
RBFN Networks-based Models for Estimating
Software Development Effort: A Cross-validation

Study
Ali Idri, Aya Hassani

Department of Software Engineering
ENSIAS, Mohammed V University

Rabat, Morocco
idri.ali123@gmail.com, hassani.aya@gmail.com

Alain Abran
Department of Software Engineering

Ecole de Technologie Supérieure
Montréal, Canada, H3C IK3

alain.abran@etsmtl.ca

Abstract— Software effort estimation is very crucial and there is
always a need to improve its accuracy as much as possible. Several
estimation techniques have been developed in this regard and it is
difficult to determine which model gives more accurate estimation
on which dataset. Among all proposed methods, the Radial Basis
Function Neural (RBFN) networks models have presented
promising results in software effort estimation. The main objective
of this research is to evaluate the RBFN networks construction
based on both hard and fuzzy C-means clustering algorithms using
cross-validation approach. The objective of this replication study is
to investigate if the RBFN-based models learned from the training
data are able to estimate accurately the efforts of yet unseen data.
This evaluation uses two historical datasets, namely COCOMO81
and ISBSG R8.

I. INTRODUCTION
Software development effort estimation is very important for

the successful completion of any software project. Hence,
software development effort and schedule can be predicted on the
basis of past software project datasets. Effort estimation of
software projects can be done basically in three ways [1,2,3]:

Judgment based on experts: That aims to derive estimates
based on experience of experts on similar projects. It is based on
a tacit (intuition-based) quantification step [4]. Therefore, it is not
repeatable. According to Gray et al. [5] although expert judgment
is always difficult to quantify, it can be an effective tool to adjust
both machine learning (ML) and non-ML techniques.

Non-machine learning (Non-ML) techniques: They are based
on mathematical formulae linking effort with effort drivers to
produce an estimate of the project [6,7]. Usually the principal
effort driver used in these models is software size measured in
terms of function points or source lines of code.

Machine learning (ML) techniques: Effort estimation is based
on applying various machine learning algorithms such as
artificial neural networks (ANN) [8,9], case-based reasoning
(CBR)[10,11,12], decision trees [13,14] and fuzzy logic [15,16].

These models have received recently increasing attention from
researchers [2,3].

 ANNs have been investigated in software effort estimations
because they can interpret the complex relationships among
software project features. Moreover they have learning ability
and are good at modeling complex non-linear relationships but
they are still hard to understand and/or to interpret [3,17,18,]
However, the use of ANNs in software effort estimation is far
from mature. Among all types of ANNs, feedforward ANNs have
been widely used for software effort estimations [19-23]. Usually
the number of layers, number of neurons in each layer, selection
of activation function, quality of data, over-fitting, and outliers
are the main subjects to build an ANN-based software effort
estimation model [3].

 In our earlier works [24-26], three clustering techniques (i.e.,
APCIII, hard C-means and fuzzy C-means, were empirically
evaluated to design the middle layer of RBFN for software effort
estimation. It has been illustrated that: 1) the RBFN designed
with C-means performs better, in term of effort estimates
accuracy, than the RBFN designed with APCIII algorithm; and 2)
an RBFN using fuzzy C-means performs better, in terms of
accuracy and tolerance of imprecision, than an RBFN using hard
C-means. However, the importance of these findings is limited
since the accuracy of any estimation technique (for instance
RBFN), is highly depended on the characteristics of the used
dataset, especially its sample size. Consequently, that study [27]
used the International Software Benchmarking Standards Group
repository-ISBSG release 8 dataset [28] which contains more
than 2000 historical software projects from which 151 software
projects were retained to evaluate the estimation accuracy of
RBFN-based effort estimation models. The results showed that
the accuracy of RBFN construction-based on fuzzy C-means
generates more accurate estimates than an RBFN using hard C-
means especially when decreasing the number of clusters.
Moreover, we have found that an RBFN using fuzzy C-means
better tolerates imprecision than an RBFN using hard C-means
and hence may avoid the over-fitting problem. Since all our

2015 IEEE Symposium Series on Computational Intelligence

978-1-4799-7560-0/15 $31.00 © 2015 IEEE

DOI 10.1109/SSCI.2015.142

976

previous studies on RBFN-based effort estimation used the same
data for learning and testing stages of the model, this paper
revisits them by means of a specific cross-validation approach on
two different datasets. Therefore, this study evaluates the
estimates accuracy of the RBFN-based models on both learning
and testing sets in order to analyze their strengths and
weaknesses in terms of accuracy, robustness and generalization.

 The rest of the paper is organized as follows: Section 2
presents how an RBFN network may be used for software effort
estimation. Section 3 describes the two datasets and the accuracy
performance measures used in this study. Section 4 describes our
approach to estimate required software effort with the
experimental setup i.e., datasets preparation and implementation
details using cross-validation approach. Section 5 presents the
results obtained when applying different RBFN-based effort
estimation models on the datasets. Finally, Section 6 summarizes
our findings.

II. RBFN NETWORK FOR SOFTWARE EFFORT ESTIMATION
 Radial Basis Function Networks are a special case of artificial
neural networks, rooted in the idea of biological receptive fields
[29]. Figure 1 shows a RBFN architecture configured for
software development effort. An RBFN is a three-layer feed
forward network consisting of one input layer, one middle layer
and an output layer. The RBFN generates output (effort) by
propagating the initial inputs (cost drivers) through the middle-
layer to the final output layer. Each input neuron corresponds to a
component of an input vector. The input-layer contains M
neurons, each input neuron is fully connected to the middle-layer
neurons. The activation function of each middle neuron is usually
the Gaussian function. The Gaussian function decreases rapidly if
the width �i is small, and slowly if it is large. The output layer
consists of one output neuron that computes the software
development effort as a linear weighted sum of the outputs of the
middle layer. Clustering is the key technique to be used as a
preprocessing phase in the design of the RBFN networks. This
procedure initially distributes the respective fields of hidden layer
neurons across the space of input variables.

Fig. 1. Radial basis function network.

III. DATASETS DESCRIPTION AND PERFORMANCE EVALUATION
CRITERIA

 This section describes the datasets used in this study and the
evaluation criteria used to compare the predictive accuracy of the
designed models.

A. Datasets Description
Two datasets are used in this empirical study. Table 1

provides some statistics on these datasets including the total
number of projects, the number of attributes taken into
consideration, minimum, maximum and the mean of real efforts.

TABLE I. STATISTICS ON DATA SETS.

Dataset #Projects #Attributes

Real effort (Person-
Months for COCOMO81

and Person-Hours for
ISBSG)

Min Max Mean

ISBSG 151 6 24 60270 5039.13

COCOMO81 252 13 6 11400 683.44

ISBSG repository. The International Software Benchmarking
Standards Group is a multi-organizational dataset [28] containing
different projects gathered from different organizations in
different countries. Major contributors come from Australia
(21%), Japan (20%) and United States (18%). ISBSG repository
release 8 contains more than 2000 software projects from which
151 software projects were retained. The selection of software
projects bas been performed by choosing the software projects
with high quality data according to the following four criteria:
Data Quality Rating field, Resource levels, Unadjusted Function
Points (UFP) and Development Type [27]. The selection of the
attributes to be used as the inputs (effort drivers) of an effort
estimation model based on an RBFN network has been
conducted by allowing the estimators to use the attributes that
they believe best characterize their projects and are more
appropriate in their environment. The projects in ISBSG dataset
are described by more than 50 attributes. Moreover, the use of
hard or fuzzy C-means requires numerical attributes.
Consequently, the selected attributes must be numerical. Table 2
shows the six attributes that have been selected since they were
usually considered in the previous studies [27] as relevant cost
drivers.

TABLE II. SOFTWARE PROJECT ATTRIBUTES FOR ISBSG DATASET

Attributes Description
Value Adjustment Factor/
VAF

The adjustment of the function points

Unadjusted Function Points/
UFP

The unadjusted function point count

Max Team Size The maximum number of people that
worked at any time on the project

User Base/ Business Units Number of business units that the
system services

Input layer Hidden layer Output layer

CostDriver 1

CostDriver 2

CostDriver 3

CostDriver 4

Effort

βi

ci, σi

Y1

Y2

Y3

YM

977

Attributes Description
User Base/ Locations Number of physical locations being

serviced by the installed system.
User Base/ Concurrent
Users

Number of users using the system
concurrently.

Value Adjustment Factor/
VAF

The adjustment of the function points

Artificial COCOMO81 dataset. The original COCOMO81
dataset contains 63 projects which are mostly scientific
applications developed by Fortran [6]. However, it is suitable that
the use of ANNs in any field should be based on a sufficient
number of cases. Therefore, we used in this study an artificial
COCOMO81 dataset generated from the original one [30]. It
contains 252 software projects which are mostly scientific
applications developed by Fortran generated from the original
one [6]. As shown in Table 3, each project is described by 13
attributes. The software size measured in KDSI (Kilo Delivered
Source Instructions) and the remaining 12 attributes are measured
on a scale composed of six linguistic values: ‘very low’, ‘low’,
‘nominal’, ‘high’, ‘very high’ and ‘extra high’. These 12
attributes are related to the software development environment
such as the experience of the personnel involved in the project,
the method used in the development and the time and storage
constraints imposed on the software.

TABLE III. SOFTWARE PROJECT ATTRIBUTES FOR COCOMO81 DATASET.

Attributes Description
SIZE Software size

DATA Database size

VIRTMIN Virtual machine volatility

TIME Execution time constraints

STOR Main storage constraints

VIRT MAJ Virtual machine volatility

TURN Computer turnaround

ACAP Analyst capability

AEXP Application experience

PCAP Programmer capability

VEXP Virtual machine experience

LEXP Programming language and tool
experience

SCED Required development Schedule

B. Data Normalization
Due to the nature of the attributes in the two datasets, some of

continuous attributes show a larger range of values than others
which may make the effect of these attributes too important. In
order to normalize the two datasets used, the solution was to
scale the continuous attributes into the same range. To achieve
this, all continuous attributes are normalized applying the min-

max normalization formula of Equation (1) such that all
numerical variables are scaled within the range of [0, 1].

����� � ����� � 	
� ������
	�
������ � 	
��������������������� (1)

Where 	
�������is the minimum value of the dataset�����,
	�
������is the maximum value of the dataset�����, if
	�
������is equal to the�	
�������, then Normalized ����� is
set to 0.5.

C. Performance measures
The accuracy of the model is evaluated by using the

following criteria:

The Magnitude of Relative Error. MRE is a very common
criterion used to evaluate software cost estimation models. The
MRE for each observation obtained as:

��� � �Effortactual � Effortpredicted

Effortactual
������� (2)

The Mean Magnitude of Relative Error. MMRE can be
achieved through the summation of MRE over N observations.

���� � � �������� ���������������������������� (3)

The Percentage of the Prediction. PRED is computed as
follow:

���� ��� � �
� ���������������������������� (4)

 Where, A is the number of projects with MRE less than or
equal to X, and N is the total number of projects. Usually the
ideal amount of X in software effort estimation methods is 0.25
and the various methods are compared based on this level. The
prediction at 25%, Pred(25), represents the percentage of projects
which MRE is less or equal to 25%. Pred(25) value identifies the
software effort estimates that are within the specified range
whereas the MMRE is fairly conservative with a bias against
overestimates. Pred(25) can take a value between 0 and 100
percent, while the MMRE can take any positive value. It is often
difficult to compare results across different studies due to
differences in empirical setup and data preprocessing, but a
typical Pred(25) lies in the range of 65 to 100 percent.

IV. EMPIRICAL DESIGN
The potential over-fitting problem of a neural network should

be dealt by applying methods such as cross-validation in order to
evaluate the accuracy and evaluate the generalization level of the
models. Cross-validation methodology is used for comparing
models by dividing data into two segments: one used to learn or
train a model and the other used for testing to validate the model.
In typical cross-validation, the training set and testing set must
cross-over in successive rounds such that each data point has a

978

chance of being validated against. The basic form of cross-
validation is k-fold cross-validation; other used forms are special
cases of k-fold cross-validation or involve repeated rounds of k-
fold cross-validation. In k-fold cross-validation, the data is first
partitioned into k equally (or nearly equally) sized segments or
folds. Subsequently k iterations of training and testing are
performed.

In this study, a cross-validation technique is used on the one
hand, to evaluate the generalization performance of the trained
RBFN model construction-based either on hard or fuzzy C-means
and, on the other hand, to compare the performance of the
designed RBFN models to find out the best model for the
available data. More specifically, the cross-validation technique
used in this work for evaluating the performance of RBFN
consists on having different data in training and testing. Indeed,
10 equal size collections are obtained for either training or testing
sets by partitioning the original datasets; this technique will allow
us to make the best use of our (limited) datasets for training,
testing and performance evaluation.

To decide on the number of hidden units, several tests have
been performed with both hard C-means and fuzzy C-means
algorithms. Choosing the best classification to determine the
number of hidden neurons and their centers is not an obvious
task. For software effort estimation, the best classification is the
one that provides coherent clusters which have satisfactory
degrees of similarity, and improve the accuracy of estimates, in
terms of MMRE and Pred(25), produced by the RBFN. Indeed,
the execution of our software prototypes which implement hard
and fuzzy C-means clustering algorithms together with the
software prototype implementing the RBFN model are repeated
10 times. The means of obtained results from 10 iterations are
treated as the final result of MMRE and Pred(25). Figure 2 shows
the evaluation process of an RFBN-based effort estimation model
using the cross-validation strategy.

Fig. 2. Steps of the evaluation process

A. Step 1: Train/Test datasets generation.
This step consists in dividing each dataset on two subsets to

be used for training and testing the RBFN effort estimation
models respectively. Table 4 shows the number of projects of
each dataset for training and testing. This training/testing subsets
generation process was repeated 10 times for each dataset with
the same percent of Table 4. Hence, for each dataset, 10 different
collections of training/testing subsets have been obtained. Hence,

for each dataset, 10 different collections of training/testing
subsets have been obtained.

TABLE IV. TRAINING AND TESTING SETS GENERATION

Datasets #Training
Projects

%Training
Set

#Testing
Projects

%Testing
Set

ISBSG 100 66.23% 51 33.77%

COCOMO81 200 79.37% 52 20.63%

B. Step 2: RBFN models construction and evaluation using
training subsets.
This step consists on the construction and evaluation of

RBFN-based effort estimation models using the training subsets
of the 10 collections of each dataset. The use of an RBFN on
each training subset of a collection to estimate software
development effort requires the determination of its architecture
parameters according to the characteristics of the training
software projects, especially the number of input neurons,
number of hidden neurons, centers cj, widths j and weights �j.
The number of the input neurons is, usually, the number of the
attributes describing the training software projects of the used
dataset. Therefore, according to Table 1, the number of input
neurons of the RBFN models of ISBSG and COCOMO81 is 6
and 13 respectively.

The construction of the hidden layer of the proposed RBFN
networks is achieved using hard and fuzzy C-means. The role of
clustering in the design of RBFN is to set up an initial
distribution of receptive fields (hidden neurons) across the input
space of the input variables (effort drivers). For the widths �j,
many techniques based on solid mathematical concepts have
been proposed in the literature [31, 32, 33]. Based on our
previous results [24-27] in which accurate estimates were
obtained when using the formula defined by Haykin [34], we
adopt this solution which consists in assigning one value to all
(�j). Concerning the weights �j, we may set each �j to the
associated effort of the center of the jth neuron. But this technique
is not optimal and does not take into account the overlapping that
may exist between receptive fields of the hidden layer. Thus, we
use the learning Delta rule to derive the values of �j.

 For each collection of a dataset and based on its training
subset, 10 evaluations have been performed with both hard and
fuzzy C-means algorithms to decide on the number of hidden
units of an RBFN model. Thereafter, for each collection/training
subset, the best classification is the one that provides coherent
clusters which have satisfactory degrees of similarity and
improve the accuracy of estimates, in terms of Pred(25). Hence
the chosen RBFN models of each collection/training subset are
those with acceptable Pred(25) (around 65%) and have minimum
number of hidden neurons (clusters). To summarize, in this step
we have performed in total 400 (2datasets* 10collections*
10evaluations* 2clustering techniques) evaluations for RBFN-
construction based on hard and fuzzy C-means.

Step 1: Train/Test datasets generation

Step 2: RBFN models construction and
evaluation using training subsets

Step 3: RBFN models evaluation using
testing subsets

979

C. Step 3: RBFN models evaluation using testin
 This step consists on the evaluation of th
models of the step 2 using the testing sub
collections of each dataset. The aim is t
generalization power of the designed RBFN m
number of evaluations X of each dataset is cal
following equation:

� � !"#$�%&��'(��)*++�)&,*-.&�/,-,-
�0

���
 Where #best RBFN(collection/training) is
selected RBFN models which have Pred(25) a
minimize the numbers of clusters during trainin
(dataset, collection, training set). Thereafter, ea
selected model is executed 10 times on the tes
mean value of Pred(25) is calculated to analy
testing phase.

V. RESULTS AND DISCUSSION

A. Cross-validation of RBFN-based on hard C-
The To measure the coherence of clusters in

means, the objective function J, rather than the
index, is used. Indeed, in our previous empirica
the use of J had led to accurate estimates w
RBFN based on C-means to different datasets. T
the RBFN construction-based on C-means
according to the process of Figure 2.The obta
presented and discussed below.

For each collection of the ISBSG or COCO
we have performed several evaluations, 1) 10 e
training subsets to build the RBFN models
evaluations on its testing subsets to test the ‘b
RBFN models. For each chosen ‘best’ RB
evaluations on the testing subsets have been con
number of ‘best’ constructed RBFN models m
one dataset to another, we have chosen: 1)
dataset, 13 ‘best’ RBFN models with number
(clusters) within the interval [76, 90]; for
evaluations were performed on the testing sub
total number of evaluations for the ISB
13000=10collections*10training-subset*13‘best’
models*10testing-subsets. 2) For the COCOM
‘best’ RBFN models with number of hidden
interval [150, 180]. Hence, the total number of ev
COCOMO81 dataset is 16000=10collec
subset*16‘best’RBFN-models * 10 testing-subse

Figures 3-4 show and compare the accura
terms of Pred(25) of an RBFN construction-b
means using the ISBSG and COCOMO81 data
The mean of Preds(25) is used to represent the v
obtained when evaluating an RBFN constructio
C-means using the 10 ISBSG/COCOMO81 col
notice that the accuracy in terms of the Pred(25

ng subsets.
he ‘best’ RBFN
bsets of the 10
to evaluate the

models. The total
lculated with the

-1�,� (5)

the number of
around 65% and
ng for each triple
ach ‘best’ RBFN
sting subsets; the

yze the results of

-means
n case of hard C-
e Dunn’s validity
al studies [26-27],
when applying an
The evaluations of

were performed
ained results are

OMO81 datasets,
evaluations on its

and 2) several
best’ constructed
BFN model, 10
nducted. Since the
may change from

For the ISBSG
r of hidden units
r each one, 10
bsets. Hence, the
BSG dataset is
’ RBFN

MO81 dataset, 16
units within the

valuations for the
ctions*10training-
ets.

acy measured in
ased on hard C-

asets respectively.
values of Pred(25)
on-based on hard
llections. We can
5) criterion is, in

general, monotonous increasing a
clusters (hidden neurons), for
evaluations. This is normal because
is higher (tends towards 90 and 180
respectively) the clusters obtaine
example if c is equal to 90 for ISBS
project. However, the aim is to red
and to keep the estimates accuracy a
are concerned with the accuracy
towards zero.

As shown in Figures 3-4, t
construction-based on hard C-mean
subsets is in general higher than
subsets since building the RBFN mo
this regard, it is noticed that: 1) For
lower than 77, the RBFN estimates
is not acceptable (Pred(25)<60%)
same in testing subsets when c is
COCOMO81 dataset, when c is
estimates accuracy in terms of
(Pred(25)<60%) in training subset
subsets when c is lower than 160. I
an RBFN on training and testing, w
value of c to use an RBFN based o
and 160 for the ISBSG and COCO
This is very high considering that th
90 (ISBSG) and 180 (COCOMO81)
fact that software projects are not su

Fig. 3. Relationship between the Pred(25
clusters generated by the hard C-means for th

Fig. 4. Relationship between the Pred(25
clusters generated by the hard C- means for t

40

60

80

100

76 77 78 80 81 82 83

A
cc

ur
ac

y

#Cluster

Hard C-means using ISBSG
Pred(25) Testing

40

60

80

100

15
0

15
2

15
4

15
6

15
8

16
0

16
2

16
4

16
6

A
cc

ur
ac

y

#Cluste

Hard C-means using COCOM
Pred(25) Testing

according to c, number of
both training and testing

e when the number of clusters
for ISBSG and COCOMO81

ed are more coherent; for
SG, each cluster contains one
duce the number of clusters c
acceptable. Consequently, we
when the values of c tend

the accuracy of an RBFN
ns on the training (learning)
that one obtained on testing
odel used training subsets. To
the ISBSG dataset, when c is
accuracy in terms of Pred(25)
in training subsets; it is the

s lower than 88. 2) For the
lower than 158, the RBFN
Pred(25) is not acceptable

ts; it is the same in testing
If we consider the accuracy of
we conclude that the threshold
on hard C-means is around 88
OMO81 datasets respectively.
he maximum possible value is
) clusters. It may be due to the
ufficiently similar.

5) of an RBFN and the number of
he ISBSG dataset.

5) of an RBFN and the number of
the COCOMO81 dataset.

84 85 86 88 89 90

rs

Pred (25) Learning

16
6

16
8

17
0

17
2

17
4

17
6

17
8

18
0

ers

MO81
Pred (25) Training

980

Fig. 5. Relationship between the Pred(25) of an RBFN
clusters generated by the fuzzy C-means for the ISBSG data

Fig. 6. Relationship between the Pred(25) of an RBFN
clusters generated by the fuzzy C-means for the COCOMO8

B. Cross-validation of RBFN-based on Fuzzy C
To measure the coherence of clusters in c

means, the Xie-Beni validity criterion is used [3
of XB means a more compact and separate clu
should therefore be to minimize the value of X
estimates accuracy acceptable. Similarly to the
means, for each dataset/collection, 10 ev
performed on its training subsets to build the
Regarding evaluations on its testing subsets, we
number of ‘best’ RBFN construction-based on f
in the case of hard C-means, namely 13 (
(COCOMO81). For each ‘best’ RBFN model, 1
each testing subset have been conducted.

Figures 5-6 show and compare the accura
terms of Pred(25) of an RBFN construction-ba
means using the ISBSG and COCOMO81 respe
case of hard C-means, the mean of Preds(25) is
the values of Pred(25) obtained when evalu
construction-based on fuzzy C-means u
ISBSG/COCOMO81 collections.

Figure 5-6 illustrate the relationship between
an RBFN architecture and the number of clust
the fuzzy C-means for both training and testing
ISBSG/COCOMO81 collections. As in the c
means, we can notice that: 1) the accuracy
Pred(25) criterion is, in general, monoto
according to c, number of clusters (hidden ne

40

60

80

100
76 77 78 80 81 82 83 84 85 86 88

A
cc

ur
ac

y

#Clusters

Fuzzy C-means using ISBSG
Pred(25) Testing Pred (25) Lear

40

60

80

100

15
0

15
2

15
4

15
6

15
8

16
0

16
2

16
4

16
6

16
8

17
0

17
2

17
4

A
cc

ur
ac

y

#Clusters

Fuzzy C-means using COCOMO81
Pred(25) Testing Pred (25) Trai

N and the number of
aset.

N and the number of
81 dataset.

C-means
case of fuzzy C-
8]. A small value

ustering. The goal
XB and keep the
 case of hard C-
valuations were
e RBFN models.

choose the same
fuzzy C-means as
(ISBSG) and 16
10 evaluations on

acy measured in
ased on fuzzy C-
ctively. As in the
used to represent

uating an RBFN
using the 10

n the accuracy of
ters generated by
subsets of the 10

case of hard C-
in terms of the
nous increasing
eurons), for both

training and testing evaluations; and
construction-based on fuzzy C-mean
general higher than that one obtai
building. To this regard, it is noti
dataset, when c is lower than 76, the
terms of Pred(25) is not acceptable
subsets; it is the same in testing sub
2) For the COCOMO81 dataset, w
RBFN estimates accuracy in terms
(Pred(25)<60%) in training subset
subsets when c is lower than 160.

If we consider the accuracy o
testing, we conclude that the thresho
based on fuzzy C-means is around 7
COCOMO81 datasets respectively..

C. RBFN using Hard C-means vs R
In this section, we compare

tolerance of imprecision an RBFN b
the one when using hard C-means.
both training and testing sets.

Figure 7-8 compare the Pred(25)
c-means with that one of an RBFN w
on training subsets of ISBSG and
can be noticed that when increas
maximum is the number of train
performs better than fuzzy C-mean
cluster tend to contain only one pro
used in clustering and training the R
each project in its associate cluster
accurate. For the ISBSG dataset, w
tends towards 90, the accuracy of an
better than that one of an RBFN
Additionally, For the COCOMO81
of clusters the accuracy of an RBFN
better than that one of an RBFN bas

As the aim is to reduce the numb
better accuracy, it is very importa
when decreasing the number of clu
From this point of view, an RBF
performs better than an RBFN bas
two datasets. This is due to the fa
number of clusters, hard C-means
project in one cluster while fuzzy C-
belong to more than one cluster. H
classification of hard C-means is h
means.

Figures 9-10 compare the Pred
fuzzy c-means with that one of an R
means on testing subsets of
respectively. It can be noticed that
means performs better that an RBFN
the two datasets. To this regard, it is

88 89 90

rning

17
6

17
8

18
0

ining

d 2) the accuracy of an RBFN
ns on the training subsets is in
ined on testing subsets since
iced that: 1) For the ISBSG
e RBFN estimates accuracy in
e (Pred(25)<60%) in training
bsets when c is lower than 77.
when c is lower than 158, the

of Pred(25) is not acceptable
ts; it is the same in testing

f an RBFN on training and
old value of c to use an RBFN
77 and 150 for the ISBSG and

RBFN using Fuzzy C-means
in terms of accuracy and

based on fuzzy C-means with
The comparison is based on

) of an RBFN using the fuzzy
when using the hard C-means
COCOMO81 respectively. It

sing number of clusters (the
ing projects), hard C-means
ns due to the fact that each
oject and since this project is
RBFN, hard C-means classify
r; hence the estimate effort is
when c is higher than 86 and
n RBFN based on C-means is
N based on fuzzy C-means.
dataset, whatever the number
N based on fuzzy C-means is
ed on hard C-means.

ber of clusters with keeping a
ant to consider the accuracy
usters (c tends towards zero).
FN based on fuzzy C-means
sed on hard C-means for the
act that when decreasing the
s is forced to classify each
-means may allow a project to

Hence the possibility of miss-
higher than that of fuzzy C-

d(25) of an RBFN using the
RBFN when using the hard C-

ISBSG, and COCOMO8
an RBFN based on fuzzy C-
N based on hard C-means for
s noticed that:

981

1) For the ISBSG dataset, the accuracy of an
fuzzy C-means is still achieved until c is equal
only to 88 when using an RBFN based on hard C

2) For the COCOMO81 dataset, the accura
based on fuzzy C-means is still achieved until
while it is only to 160 when using an RBFN b
means.

Fig. 7. Comparison of the Preds(25) of an RBFN using t
means for the ISBSG dataset.

Fig. 8. Comparison of the Preds(25) of an RBFN using ha
for the COCOMO81 dataset.

Fig. 9. Comparison of the Preds(25) of an RBFN using t
means for the ISBSG dataset.

40

60

80

100

76 77 78 80 81 82 83 84 85 86 88

A
cc

ur
ac

y

#Clusters

Pred (25) ISBSG: Training
Pred (25) Hard C-means Pred (25) Fuzz

40

60

80

100

15
0

15
2

15
4

15
6

15
8

16
0

16
2

16
4

16
6

16
8

17
0

17
2

17
4

A
cc

ur
ac

y

#Clusters

Pred (25) COCOMO81: Training
Pred (25) Hard C-means Pred (25) Fuzzy

40

60

80

100

76 77 78 80 81 82 83 84 85 86

A
cc

ur
ac

y

#Clusters

Pred (25) ISBSG: Testing
Pred (25) Hard C-means Pred (25) Fuz

n RBFN based on
to 77 while it is

C-means.

acy of an RBFN
c is equal to 150
based on hard C-

the hard or fuzzy C-

ard or fuzzy C-means

the hard or fuzzy C-

Fig. 10. Comparison of the Pred(25) of an
means for the COCOMO81 dataset.

To conclude this section, Table 5
clusters having the acceptable accu
hard C-means compared with that o
the fuzzy C-means obtained from
Moreover, the minimum number of
almost the same either for training
higher for training sets than that of t
Indeed, the fuzzy concept allows the
perform a fuzzy classification of
project may belong to several cluste
number of clusters is set to the ma
fuzzy C-means avoids the well-kno
contrast, when the number of cluste
an RBFN based on hard C-means,
maximum number of clusters (e.g
project) and hence each project on
there is a high risk of an over-fitting
on fuzzy C-means generates accep
training and testing sets with almos
of clusters allowing hence best p
generalization. However, an RBF
generates acceptable Pred(25) but w
of clusters in testing than that one n
a best performance in learning than

TABLE V. LOWEST NUMBER OF CLUST
(PRED(25

 Hard C-means

Datasets Training
Cluster #

Testi
Cluste

ISBSG 77 88

COCOMO81 150 160

VI. CONCLU

In this paper, we have empir
designed with either hard or fuzzy
estimation. This study used a Cro
historical datasets: ISBSG and
validation generates for each datase
composed of training and testing s
RBFN based on hard/fuzzy C-mean

88 89 90

zy C-means

17
6

17
8

18
0

y C-means

88 89 90

zzy C-means

40

60

80

100

15
0

15
2

15
4

15
6

15
8

16
0

16
2

16
4

A
cc

ur
ac

y

#Cluste

Pred (25) COCOMO81: Testin
Pred (25) Hard C-means

n RBFN using the hard or fuzzy C-

5 shows the lowest number of
uracy of an RBFN using the
one of an RBFN when using

m training and testing sets.
f clusters for fuzzy C-means is
g or testing sets whereas it is
testing sets for hard C-means.
e middle layer of an RBFN to
each project and hence the
rs. This is why even when the
aximum, an RBFN based on
own over-fitting problem. By
ers is set to the maximum for
 its middle layer generates a

g. each cluster contains one
nly belongs to his cluster; so,
g. This is why an RBFN based
ptable values of Pred(25) on
st the same minimum number
performance in learning and
FN based on hard C-means
with a higher required number
needed in training. This means
in generalization.

TERS WITH ACCEPTABLE ACCURACY
))

Fuzzy C-means
ing
er #

Training
Cluster #

Testing
Cluster #

76 77

150 150

USION
rically evaluated the RBFN
C-means for software effort

ss-validation process on two
COCOMO81. The Cross-

et 10 collections; each one is
sets. The evaluations of an f
s are carried out several times

16
6

16
8

17
0

17
2

17
4

17
6

17
8

18
0

ers

ng
Pred (25) Fuzzy C-means

982

on each training/testing sets of a given dataset/collection. The
results obtained confirms the findings with the ISBSG and
COCOMO81 datasets: (1) RBFN networks based either on hard
or fuzzy C-means are a promising technique for software effort
estimation; (2) RBFN using fuzzy C-means generates more
accurate estimates than an RBFN using hard C-means in the
testing phase. It is the same in learning phase especially when
decreasing the number of clusters; (3) An RBFN using fuzzy C-
means performs better with almost the same number of clusters
whenever in learning or in testing phases. By contrast, an RBFN
using hard C-means required more clusters in testing than in
learning to generate accurate estimates. This due to the fact that
fuzzy C-means tolerates imprecision than hard C-means and
hence may allow the RBFN models to avoid the over-fitting
problem.

REFERENCES

[1] M. Jorgensen, and M. Shepperd, "A Systematic Review of Software Development
Cost Estimation Studies", IEEE Transactions on Software Engineering, Vol. 33, No. 1
(2007) 33-53.

[2] A. Idri, F. Z. Amazal, A. Abran, “Analogy-based Software Development Effort
Estimation: A systematic and Review Study”, Information and Software Technology,
Vol. 58, Elsevier, 2015, pp. 206-230

[3] J. Wen, S. Li, Z. Lin, Y. Huc, C. Huang, Systematic literature review of machine
learning based software development effort estimation models, Inf. Softw. Technol.
54 (1) (2012) 41–59.

[4] T. Halkjelsvik, M. Jørgensen, “From origami to software development: a review of
studies on judgment-based predictions of performance time”, Psychol. Bull.138 (2)
(2012) 238-271.

[5] A. R. Gray, and S. MacDonell, and M. Shepperd, "Factors Systematically Associated
with Errors in Subjective Estimates of Software Development Effort: The Stability of
Expert Judgment", in 6th IEEE International Software Metrics Symposium (1999)
216-227.

[6] B.W. Boehm, “Software Engineering Economics,” Prentice-Hall (1981).

[7] M. Jørgensen, A review of studies on expert estimation of softwaredevelopment
effort, Journal of Systems and Software (2004) 37–60.

[8] G. R. Finnie, G. Witting, and J.M. Desharnais, “A Comparison of Software Effort
Estimation Techniques: Using Function Points with Neural Networks, Case-Based
Reasoning and Regression Models, Systems and Software,” Vol. 39, No. 3 (1997)
281-289.

[9] A. Idri, A. Abran, and S. Mbarki, “An Experiment on the Design of Radial Basis
Function Neural Networks for Software Cost Estimation,” in 2nd I EEE International
Conference on Information and Communication Technologies: from Theory to
Applications, Vol. 1 (2006) 230-235.

[10] K. Srinivasan, and D. Fisher, “Machine Learning Approaches to Estimating Software
Development effort,” IEEE Transactions on Software Engineering, Vol. 21, No. 2
(1995) 126-137.

[11] M. Shepperd and C. Schofield, “Estimating Software Project Effort Using Analogies,”
Transactions on Software Engineering, Vol. 23, No. 12 (1997) 736-747.

[12] A. Idri, and T. M. Khoshgoftaar, and A. Abran, “Investigating Soft Computing in
Case-based Reasoning for Software Cost Estimation,” Engineering Intelligent
Systems for Electrical Engineering and Communications, Vol. 10, No. 3 (2002) 147-
157.

[13] R. W. Selby and A.A. Porter, “Learning from examples: generation and evaluation of
decision trees for software resource analysis,” IEEE Transactions on Software
Engineering, Vol. 14, No. 12 (1988) 1743-1757.

[14] M.O. Elish, “Improved estimation of software project effort usingmultiple additive
regression trees,” Expert Systems with Applications, Vol. 36, No. 7 (2009) 10774–
10778.

[15] V. Sharma and H. K. Verma, “Optimized Fuzzy Logic Based Framework for Effort
Estimation in Software Development,” Computer Science Issues, Vol. 7, Issue 2, No.
2 (2010) 30-38.

[16] M. W. Nisar, Y. J. Wang, and M. Elahi, “Software Development Effort Estimation
Using Fuzzy Logic – A Survey,” in 5th International Conference on Fuzzy Systems
and Knowledge Discovery (2008) 421-427.

[17] K.V. Kumar, V. Ravi, M. Carr, N.R. Kiran, “Software development cost estimation
using wavelet neural networks,” Journal of Systems and Software, vol.81 (2008)
1853–1867.

[18] H. Park, S. Baek, “An empirical validation of a neural network model for software
effort estimation,” Expert Systems with Applications, vol.35, No. 3 (2008) 929–937.

[19] R. Setiono, K. Dejaeger, W. Verbeke, D. Martens, B. Baesens, “Software effort
prediction using regression rule extraction from neural networks”, Proceedings of the
22nd International Conference on Tools with Artificial Intelligence, Arras, France,
Vol. 2 (2010) 45–52.

[20] V. Khatibi. B, et al., “Neural networks for accurate estimation of software metrics,”
International Journal of Advancement in Computing Technology, Vol. 3 (2011) 54-
66.

[21] J. Kaur, et al., “Neural network-a novel technique for software effort estimation,”
International Journal of Computer Theory and Engineering, Vol. 2 (2010) 17-19.

[22] I. K. Balich and C. L. Martin, “Applying a feedforward neural network for predicting
software development effort of short-scale projects,” in Software Engineering
Research, Management and Applications (SERA) (2010) 269-275.

[23] I. Attarzadeh and S. H. Ow, “Software development cost and time forecasting using a
high performance artificial neural network model,” in Intelligent Computing and
Information Science. Vol. 134, R. Chen, Ed., ed: Springer Berlin Heidelberg (2011)
18-26.

[24] A. Idri, A. Zahi, E. Mendes, and A. Zakrani, “Software Cost Estimation Models
Using Radial Basis Function Neural Networks,” in International Conference on
Software Process and Product Measurement (2007) 21-31.

[25] A. Idri, A.Zakrani and A. Zahi, “Design of Radial Basis Function Neural Networks
for Software Effort Estimation,” in International Journal of Computer Science Issues
(IJCSI),Vol. 7,Issue 4, No 3 (2010) 21- 31.

[26] A. Zakrani and A. Idri, “Applying Radial Basis Function Neural Networks Based on
fuzzy Clustering to estimate web Applications Effort,” in International Review on
Computers and Software (I.RE.CO.S), Vol. 5, No 5 (2010).

[27] A. Idri, A. Hassani and A. Abrain, “Assessing RBFNBased Software Cost Estimation
Models,” In the 25th International Conference on Software Engineering and
Knowledge Engineering (SEKE 2013) (Boston, MA, USA, June 27-29, 2013):
Proceedings of the Twenty- Fifth International Conference on Software Engineering
& Knowledge Engineering (2013) 483-487.

[28] ISBSG, International Software Benchmarking Standards Group, Data Release 8
Repository, (2003) http://www.isbsg.org.

[29] J. Moody and C. Darken, “Fast Learning in Networks of Locally- Tuned Processing
Units,” Neural Computing, Vol. 1 (1989) 281-294.

[30] A. Idri, L. Kjiri, A. Abran, ‘COCOMO Cost Model Using Fuzzy Logic’, 7ème
International Conference On Fuzzy Theory and Technology, Atlantic City, NJ, 28
February-03 March, (2000). pp.219-223

[31] U.Gupta, M.Kumar, “Software effort estimation through clustering techniques of
RBFN network,” in IOSR Journal of Computer Engineering (IOSR-JCE),Vol.
14,Issue 3 (2013) 58-62.

[32] N. Benoudjit and M. Verleysen, “On the Kernel Widths in Radial-Basis Function
Networks,” Neural Processing Letters, Vol. 18, No. 2 (2003) 139-154.

[33] F. Schwenker and C. Dietrich, “Initialisation of Radial Basis Function Networks
Using Classification Trees,” Neural Networks World, Vol. 10 (2000) 476-482.

[34] S.Haykin, “Neural Networks: A comprehensive Foundation,” Prentice Hall (1998).

[35] X. L. Xie and G. Beni, “A validity Measure for Fuzzy Clustering,” IEEETrans.
Pattern Anal. Mach. Intell, Vol. 13 (1991) 841-847.

983

