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Abstract—A fuzzy extension of the classical functional de-
pendency is shown which associates a degree not only to the
attributes but also to the functional dependency, providing the
maximum level of uncertainty in tables. For this proposal the
kernel is the use of Simplification Logic for these fuzzy functional
dependencies, which ensures a solid and efficient approach to
manage them in the fuzzy extension considered. An algorithm
to compute closures for this fuzzy functional dependencies is
outlined and a normal form for fuzzy functional dependencies
named direct-optimal basis is proposed.

I. INTRODUCTION

The importance of the notion of functional dependency must

be found in the normalization theory, the core of the relational

model [1], [2], [3]. A functional dependency, denoted A�→B
represents a partial function between two sets of attributes and

it holds in a table if for every two tuples t1 and t2, if they

agree on all attributes in A, they agree on all attributes in B.
As it is well known, functional dependencies can be man-

aged syntactically using Armstrong’s Axioms [4], a sound

and complete inference system. In [5] we introduced a

logic, named Simplification Logic for Functional Dependen-

cies (SLFD
). The main novelty of SL

FD
is that it is strongly

based on the Simplification Rule, which allows us to narrow

the functional dependency set by removing attributes. This

new axiomatic system has provided the definition of true

automated deduction methods to solve functional dependency

problems [6].
This characteristic avoids the construction of automated

deduction methods directly based on these inference systems

and while on the other hand, the most successful approaches

come from the definition of ad hoc algorithms and methods

which use indirect ways (graph theory, matrix operators, etc).
In the fuzzy framework, several approaches to the definition

of fuzzy functional dependency (FFD) are proposed in the

literature [7], [8], [9], [10]. In the same way as the concept

of functional dependency (FD) correspond to the notion of

partial function, it should be desired that the concept of FFD

would correspond to the notion of fuzzy partial function. The

definition proposed in [10] fits in this idea.
These authors prove the correction and completeness of the

Armstrong’s axiomatic system for their semantic definition of

FFD. This result has inspired us to consider the fuzziness

of the functional dependencies in that way so that the above

method may be used.

In [11], [12] we have introduced two definitions of FFD

together with the corresponding sound and complete axiomatic

systems and their automated reasoning method. Both def-

initions incorporate different levels of fuzzification of the

dependency while data remain crisp. In [13], we establish this

classification and introduce a general FFD definition. In the

relational model, the atomic element is the attribute value. Our

approach associates a degree to each value of the attribute,

providing the maximum level of uncertainty in tables. A sound

and complete axiomatic system for these dependencies is

also introduced in [13] and an automated reasoning method

for this approach is introduced in [14]. Once the automated

reasoning method has been provided, the notion of normal

forms becomes to be the spotlight. It would be interesting a

definition of a normal form that ensures an smaller cost for

the reasoning method and, if it is possible, some minimality

criteria. For the classical case (crisp functional dependencies or

attribute implications) different answers have been provided,

depending of the notion of minimality and also depending of

the environment where the implication notion is used [15],

[16]. In [17] K. Bertet and B. Monjardet established the

equivalence of five definitions presented by different authors

in several areas which correspond with the same notion of

basis.

We are interested in the characterization of those basis

which are minimal. For instance, in the database area it is

well-known the canonical basis of D. Maier [15] considering

minimum size and in Formal Concept Analysis, the most

widely accepted basis is the Duquenne-Guigues basis [16] in

which the minimal criteria behind are the number of formulas

and other interesting properties (left-hand side are pseudo-

intents). Other well-known property used to define another

kind of bases is directness, i.e., a single traversal of the

implicational system is enough to compute the closure of an

given set of attributes. A basis fulfilling this property is named

direct basis. This property is usually accompanied by some

minimality criteria. We are particularly interested in those ones

with minimum size (number of attributes). In [17], [18] several
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methods to calculate the direct-optimal basis are introduced,

where minimality and directness have been joined in the same

notion of basis.

In this work, we show the notion of fuzzy attribute table and

the fuzzy extension of the notion of functional dependency

based on similarities in Section III. Section IV focusses on

the Fuzzy Simplification Logic (FSL) introduced in [13].

Then, in Section V, the necessity of a kind of normal form

(named direct optimal basis) is justified in order to improve

de efficiency of the automated reasoning method. Finally,

in Section VI, a method to compute direct optimal basis is

presented.

II. PRELIMINARIES

We assume that basic notions related to Fuzzy Logic are

known. In this framework, it is usual to replace the truthful-

ness value set {0, 1} (false and true) for the interval [0, 1]
(truth degrees) enriched with some operations. Our approach

uses the unit interval [0, 1], the infimum (denoted by ∧)

as the universal quantifier, the supremun (denoted by ∨) as

the existential quantifier, an arbitrary left-continuous t-norm

(denoted by ⊗) as the conjunction and the residuum defined

by a → b = sup{x ∈ [0, 1] | x ⊗ a ≤ b}. That is,

the system of truth values is the residuated complete lattice

([0, 1],∨,∧, 0, 1,⊗,→) where ([0, 1],⊗, 1) is a commutative

monoid and (⊗,→) is an adjoin pair (a⊗b ≤ c iff a ≤ b→ c).
We also use fuzzy sets in the standard way. Thus, for instance,

the union of two fuzzy sets A,B ∈ [0, 1]Ω is the fuzzy set such

that (A ∪ B)(x) = A(x) ∨ B(x). Since we work with fuzzy

sets with finite support, we denote each fuzzy set A by its

graph {(x,A(x)) | x ∈ Ω, A(x) > 0}.
On the other hand, we show the basic concepts of the

Relational Model, with emphasis on functional dependencies.

Given a family of sets {Da | a ∈ Ω}, named domains,

indexed in a finite non-empty set Ω of elements, named

attributes, a relation is a subset of the cartesian product of the

domains R ⊆ D =
∏

a∈ΩDa. The elements in this product

t = (ta)a∈Ω ∈ D will be named tuples.

Now, some issues concerning the database notation are

summarized: Given A,B ⊆ Ω, AB denotes A ∪ B and DA

denotes
∏

a∈A Da. Let t ∈ R be a tuple, then t/A denotes

the projection of t to DA; that is, if t = (ta)a∈Ω then

t/A = (ta)a∈A.

Definition 2.1: A formula A �→B, where A,B ⊆ Ω, is

named a functional dependency (FD). A relation R ⊆ D is

said to satisfy A�→B if, for all tuples t1, t2 ∈ R, t1/A = t2/A
implies that t1/B = t2/B .

III. FUZZY ATTRIBUTES TABLES AND FUZZY

FUNCTIONAL DEPENDENCIES

In the literature, some very similar definitions of fuzzy

functional dependency have been proposed [19], [10], [20],

[21], [22]. The first step in order to fuzzify the model is

considering similarity relations instead of the equality.

Thus, each domain Da is provided with a similarity relation

ρa : Da ×Da → [0, 1], that is, a reflexive (ρa(x, x) = 1 for

all x ∈ Da) and symmetric (ρa(x, y) = ρa(y, x) for all x, y ∈
Da) fuzzy relation. Given A ⊆ Ω, the extension to the set D

is the following: for all t, t′ ∈ D, ρA(t, t
′) =

∧
a∈A ρa(ta, t

′
a).

A suitable definition of fuzzy functional dependency based

on these similarities is the following [23]: A fuzzy functional
dependency (FFD) is an expression A

ϑ−−→B where A,B ⊆ Ω
and ϑ ∈ [0, 1] and we say that the FFD hols in a relation

R ⊆ D if,

ϑ ≤
∧

t,t′∈R
ρA(t, t

′)→ ρB(t, t
′) (1)

However, although similarities are used in the definition of

functional dependency, the table definition remains classical.

The same occurs in most of the fuzzy extensions of the

functional dependency in the literature [19], [10], [20].

Since the value of each attribute is the atomic element in

the classical relational model, if we would like to introduce

uncertainty at the ground level, the values assigned to each

attribute in each tuple has to be capable to be fuzzified. Thus,

we propose to introduce a rank associated to each value which

indicates the truthfulness degree of the value of this attribute

in this tuple.

This extension of the classical relational table is named

Fuzzy Attributes Tables and constitutes a generalization of

other fuzzy data tables appeared in the literature [19], [10],

[20]. That is, for each tuple t = (ta)a∈Ω ∈ D, we consider

a map R : D → [0, 1]Ω or, equivalently R : D × Ω → [0, 1],
which renders a tuple of truth values R(t) = (ra)a∈A.

For each tuple t, ta denotes the value of the attribute a in

the tuple t and R(t)(a) is the truthfulness of the value ta. We

would like to remark that, it is possible that R(t)(a) = 0 for

all attribute a ∈ Ω.

When we work with Fuzzy Attributes Tables, we also

consider similarity relations in domains in the same way as

previous works [24], [11], [23]. Fuzzy Attributes Table is

an extension of the original table in the classical relational

model by adding the degree of certainty to the values of each

attribute.

Example 3.1: We consider a table to store some patients

with a mark from infection in their skin. The table is built

with the set of attributes A = {n, a, p, c, l} where n represent

the name, a the age, p the percent of extension in the skin, c
the mark color, l the localization in the skin.

The domain of the attributes are Dn =
{John, Peter,Ann,Dave, Peter}, Da = {n ∈ N | 0 ≤
n ≤ 120}, Dp = {n ∈ N | 0 ≤ n ≤ 100},
Dc = { Black, Brown, Purple, Red, Yellow } and

Dl = {Arm, Face, Foot, Hand, Leg}.
We build the similarity relations in each domain Da as

follows:

ρc b w p r y

b 1 0.7 0.4 0.3 0.1

w 0.7 1 0.5 0.4 0.2

p 0.4 0.5 1 0.8 0.2

r 0.3 0.4 0.8 1 0.1

y 0.1 0.2 0.2 0.1 1
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ρl a f o h l

a 1 0.2 0.4 0.9 0.4

f 0.2 1 0.2 0.2 0.2

o 0.4 0.2 1 0.6 0.8

h 0.9 0.2 0.6 1 0.3

l 0.4 0.2 0.8 0.3 1

ρn(tn, t
′
n) =

{
1 if tn = t′n
0 if tn �= t′n

ρa(ta, t
′
a) = 1− |ta−t′a|

maxa−mina

ρp(tp, t
′
p) = 1− |tp−t′p|

100

And finally, we consider the following Fuzzy Attributes Table.

name age percent colour localization

Ann/1 26/0.9 2/0.8 Brown/0.8 Hand/0.8

Albert/1 33/0.7 4/0.7 Black/0.6 Leg/0.9

Mary/1 21/0.6 7/0.6 Purple/0.9 Arm/0.9

Dave/1 43/0.4 4/0.9 Yellow/0.8 Foot/0.8

Peter/1 24/0.1 3/0.7 Brown/0.7 Arm/0.6

The information represented in the table corresponds to the

patient’s names and the description about their infection. Note

that the name attribute is crisp, as a particular case.

The next step to provide a notion of Fuzzy attribute table

over domains with similarity relations is to relate the similarity

degree between two values of an attribute (in two tuples) with

their truthfulness degree.

Definition 3.2: Thus, let R be a fuzzy attributes table and

let t, t′ ∈ R two tuples, for all a ∈ Ω, the relative similarity

degree is defined as

ρR
a (t, t

′) = (R(t)(a)⊗R(t′)(a))→ ρa(ta, t
′
a)

The above definition may be generalized to subsets of at-

tributes A ⊆ Ω as usual, that is, ρR

A(t, t
′) =

∧
a∈A ρR

a (t, t
′)

The definition of the relative similarity relation presented

in Definition 3.2 may be used in Equation (1) so that the

definition of fuzzy functional dependency remains with no

change.

Definition 3.3: A fuzzy functional dependency is an expres-

sion A
ϑ−−→B where A,B ⊆ Ω, A �= ∅ and ϑ ∈ [0, 1]. A

Fuzzy Attributes Table R is said to satisfy A
ϑ−−→B if the

following condition holds:

ϑ ≤
∧

t,t′∈D
ρR

A(t, t
′)→ ρR

B(t, t
′))

Example 3.4: The Fuzzy Attributes Table given in Ex-

ample 3.1 is a model of the fuzzy functional dependency

colour, percent
0.6−−−→localization for the Łukasiewicz t-

norm (a ⊗ b = max{0, a + b − 1}) and its residuum (a →
b = min{1− a+ b, 1}).

IV. FUZZY SIMPLIFICATION LOGIC

Fuzzy Simplification Logic (FSL) is a Pavelka style fuzzy

logic for reasoning about fuzzy functional dependencies de-

fined over fuzzy attribute tables. Some complete axiomatic

system over several kind of FFDs have been defined [20],

[10], [25]. However, like in the case of classical FDs and the

Armstrong’s Axioms, these fuzzy inference systems are not

oriented to develop automated method to manipulate FFDs. A

logic for the management of FFDs over fuzzy attribute tables,

named FSL, was introduced in [13]. In the axiomatic system of

this logic, the transitivity role is played by a novel rule, named

simplification rule, which opens the door to define automated

reasoning methods.

In this section, FSL is introduced. Its language is the

following:

Definition 4.1: Given a finite set of attribute symbols Ω,

we define the language

L = {A ϑ−−→B | ϑ ∈ [0, 1] and A,B ∈ 2Ω}
Concerning the semantic, the models are given by a fuzzy

attribute table R : D → [0, 1]Ω over a family of domains

{(Da, ρa) | a ∈ Ω}. We say that R |= A
ϑ−−→B if R satisfies

A
ϑ−−→B, R |= Γ means that R satisfies every FFD in the set Γ

and Γ |= A
ϑ−−→B denotes that R |= Γ implies R |= A

ϑ−−→B.

Definition 4.2: The axiomatic system for FSL has one

axiom scheme and three inference rules:
[Ax] � A

1−→ A

[InR] A
ϑ1−−→B � A

ϑ2−−→B′

when ϑ2 ≤ ϑ1 and B′ ⊆ B.

[CoR] A
ϑ1−−→B, C

ϑ2−−→D � AC
ϑ1∧ϑ2−−−−−−→BD

[SiR] A
ϑ1−−→B, C

ϑ2−−→D � C-B
ϑ1⊗ϑ2−−−−−−→D-B

when A ⊆ C and A ∩B = ∅.
The next definition presents the well known notions of syn-
tactic inference (�) and equivalence (≡).

Definition 4.3: Let Γ,Γ′ ⊆L and ϕ ∈L. We say that ϕ is

(syntactically) inferred from Γ, denoted Γ � ϕ, if there exist

ϕ1 . . . ϕn ∈ L such that ϕn = ϕ and, for all 1 ≤ i ≤ n,

we have that ϕi belongs to Γ, is an axiom or is obtained by

applying the inference rules to formulas in {ϕj | 1 ≤ j < i}.
Γ and Γ′ are said to be equivalent, denoted Γ ≡ Γ′, if Γ � ϕ′,
for all ϕ′ ∈ Γ′, and Γ′ � ϕ, for all ϕ ∈ Γ.

Theorem 4.4 ([13]): The axiomatic system of FSL is sound

and complete.

V. CLOSURES AND DIRECT BASIS OF FUZZY FUNCTIONAL

DEPENDENCIES

In [14], we propose an automated reasoning method to

decide if a formula A
ϑ−−→B can be derived from a theory Γ (a

set of fuzzy functional dependencies). That is, an automated

algorithm to compute the membership function for the closure

of Γ defined as follows:

Γ+ = {A ϑ−−→B | Γ � A
ϑ−−→B} (2)

Notice that, as a consequence of [InR], Γ+ assigns an infinite

set of pairs (B, ϑ) to every set A. If the set B is also fixed then

Γ+ gives an interval (consequence of [InR]) whose supremum

will be denoted as ϑ+
A,B

ϑ+
A,B

= sup{ϑ ∈ [0, 1] | A ϑ−−→B ∈ Γ+} (3)
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On the other hand, if we fix the value of ϑ then a subset of

2Ω is obtained. This set is finite and, by [InR] and [CoR], is

an ideal of (2Ω,⊆). The maximum element of this ideal will

be denoted by A+
ϑ .

A+
ϑ = max{B ⊆ Ω | A ϑ−−→B ∈ Γ+} (4)

And finally, for each attribute set A, the closure of A is defined

as the fuzzy set

A+ ∈ [0, 1]Ω with A(x) = ϑ+
A,{x} (5)

Note that the closure of a (crisp) set of attributes is a fuzzy set

in [0, 1]Ω and A+
ϑ = Cutϑ(A

+) = {x ∈ Ω | A+(x) ≥ ϑ}. The

following proposition is straightforward from the definition

and relates these sets.

Proposition 5.1: Let Γ be a set of fuzzy functional depen-

dencies, A,B ⊆ Ω and ϑ ∈ (0, 1]. Then

Γ � A
ϑ−−→B if and only if ϑ ≤ ϑ+

A,B

if and only if B ⊆ A+
ϑ

Thus, the method for solving the implication problem (i.e. for

checking if Γ � A
ϑ−−→B) is strongly based on the computation

of A+. Algorithm 1 computes these closures.

Algorithm 1: Closure Algorithm

Data: Γ, A
Result: A+

X := {(x, 1) | x ∈ A};
/* X will be the closure of A, which is a

fuzzy set. */
repeat

Xold := X; Σ := ∅;

foreach B
ϑ−−→C ∈ Γ do

if there exists b ∈ B with b �= a for all (a, κ) ∈ X
then η := 0;
else η := min{κ | (b, κ) ∈ X with b ∈ B};
if η ⊗ ϑ �= 0 then X := X ∪ {(c, η ⊗ ϑ) | c ∈ C};
if η �= 1 and C �⊆ Cutϑ(X) then

Σ := Σ ∪ {B� Cut1(X)
ϑ−−→C� Cutϑ(X)}

Γ := Σ;
until X = Xold;

return “A+ is ” X

Example 5.2: In this example abc+ is going to be computed

from the set Γ

{cd 0.6−−−→e, ac
0.7−−−→def, f

0.5−−−→dg, de
0.9−−−→ch, dh

0.4−−−→a}
by considering the Łukasieweicz product. The initial set X
is {(a, 1), (b, 1), (c, 1)} and the sketch of the trace of Algo-

rithm 1 is depicted in Figure 1. The output is

abc+ = {(a, 1), (b, 1), (c, 1), (d, 0.7), (e, 0.7),
(f, 0.7), (g, 0.2), (h, 0.6)}

Moreover, to decide, for instance, if Γ � abc
0.5−−−→dh

holds, we need to check {d, h} ⊆ Cut0.5(abc
+) =

{a, b, c, d, e, f, h}. In this case the answer is affirmative.

As we have mentioned in the introduction, the aim of this

work is to establish good properties to be demanded to the

set of fuzzy functional dependencies in order to ensure the

best behavior of the closure algorithm. Following the idea

introduced in [17] for classical implications, we introduce a

desirable property named directness.

Definition 5.3: Let Γ be a set of fuzzy functional dependen-

cies in Ω. We say that Γ is direct if, for each subset X ⊆ Ω,

X+ = X ∪
⋃

A
ϑ−−−→B ∈ Γ
X ⊆ A

{(b, ϑ) | b ∈ B}

And Γ is said to be a direct optimal basis if, for any direct

base Γ′, we have that Γ ≡ Γ′ implies ‖Γ‖ ≤ ‖Γ′‖ where ‖Γ‖
denotes the size of Γ1.

The following theorem ensures the existence and unicity of a

direct optimal basis equivalent to each one.

Theorem 5.4: For any set of fuzzy functional dependencies

Γ in Ω there exists a unique direct optimal basis Γd such that

Γd ≡ Γ.

The proof of the above theorem follows the same scheme as

the equivalent one provided in [17] for classical implications

(crisp functional dependencies).

VI. COMPUTING DIRECT-OPTIMAL BASIS

In this section, we propose the first method that calculates

direct-optimal basis for fuzzy functional dependencies over

fuzzy attribute tables and domains with similarity relations.

We stress there do not exis in the literature, as far as we

know, any work for any fuzzy extension of FD considering to

compute direct optimal basis of FFDs. The method proposed

here is directly based on SLFD
with the following main

operations that use the operations of reduction, the rules of

simplifications, and the strong simplification rule based on the

logic.

In some areas, the management of formulas is limited

to unitary ones. Thus, the use of Horn Clauses in Logic

Programming is widely accepted. Such a language restriction

allows an improvement in the performance of the methods,

which are more direct and lighter.

Definition 6.1: Let Γ be a set of fuzzy functional depen-

dencies in Ω. We say that Γ is a proper unit theory if, for all

A
ϑ−−→B ∈ Γ, the set B is a singleton not included in A and

ϑ > 0.

It is not difficult to conclude that there is a proper unit theory

equivalent to any set of fuzzy functional dependencies Γ:

Γu = {A ϑ−−→a | ϑ > 0, A
ϑ−−→B ∈ Γ, a ∈ B �A}

The algorithm for computing direct optimal basis, that we

present here, has four stages: First, it transform the set of

FFDs in a proper unit theory; second, it computes a direct

basis by applying the following derived rule, named Strong

Simplification:

1That is, ‖Γ‖ =
∑

A
ϑ−−−→B∈Γ

(|A| + |B|) where |A| denotes the

cardinality of A.
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B
ϑ−−→C ∈ Γ Σ X

Γ = {cd 0.6−−−→e, ac
0.7−−−→def, f

0.5−−−→dg, de
0.9−−−→ch, dh

0.4−−−→a}
∅ {(a, 1), (b, 1), (c, 1)}

cd
0.6−−−→e {d 0.6−−−→e} {(a, 1), (b, 1), (c, 1)}

ac
0.7−−−→def {d 0.6−−−→e} {(a, 1), (b, 1), (c, 1), (d, 0.7), (e, 0.7), (f, 0.7)}

f
0.5−−−→dg {d 0.6−−−→e, f

0.5−−−→g} {(a, 1), (b, 1), (c, 1), (d, 0.7), (e, 0.7), (f, 0.7), (g, 0.2)}
de

0.9−−−→ch {d 0.6−−−→e, f
0.5−−−→g} {(a, 1), (b, 1), (c, 1), (d, 0.7), (e, 0.7), (f, 0.7), (g, 0.2), (h, 0.6)}

dh
0.4−−−→a {d 0.6−−−→e, f

0.5−−−→g} {(a, 1), (b, 1), (c, 1), (d, 0.7), (e, 0.7), (f, 0.7), (g, 0.2), (h, 0.6)}
Γ = {d 0.6−−−→e, f

0.5−−−→g}
∅ {(a, 1), (b, 1), (c, 1), (d, 0.7), (e, 0.7), (f, 0.7), (g, 0.2), (h, 0.6)}

d
0.6−−−→e ∅ {(a, 1), (b, 1), (c, 1), (d, 0.7), (e, 0.7), (f, 0.7), (g, 0.2), (h, 0.6)}

f
0.5−−−→g {f 0.5−−−→g} {(a, 1), (b, 1), (c, 1), (d, 0.7), (e, 0.7), (f, 0.7), (g, 0.2), (h, 0.6)}

Fig. 1. Algorithm’s schema

[sSiR] A
ϑ1−−−→a, aB

ϑ2−−−→b � AB
ϑ1⊗ϑ2−−−−−−−→b when a, b /∈ A ∪B.

The third step is to narrow the set of FFDs applying the

following equivalence

[NarrEq] If A ⊆ C and ϑ1 ≥ ϑ2, {A ϑ1−−−→b, C
ϑ2−−−→b} ≡ {A ϑ1−−−→b}.

Finally, the method applies, when it is possible, the Compo-

sition Equivalence: {A ϑ−−→B,A
ϑ−−→C} ≡ {A ϑ−−→BC}.

Algorithm 2: DirectOptimal

input : A set of fuzzy functional dependencies Γ in Ω
output: The direct-optimal basis Γdo equivalent to Γ
begin

Γu := {A ϑ−−→a | ϑ > 0, A
ϑ−−→B ∈ Γ, a ∈ B �A}

foreach A
ϑ1−−→a ∈ Γu do

foreach Ca
ϑ2−−→b ∈ Γu do

if a �= b and b �∈ A then add AC
ϑ1⊗ϑ2−−−−−−→b to

Γu;

foreach A
ϑ1−−→b ∈ Γu do

foreach C
ϑ2−−→b ∈ Γu do

if A ⊆ C and ϑ1 ≥ ϑ2 then delete C
ϑ2−−→b from

Γu;

Γdo := Γu

foreach A
ϑ1−−→B ∈ Γdo do

foreach C
ϑ2−−→D ∈ Γdo do

if A = C and ϑ1 = ϑ2 then replace A
ϑ1−−→B and

C
ϑ2−−→D by A

ϑ1−−→BD in Γdo;

return Γdo

Theorem 6.2: Let Γ be a set of fuzzy functional depen-

dencies. Algorithm 2 renders the unique direct-optimal base

equivalent to Γ.

VII. CONCLUSIONS AND FURTHER WORKS

In this work, we propose the first method to calculate

direct-optimal basis for fuzzy functional dependencies over

fuzzy attribute tables and domains with similarity relations.

A discussion about the cost of the algorithm and possible

improvements for it is now under consideration. As future

work, we are also going to extend these results to a more

expressive logic that we introduced in [26].
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