufficient 
number of cases. Therefore, we used in this study an artificial 
COCOMO81 dataset generated from the original one [30]. It 
contains 252 software projects which are mostly scientific 
applications developed by Fortran generated from the original 
one [6]. As shown in Table 3, each project is described by 13 
attributes. The software size measured in KDSI (Kilo Delivered 
Source Instructions) and the remaining 12 attributes are measured 
on a scale composed of six linguistic values: ‘very low’, ‘low’, 
‘nominal’, ‘high’, ‘very high’ and ‘extra high’. These 12 
attributes are related to the software development environment 
such as the experience of the personnel involved in the project, 
the method used in the development and the time and storage 
constraints imposed on the software. 

TABLE III.  SOFTWARE PROJECT ATTRIBUTES FOR COCOMO81 DATASET. 

Attributes Description 
SIZE Software size 

DATA Database size 

VIRTMIN Virtual machine volatility 

TIME Execution time constraints 

STOR Main storage constraints 

VIRT MAJ Virtual machine volatility 

TURN Computer turnaround 

ACAP Analyst capability 

AEXP Application experience 

PCAP Programmer capability 

VEXP Virtual machine experience 

LEXP Programming language and tool 
experience 

SCED Required development Schedule 

B. Data Normalization 
Due to the nature of the attributes in the two datasets, some of 

continuous attributes show a larger range of values than others 
which may make the effect of these attributes too important. In 
order to normalize the two datasets used, the solution was to 
scale the continuous attributes into the same range. To achieve 
this, all continuous attributes are normalized applying the min-

max normalization formula of Equation (1) such that all 
numerical variables are scaled within the range of [0, 1]. 

����� � ����� � 	
� ������
	�
������ � 	
���������������������  (1) 

Where 	
�������is the minimum value of the dataset�����, 
	�
������is the maximum value of the dataset�����, if 
	�
������is equal to the�	
�������, then Normalized ����� is 
set to 0.5. 

C. Performance measures  
The accuracy of the model is evaluated by using the 

following criteria: 

The Magnitude of Relative Error. MRE is a very common 
criterion used to evaluate software cost estimation models. The 
MRE for each observation obtained as: 

��� � �Effortactual � Effortpredicted

Effortactual
�������  (2) 

The Mean Magnitude of Relative Error. MMRE can be 
achieved through the summation of MRE over N observations. 

���� � � �������� ����������������������������  (3) 

The Percentage of the Prediction. PRED is computed as 
follow: 

���� ��� � �
� ����������������������������  (4) 

 Where, A is the number of projects with MRE less than or 
equal to X, and N is the total number of projects. Usually the 
ideal amount of X in software effort estimation methods is 0.25 
and the various methods are compared based on this level. The 
prediction at 25%, Pred(25), represents the percentage of projects 
which MRE is less or equal to 25%. Pred(25) value identifies the 
software effort estimates that are within the specified range 
whereas the MMRE is fairly conservative with a bias against 
overestimates. Pred(25) can take a value between 0 and 100 
percent, while the MMRE can take any positive value. It is often 
difficult to compare results across different studies due to 
differences in empirical setup and data preprocessing, but a 
typical Pred(25) lies in the range of 65 to 100 percent. 

IV. EMPIRICAL DESIGN  
The potential over-fitting problem of a neural network should 

be dealt by applying methods such as cross-validation in order to 
evaluate the accuracy and evaluate the generalization level of the 
models. Cross-validation methodology is used for comparing 
models by dividing data into two segments: one used to learn or 
train a model and the other used for testing to validate the model. 
In typical cross-validation, the training set and testing set must 
cross-over in successive rounds such that each data point has a 
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chance of being validated against. The basic form of cross-
validation is k-fold cross-validation; other used forms are special 
cases of k-fold cross-validation or involve repeated rounds of k-
fold cross-validation. In k-fold cross-validation, the data is first 
partitioned into k equally (or nearly equally) sized segments or 
folds.  Subsequently k iterations of training and testing are 
performed. 

In this study, a cross-validation technique is used on the one 
hand, to evaluate the generalization performance of the trained 
RBFN model construction-based either on hard or fuzzy C-means 
and, on the other hand, to compare the performance of the 
designed RBFN models to find out the best model for the 
available data. More specifically, the cross-validation technique 
used in this work for evaluating the performance of RBFN 
consists on having different data in training and testing. Indeed, 
10 equal size collections are obtained for either training or testing 
sets by partitioning the original datasets; this technique will allow 
us to make the best use of our (limited) datasets for training, 
testing and performance evaluation.  

To decide on the number of hidden units, several tests have 
been performed with both hard C-means and fuzzy C-means 
algorithms. Choosing the best classification to determine the 
number of hidden neurons and their centers is not an obvious 
task. For software effort estimation, the best classification is the 
one that provides coherent clusters which have satisfactory 
degrees of similarity, and improve the accuracy of estimates, in 
terms of MMRE and Pred(25), produced by the RBFN. Indeed, 
the execution of our software prototypes which implement hard 
and fuzzy C-means clustering algorithms together with the 
software prototype implementing the RBFN model are repeated 
10 times. The means of obtained results from 10 iterations are 
treated as the final result of MMRE and Pred(25). Figure 2 shows 
the evaluation process of an RFBN-based effort estimation model 
using the cross-validation strategy. 

 
Fig.  2. Steps of the evaluation process 

A. Step 1: Train/Test datasets generation. 
This step consists in dividing each dataset on two subsets to 

be used for training and testing the RBFN effort estimation 
models respectively. Table 4 shows the number of projects of 
each dataset for training and testing. This training/testing subsets 
generation process was repeated 10 times for each dataset with 
the same percent of Table 4. Hence, for each dataset, 10 different 
collections of training/testing subsets have been obtained. Hence, 

for each dataset, 10 different collections of training/testing 
subsets have been obtained. 

TABLE IV.  TRAINING AND TESTING SETS GENERATION 

Datasets #Training 
Projects 

%Training 
Set 

#Testing 
Projects 

%Testing 
Set 

ISBSG 100 66.23% 51 33.77% 

COCOMO81 200 79.37% 52 20.63% 

 

B. Step 2: RBFN models construction and evaluation using 
training subsets. 
This step consists on the construction and evaluation of 

RBFN-based effort estimation models using the training subsets 
of the 10 collections of each dataset. The use of an RBFN on 
each training subset of a collection to estimate software 
development effort requires the determination of its architecture 
parameters according to the characteristics of the training 
software projects, especially the number of input neurons, 
number of hidden neurons, centers cj, widths j and weights �j. 
The number of the input neurons is, usually, the number of the 
attributes describing the training software projects of the used 
dataset. Therefore, according to Table 1, the number of input 
neurons of the RBFN models of ISBSG and COCOMO81 is 6 
and 13 respectively. 

The construction of the hidden layer of the proposed RBFN 
networks is achieved using hard and fuzzy C-means. The role of 
clustering in the design of RBFN is to set up an initial 
distribution of receptive fields (hidden neurons) across the input 
space of the input variables (effort drivers). For the widths �j, 
many techniques based on solid mathematical concepts have 
been proposed in the literature [31, 32, 33]. Based on our 
previous results [24-27] in which accurate estimates were 
obtained when using the formula defined by Haykin [34], we 
adopt this solution which consists in assigning one value to all 
(�j). Concerning the weights �j, we may set each �j to the 
associated effort of the center of the jth neuron. But this technique 
is not optimal and does not take into account the overlapping that 
may exist between receptive fields of the hidden layer. Thus, we 
use the learning Delta rule to derive the values of �j. 

 For each collection of a dataset and based on its training 
subset, 10 evaluations have been performed with both hard and 
fuzzy C-means algorithms to decide on the number of hidden 
units of an RBFN model. Thereafter, for each collection/training 
subset, the best classification is the one that provides coherent 
clusters which have satisfactory degrees of similarity and 
improve the accuracy of estimates, in terms of Pred(25). Hence 
the chosen RBFN models of each collection/training subset are 
those with acceptable Pred(25) (around 65%) and have minimum 
number of hidden neurons (clusters). To summarize, in this step 
we have performed in total 400 (2datasets* 10collections* 
10evaluations* 2clustering techniques) evaluations for RBFN-
construction based on hard and fuzzy C-means. 

 

Step 1: Train/Test datasets generation

Step 2: RBFN models construction and 
evaluation using training subsets

Step 3: RBFN models evaluation using 
testing subsets
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C. Step 3: RBFN models evaluation using testin
 This step consists on the evaluation of th
models of the step 2 using the testing sub
collections of each dataset. The aim is t
generalization power of the designed RBFN m
number of evaluations X of each dataset is cal
following equation: 

� �  !"#$�%&��'(��)*++�)&,*-.&�/,-,-
�0

���
 Where #best RBFN(collection/training) is 
selected RBFN models which have Pred(25) a
minimize the numbers of clusters during trainin
(dataset, collection, training set). Thereafter, ea
selected model is executed 10 times on the tes
mean value of Pred(25) is calculated to analy
testing phase. 

V. RESULTS AND DISCUSSION 

A. Cross-validation of RBFN-based on hard C-
The To measure the coherence of clusters in

means, the objective function J, rather than the
index, is used. Indeed, in our previous empirica
the use of J had led to accurate estimates w
RBFN based on C-means to different datasets. T
the RBFN construction-based on C-means 
according to the process of Figure 2.The obta
presented and discussed below. 

For each collection of the ISBSG or COCO
we have performed several evaluations, 1) 10 e
training subsets to build the RBFN models 
evaluations on its testing subsets to test the ‘b
RBFN models. For each chosen ‘best’ RB
evaluations on the testing subsets have been con
number of ‘best’ constructed RBFN models m
one dataset to another, we have chosen: 1) 
dataset, 13 ‘best’ RBFN models with number
(clusters) within the interval [76, 90]; for
evaluations were performed on the testing sub
total number of evaluations for the ISB
13000=10collections*10training-subset*13‘best’
models*10testing-subsets. 2) For the COCOM
‘best’ RBFN models with number of hidden 
interval [150, 180]. Hence, the total number of ev
COCOMO81 dataset is 16000=10collec
subset*16‘best’RBFN-models * 10 testing-subse

Figures 3-4 show and compare the accura
terms of Pred(25) of an RBFN construction-b
means using the ISBSG and COCOMO81 data
The mean of Preds(25) is used to represent the v
obtained when evaluating an RBFN constructio
C-means using the 10 ISBSG/COCOMO81 col
notice that the accuracy in terms of the Pred(25
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Fig.  5. Relationship between the Pred(25) of an RBFN
clusters generated by the fuzzy C-means for the ISBSG data

Fig.  6. Relationship between the Pred(25) of an RBFN
clusters generated by the fuzzy C-means for the COCOMO8
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1) For the ISBSG dataset, the accuracy of an
fuzzy C-means is still achieved until c is equal 
only to 88 when using an RBFN based on hard C

2) For the COCOMO81 dataset, the accura
based on fuzzy C-means is still achieved until 
while it is only to 160 when using an RBFN b
means. 

Fig.  7. Comparison of the Preds(25) of an RBFN using t
means for the ISBSG dataset. 

Fig.  8. Comparison of the Preds(25) of an RBFN using ha
for the COCOMO81 dataset. 

Fig.  9. Comparison of the Preds(25) of an RBFN using t
means for the ISBSG dataset. 
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on each training/testing sets of a given dataset/collection. The 
results obtained confirms the findings with the ISBSG and 
COCOMO81 datasets: (1) RBFN networks based either on hard 
or fuzzy C-means are a promising technique for software effort 
estimation; (2) RBFN using fuzzy C-means generates more 
accurate estimates than an RBFN using hard C-means in the 
testing phase. It is the same in learning phase especially when 
decreasing the number of clusters; (3) An RBFN using fuzzy C-
means performs better with almost the same number of clusters 
whenever in learning or in testing phases. By contrast, an RBFN 
using hard C-means required more clusters in testing than in 
learning to generate accurate estimates. This due to the fact that 
fuzzy C-means tolerates imprecision than hard C-means and 
hence may allow the RBFN models to avoid the over-fitting 
problem. 
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