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Abstract—During the last two decades, several fuzzy extensions
of the pure logic language PROLOG have been developed thus
producing modern fuzzy logic languages which manage truth
degrees beyond the simpler case of {true, false}. Such values
are usually collected in lattices whose correct design require
to take special care when deciding the top/bottom elements,
establishing the ordering relation and so on. In this paper we
describe a graphical tool devoted to assist the development of such
structures. A crucial and distinguishing feature of the tool relies
on its capability for generating code in form of PROLOG clauses
which can be directly imported by the fuzzy logic programming
environment FLOPER developed too in our research group.

I. INTRODUCTION

Among other purposes, research in Declarative Program-
ming and Fuzzy Logic has traditionally provided languages

and programming techniques for AI, soft-computing, and so

on. In particular, Logic Programming [1] has been widely

used for problem solving and knowledge representation in the

past, with recognized influences in the field of AI [2], [3].

Nevertheless, traditional logic languages do not incorporate

techniques or constructs to explicitly treat with uncertainty

and approximate reasoning.

To fulfill this gap, Fuzzy Logic Programming has emerged

as an interesting and still growing research area trying to

agglutinate the efforts for introducing fuzzy logic into logic

programming. During the last decades, several fuzzy logic

programming systems have been developed [4], [5], [6], [7],

[8], [9], [10], [11], [12], [13], where the classical inference

mechanism of SLD–resolution is replaced with a fuzzy variant

which is able to handle partial truth and to reason with uncer-

tainty. All these languages manage truth degrees beyond the

classic bi-valued case, and they usually make use of lattices for

collecting the set of truth degrees organized according a given

ordering relation. This is the case of Multi-Adjoint Logic Pro-
gramming (MALP in brief) [14], [15], [16], [17], [18], [19],

one of the most powerful and promising approaches in the

area for which we have designed some program transformation
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techniques (see some examples of fuzzy fold/unfold and partial

evaluation in [20], [21], [22], [17], [23], as well as fuzzy

tabulation mechanisms [24], [25], [26]). In this framework,

a program can be seen as a set of rules each one annotated

with a truth degree and a goal is a query to the system plus

a substitution (initially the empty substitution, denoted by

id). Admissible steps (a generalization of the classical modus
ponens inference rule) are systematically applied on goals

in a similar way to classical resolution steps in pure logic

programming, thus returning an state composed by a computed

substitution together with an expression where all atoms have

been exploited. Next, during the so called interpretive phase

(see [17]), this expression is interpreted under a given lattice,

hence returning a pair 〈truth degree; substitution〉 which is the

fuzzy counterpart of the classical notion of computed answer

used in pure logic programming.

During the last years, our developments regarding the

design of the FLOPER tool (“Fuzzy LOgic Program-
ming Environment for Research”, see [27], [28], [29] and

visit http://dectau.uclm.es/floper/), have been

devoted to implant on its core a rule-based, easy representation

of lattices representing fuzzy notions of truth degrees. The

system offers running/debugging capabilities for managing

MALP programs, and has served us for developing several

applications in emergent fields like cloud computing, fuzzy

SAT/SMT and the semantic web [30], [31], [32], [33], [34],

[35], [36]. The expressive power of PROLOG rules (i.e.,

clauses) for implementing rich versions of lattices of truth

degrees in a very easy way, as well as its crucial role in further

fuzzy logic computations, revealed us the need for assisting

the design of such structures in a graphical way. This task is

comfortably/accurately performed by the LatticeMaker tool we

have recently developed in our research group, whose detailed

description constitutes the main goal of the present work.

While Section II summarizes the main features of MALP

and FLOPER, paying special attention to multi-adjoint lat-

tices and their nice representation by using standard PROLOG

code, in Section III we describe the LatticeMaker tool specially

tailored for helping the graphic design of such lattices. Finally,

in Section IV we give our conclusions and propose some some

lines of future work.
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II. THE FUZZY LOGIC PROGRAMMING ENVIRONMENT

FLOPER
We start this section by summarizing the main features of

multi-adjoint logic programming (see [14], [15], [16], [18],

[19] for a complete formulation of this framework). We work

with a first order language, L, containing variables, constants,

function symbols, predicate symbols, and several (arbitrary)

connectives to increase language expressiveness: implication

connectives (←1,←2, . . .); conjunctive operators (denoted by

&1,&2, . . .), disjunctive operators (∨1,∨2, . . .), and hybrid

operators (usually denoted by @1,@2, . . .), all of them are

grouped under the name of “aggregators”.

Additionally, our language L contains the values of a multi-

adjoint lattice 〈L,�,←1,&1, . . . ,←n,&n〉, equipped with a

collection of adjoint pairs 〈←i,&i〉, where each &i is a

conjunctor which is intended to the evaluation of modus
ponens [14].

In general, L may be the carrier of any complete bounded

lattice where an L-expression is a well-formed expression

composed by values and connectives of L, as well as variable

symbols and primitive operators (i.e., arithmetic symbols such

as ∗,+,min, etc...).

In what follows, we assume that the truth function of any

connective @ in L is given by its corresponding connective
definition, that is, an equation of the form @(x1, . . . , xn) � E,

where E is an L-expression not containing variable symbols

apart from x1, . . . , xn. In particular, we will be mainly

concerned with the following classical set of adjoint pairs

(conjunctors and implications) in 〈[0, 1],≤〉, where labels

L, G and P mean respectively Łukasiewicz logic, Gödel
intuitionistic logic and product logic (which different

capabilities for modeling pessimist, optimist and realistic
scenarios, respectively):

&P(x, y) � x ∗ y ←P (x, y) � min(1, x/y)

&G(x, y) � min(x, y) ←G (x, y) �
{
1 if y ≤ x

x otherwise

&L(x, y) � max(0, x+ y − 1) ←L (x, y) � min{x− y + 1, 1}
A rule is a formula H ←i B, where H is an atomic formula

(usually called the head) and B (which is called the body) is a

formula built from atomic formulas B1, . . . , Bn — n ≥ 0 —,

truth values of L, conjunctions, disjunctions and aggregations.

A goal is a body submitted as a query to the system. Roughly

speaking, a multi-adjoint logic program is a set of pairs 〈R;α〉
(we often write “R with α”), where R is a rule and α is a

truth degree (a value of L) expressing the confidence of a

programmer in the truth of rule R. By abuse of language, we

sometimes refer a tuple 〈R;α〉 as a “rule”.

To work with this kind of fuzzy logic programming lan-

guage we have developed the Fuzzy LOgic Programming
Environment for Research FLOPER [27], [28], [29]. The

system incorporates a graphical user interface and is able to

load fuzzy programs and lattices, as well as to evaluate fuzzy

goals and depict their evaluation trees. The parser has been

implemented by using the classical DCG’s (Definite Clause

Grammars) resource of the PROLOG language, since it is a

convenient notation for expressing grammar rules. Once the

application is loaded inside a PROLOG interpreter it shows a

menu which includes options for loading, parsing, listing and

saving fuzzy programs, as well as for executing fuzzy goals.
All these actions are based in the translation of the fuzzy

code into standard PROLOG code. The key point is to extend

each atom with an extra argument, called truth variable of

the form “_TVi”, which is intended to contain the truth

degree obtained after the subsequent evaluation of the atom.

To visualize this translation, consider, for instance, the fuzzy

(MALP) program,

oc(X) <- s(X) &prod (f(X) @aver w(X)).

s(madrid) with 0.8. s(tokyo) with 0.9.
f(madrid) with 0.8. f(tokyo) with 0.7.
w(madrid) with 0.9. w(tokyo) with 0.6.

s(istambul) with 0.3. s(baku) with 0.3.
f(istambul) with 0.4. f(baku) with 0.2.
w(istambul) with 0.8. w(baku) with 0.5.

Then, the first clause in our target program is translated into:

oc(X, _TV0) :- s(X, _TV1),
f(X, _TV2),
w(X, _TV3),
agr_aver(_TV2, _TV3, _TV4),
and_prod(_TV1, _TV4, TV0).

Moreover, the second clause in our target program, becomes

the pure PROLOG fact “s(madrid,0.8)” while a fuzzy

goal like “oc(X)”, is translated into the pure PROLOG goal:

“oc(X, Truth_degree)” (note that the last truth degree

variable is not anonymous now) for which the PROLOG

interpreter returns the fuzzy computed answers:

• [Truth_degree = 0.68, X = madrid],
• [Truth_degree = 0.18, X = istambul],
• [Truth_degree = 0.585, X = tokyo]
• [Truth_degree = 0.105, X = baku]

The previous set of options suffices for running fuzzy pro-

grams (the “run” choice also uses the clauses contained in

file “num.pl” of Figure 1, which represent the default lattice):

all internal computations (including compiling and executing)

are pure PROLOG derivations whereas inputs (fuzzy programs

and goals) and outputs (fuzzy computed answers) have always

a fuzzy taste, thus producing the illusion on the final user of

being working with a purely fuzzy logic programming tool.
On the other hand, FLOPER has been equipped with

an option called “lat” for changing the multi-adjoint lattice

associated to a given program.
We have conceived a very easy way to model truth-degree

lattices for being included into the FLOPER tool. All

relevant components of each lattice can be encapsulated inside

a PROLOG file which must necessarily contain the definitions

of a minimal set of predicates defining the set of valid elements

(including special mentions to the “top” and “bottom”

996



member(X) :- number(X),0=<X,X=<1. members([0,0.2,0.4,0.6,0.8,1]).

bot(0). top(1). leq(X,Y) :- X=<Y.

and\_luka(X, Y, Z) :- pri_add(X, Y, U1), pri_sub(U1, 1, U2), pri_max(0, U2, Z).
and_godel(X, Y, Z) :- pri_min(X, Y, Z).
and_prod(X, Y, Z) :- pri_prod(X, Y, Z).

or_luka(X, Y, Z) :- pri_add(X, Y, U1), pri_min(U1, 1, Z).
or_godel(X, Y, Z) :- pri_max(X, Y, Z).
or_prod(X, Y, Z) :- pri_prod(X, Y, U1), pri_add(X, Y, U2), pri_sub(U2, U1, Z).

agr_aver(X, Y, Z) :- pri_add(X, Y, U), pri_div(U, 2, Z).

pri_add(X, Y, Z) :- Z is X + Y. pri_min(X, Y, Z) :- (X=<Y, Z=X; X>Y, Z=Y).
pri_sub(X, Y, Z) :- Z is X - Y. pri_max(X, Y, Z) :- (X=<Y, Z=Y; X>Y, Z=X).
pri_prod(X, Y, Z) :- Z is X * Y. pri_div(X,Y,Z) :- Z is X/Y.

Figure 1. Multi-adjoint lattice modeling truth degrees in the real interval [0,1] (file “num.pl”).

ones), the full or partial ordering established among them, as

well as the repertoire of fuzzy connectives which can be used

for their subsequent manipulation. In order to simplify our

explanation, assume that file “bool.pl” refers to the simplest

notion of (a binary) adjoint lattice, thus implementing the

following set of predicates:

• member/1 which is satisfied when being called with

a parameter representing a valid truth degree. In the

case of finite lattices, it is also recommend to implement

members/1 which returns in one go a list containing

the whole set of truth degrees. For instance, in the

Boolean case, both predicates can be simply modeled

by the PROLOG facts: member(0)., member(1). and

members([0,1]).
• top/1 and bot/1 obviously answer with the top and

bottom elements of the lattice, respectively. Both are

implemented into “bool.pl” as top(1). and bot(0).
• leq/2 models the ordering relation among all the possi-

ble pairs of truth degrees, and obviously it is only satisfied

when it is invoked with two elements verifying that the

first parameter is equal or smaller than the second one. So,

in our example it suffices with including into “bool.pl”

the facts: leq(0,X). and leq(X,1).
• Finally, given some fuzzy connectives of the form

&label1 (conjunction), ∨label2 (disjunction) or @label3

(aggregation) with arities n1, n2 and n3 respectively, we

must provide clauses defining the connective predicates
“and_label1/(n1+1)”, “or_label2/(n2+1)” and

“agr_label3/(n3+1)”, where the extra argument of

each predicate is intended to contain the result achieved

after the evaluation of the proper connective. For instance,

in the Boolean case, the following two facts easily model

the behaviour of the classical conjunction operation:

and_bool(0,_,0). and_bool(1,X,X).

The reader can easily check that the use of lattice “bool.pl”

when working with MALP programs whose rules have the

form:

“A ←bool &bool(B1, . . . , Bn) with 1”

.... being A and Bi typical atoms1, successfully mimics

the behaviour of classical PROLOG programs where clauses

accomplish with the shape “A : − B1, . . . , Bn”. As

a novelty in the fuzzy setting, when evaluating goals, each

output will contain the corresponding PROLOG’s substitution

(i.e., the crisp notion of computed answer obtained by means

of classical SLD-resolution) together with the maximum truth

degree 1.

On the other hand and following the PROLOG style regu-

lated by the previous guidelines, in file “num.lat” we have

included the clauses shown in Figure 1. Here, we have

modeled the more flexible lattice (that we will mainly use

in our examples, beyond the boolean case) which enables the

possibility of working with truth degrees in the infinite space

(note that due to this condition in predicate “members/1” we

include a subset of numbers only) of the real numbers between

0 and 1, allowing too the possibility of using conjunction

and disjunction operators recasted from the three typical fuzzy

logics proposals described before (i.e., the Łukasiewicz, Gödel
and product logics), as well as a useful description for the

hybrid aggregator average.

Note also that we have included definitions for auxiliary

predicates, whose names always begin with the prefix “pri_”.

All of them are intended to describe primitive/arithmetic

operators (in our case +, −, ∗, /, min and max) in

a PROLOG style, for being appropriately called from the

bodies of clauses defining predicates with higher levels of

expressiveness (this is the case for instance, of the three

kinds of fuzzy connectives we are considering: conjuntions,

disjunctions and agreggations).

1Here we also assume that several versions of the classical conjunction
operation have been implemented with different arities.
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Figure 2. Screenshot of LatticeMaker managing a lattice with four truth degrees.

Since till now we have considered two classical, fully

ordered lattices (with a finite and infinite number of elements,

collected in files “bool.pl” and “num.pl”, respectively), we

wish now to introduce a different case coping with a very

simple lattice where not always any pair of truth degrees

are comparable. So, consider the following partially ordered

multi-adjoint lattice in Figure 3 for which the conjunction

and implication connectives based on the Gödel conform an

adjoint pair.... but with the particularity now that, in the

general case, the Gödel’s conjunction must be expressed as

&G(x, y) � inf(x, y), where it is important to note that we

must replace the use of “min” by “inf” in the connective

definition.

To this end, observe in the PROLOG code accompanying the

figure that we have introduced five clauses defining the new

primitive operator “pri_inf/3” which is intended to return

the infimum of two elements. Related with this fact, we must

point out the following aspects:

• Note that since truth degrees α and β (or their cor-

responding representations as PROLOG terms “alpha”

and “beta” used for instance in the definition(s) of

“members(s)/1”) are incomparable then, any call

to goals of the form “?- leq(alpha,beta).” or

“?- leq(beta,alpha).” will always fail.

• A goal like “?- pri_inf(alpha,beta,X).”, or

alternatively “?- pri_inf(beta,alpha,X).”, in-

stead of failing, successfully produces the desired result

“X=bottom”.

• Note anyway that the implementation of the

“pri_inf/1” predicate is mandatory for coding

the general definition of “and_godel/3”.

Note that FLOPER does not implement yet any method to

graphically show lattices, and precisely is this inability what

we try to overcome in the current paper, by presenting a tool

for to graphically edit and visualize lattices, in a similar way

to what shows Figure 4.
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�

α β

⊥

member(bottom). member(alpha).
member(beta). member(top).

members([bottom,alpha,beta,top]).

bot(bottom). top(top).

leq(bottom,X). leq(alpha,alpha).
leq(beta,beta). leq(beta,top).
leq(alpha,top). leq(X,top).

and_godel(X,Y,Z):-pri_inf(X,Y,Z).

pri_inf(bottom,X,bottom):-!.
pri_inf(alpha,X,alpha):-

leq(alpha,X),!.
pri_inf(beta,X,beta):-

leq(beta,X),!.
pri_inf(top,X,X):-!.
pri_inf(X,Y,bottom).

Figure 3. PROLOG code modeling a partially ordered lattice.

To end this section, we remark that we have

provided an instance of the FLOPER tool in the url

http://dectau.uclm.es/floper/?q=sim/test.

This implementation includes all the functionality of the

desktop environment and it is freely available with no further

software installation.

III. THE LATTICEMAKER TOOL

The fuzzy logic programming environment FLOPER can be

seen as tool rich enough for coping with MALP programs.

Indeed, this environment allows to code programs, to group

them into projects, as well as running them and, even, depict-

ing execution trees in a graphical way. However, one thing was

left apart of this usability exuberance. Until now, the complex

structures known as multi-adjoint lattices were directly coded

as PROLOG programs as seen in Section II, with no facility

from part of the (in other cases) user-friendly FLOPER
environment. It is evident that this way of designing lattices is

tedious and, worst of all, potentially misleading, since the code

can be sometimes confusing when dealing with a complex

lattice structure.

The solution to this problem is a new software environ-

ment called LatticeMaker. This tool is intended to ease the

manipulation and design of multi-adjoint lattices, that define

the notion of truth degrees for MALP programs.

Usability was one of the major concerns in the design of

LatticeMaker. Note that, in the current context of software

usage, there are a wide range of users with very different

technical abilities, which do not care about the internal features

of programs, but their facility of use. The notion of usability of

a program is understood as the speed and easiness with which

a user performs his tasks using a certain software product.

For Jacob Nielsen, pioneer in the diffusion of usability, it is

a multidimensional term [37], [38], and, together with Rolf

Molich [39], they identify the following set of heuristics for

the design of usable software:

• Visibility of the state of the system: the system has to

make visible its state to the user through the correspond-

ing feedback, so they can know what happens or is going

to happen.

• Equivalence between the system and the real world: the

system has to speak the language of the user, by means of

the use of either concepts or expressions that are familiar

to them, or showing information in a logic way similarly

to the real world.

• Freedom and control for the user: frequently, users mis-

takenly choose an option, so they need to see clearly an

emergency exit. Other times, options of Undo and Redo

are necessary.

• Consistency and use of standards: occasionally, users do

not know that different words, actions or icons have the

same meaning. In these cases it is appropriate to make

use of standards.

• Error prevention: even better than a good error message

is the prevention of problems by, for instance, informing

the user that the action they are performing may fail.

• Recognition instead of memorization: this means less

effort by the user. Most frequently used functions must

be easily accessible.

• Flexibility and efficiency of use: shortcuts increase speed

of use for expert users.

• Minimalist and aesthetic design: dialogs must not contain

unusual or irrelevant information so they do not visually

compete with the really useful information.

• Diagnosis and error recovery: errors must be expressed in

ordinary language (with no code), noticing the problem

and, if possible, suggesting some solution.

• Help and documentation: documentation must be focused

on tasks, with short lists of concrete steps.

LatticeMaker (see again Figure 2) has entirely been developed

in PROLOG (particularly, SWI-PROLOG) through the XPCE

library. XPCE/PROLOG is a hybrid environment that merges

logic programming with object oriented programming in order

to obtain Graphical User Interfaces (GUI’s). It was developed

as “PCE project” in 1985 by Anjo Abjewierden with the

aim of creating an high level environment for C-PROLOG.

PCE migrated to X-windows and became compatible with

Windows and Unix under the name XPCE. Currently, XPCE

is distributed as an integrated package in SWI-PROLOG under

GNU license.

Furthermore, this library includes an event handler, graph-

ical controls and user-defined classes. One of the advantages

of XPCE is the readability of the resulting programs, its

efficiency and the fact that is directly interpretable in a

PROLOG environment so its integration with other systems

is easy.

Our tool was created to cope with the following set of goals:

• The main purpose was the creation of a GUI for the edi-

tion of multi-adjoint lattices associated to fuzzy (MALP)
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Figure 4. Complex lattice as would be depicted in FLOPER incorporating LatticeMaker.

programs. It is very important that it can cope with the

format of lattices defined by FLOPER.

• The lattice would be represented in a graphical way, so

the predicates defining it must be interpreted as a graph.

• The edition and modification of the lattice should be also

graphical, so the graph could be interactive.

• Another possibility must be the edition of the lattice

in text format for the manipulation of the connectives

associated to the lattice.

• The result of the edition must be saved in the same format

(i.e., PROLOG code) defined by FLOPER.

• The resulting lattice should be also exportable to different

formats (XML and image).

• The system must be able to evaluate the behavior of the

connectives for the truth degrees defined in the lattice.

LatticeMaker is devised to be embedded into the FLOPER
tool. Therefore, the user would be able to manage all the

parts of a given fuzzy application (program and lattice) in a

visual, graphical, user-friendly way. This means an incredibly

enhancement on readability of the lattices, as we illustrate

in Figure 4, where we show a (complex but by no means

exaggerate) lattice with the combined use of LatticeMaker and

FLOPER.

It is also interesting to note that LatticeMaker is able to work

not only with multi-adjoint lattices but with lattices much more

general (particularly, complete lattices). Furthermore, since it

is nowadays an independent tool, it is also useful for other

areas, like mathematics, AI, networks, etc.

LatticeMaker provides a rich set of options and buttons to

model multi-adjoint lattices. Options are grouped into four

categories, as we are going to describe now:

A. File submenu

This submenu offers options for creating new lattices, loading

previously created lattices (as PROLOG programs), printing the

lattice in use, saving the lattice and exporting it as a JPG, GIF

or XPM image, as a PDF file (through the “print” choice) or

as an XML file, as seen in the following code, that represents

part of the XML file modeling the lattice “four” (see Figures

2 and 3).
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Figure 5. Toolbar of the Edit menu.

<?xml version="1.0" encoding="utf-8" ?>

<LATTICE>
<MEMBERS>
<MEMBER>top</MEMBER>
<MEMBER>alpha</MEMBER>
<MEMBER>beta</MEMBER>
<MEMBER>bottom</MEMBER>

</MEMBERS>
<BOTTOM>bottom</BOTTOM>
<TOP>top</TOP>
<ARC>
<FROM>alpha</FROM>
<TO>top</TO>

</ARC>
...

</LATTICE>

B. Edit submenu

This submenu allows to work in the text area where the system

prints the PROLOG clauses defining the current lattice. By

default it is set in only-read mode, although the user can easily

switch this mode to perform updates. It includes an option for

adding a new connective to the lattice. It is also possible to

redraw the graph for representing the lattice associated to the

text area of the program, in order to make visible the possible

modifications performed there by the user.

The text area of the editor is sensible to all the usual key

combinations: text selection, copy-paste-cut selected text, find,

replace and undo last change. It also includes a shortcut to the

most common options, illustrated in Figure 5.

C. Graphic submenu

This submenu provides options related with the canvas where

the lattice is graphically drawn. These options appear in Figure

6. This is the most intuitive part of the system and users are

invited to work directly in the drawn lattice, instead of directly

manipulating PROLOG clauses. With right click on the visual

elements of the lattice, a menu pops up offering related actions.

In particular, right click on a node shows options for deleting

and renaming it, and right click over an arc allows to delete

the arc. Also, right click over an empty area of the canvas

allows to create a new node and to name it. It is possible

to move nodes dragging them with the mouse. If the node is

dragged to one of the “Term i” controls, it is loaded as the

“i-th” parameter of a connective enabling its further evaluation

(as we will see afterwards).

In order to create an arc between nodes, the user se-

lects the Arrow mode, and clicks over the initial and final

nodes, thus creating a link corresponding to the predicate

Figure 6. Toolbar of the File menu and graphical area.

leq(initial, final)., where initial is the first node

clicked and final is the last one. Some consideration must be

done with this respect:

• Connections with the top element as origin are not

allowed, and neither are those ones ending in the bottom
element.

• Connections from one node to itself are not allowed,

although it is understood that all nodes fulfils the property

of being less or equal to themselves.

• A connection between two nodes is not allowed if the

opposite is already stated.

Notably, nodes in the canvas are tagged with the name of the

truth degree they are representing. They are coloured following

the next conventions, as depicted in Figure 7:

• Red: Not connected nodes.

• Green: Fully connected nodes.

• Purple: Nodes connected only to the top element.

• Orange: Nodes connected only to the bottom element.

• Blue: Top element.

• Yellow: Bottom element.

This submenu also allows to complete the graph, that is, to

include the links needed so it can be a complete lattice (link

each node so there is a path from the bottom to it, and from it

to the top). Finally, through the “normalize” option, the system

perform a series of tasks devoted to produce a coherent lattice.

It, particularly:

• removes cycles,

• deletes transitional arcs, as seen in Figure 8,

• redraws the lattice in layers so it is easier to understand,

as seen in Figure 7, and

• rewrites the PROLOG code according to the represented

graph (lattice), among other internal actions.

In order to perform this normalizing process, consider that the

relations defined by predicate leq/2 can be very general and,

if expanded, it might generate many redundant connexions.

With the aim of removing the unnecessary arcs, a new predi-

cate called arc/2 is defined. It is devoted to identify only the

arcs to be displayed in the graph. From then a procedure to

translate the set of leq/2 predicates to a new set of arc/2
predicates is defined so both ones can coexist in the same

lattice. That is, LatticeMaker transforms the loaded lattice so

the ordering relation is defined in terms of both the leq/2
predicate and the arc/2 predicate, and it is done in such a

way that the clauses defining leq/2, are redefined in order to

invoke the other ones and are always the same in every lattice,

concretely:

leq(X, X).
leq(X, Y):- arc(X, Z), leq(Z, Y).
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Figure 7. A bad-formed “lattice” exhibiting all the colors in our convention,
where the upper one needs to be normalized and the one below is already
normalized and displayed by layers.

Observe that the first clause copes with the idempotent prop-

erty, that states that each element is less or equal to itself. The

second clause makes use of the arc/2 predicate to build the

notion of “less or equal”. Then, an element is less or equal to

another if there is an arc connecting it to a third element that

is less or equal to the second one. By executing the second

clause the first clause is eventually reached, or the system runs

out of “arcs” to perform the second clause and the predicate

fails (that is, the relation does not hold). The use of predicate

arc/2 allows to easily avoid cycles and transitivity relations,

resulting in a more readable lattice definition. The resulting

lattice is saved with the name of the original one preceded by

prefix “generated_”.

With respect to the representation of the lattice by horizontal

layers, the system begins representing the top element, cen-

tered on its own layer. Then, it depicts in the layer immediately

below the nodes directly connected with top, distributing the

space in the layer equally between the nodes. It also takes into

account the nodes not reachable from top but from bottom.

The system continues then adding each time a new layer with

the subsequent nodes, distributing the space, until reaching

Figure 8. A lattice before and after removing redundant arcs.

the bottom element. Finally, it draws the disconnected nodes.

While drawing all nodes, their colours are chosen according

to the way they are connected (or not) with top and bottom,

following the convention previously described.

D. Aggregator submenu

As seen in Figure 2, the right area of LatticeMaker is occupied

by the “Aggregator submenu”, that is the part of the tool

adressing tasks related with the definitions of connectives. All

its options require the user to select some of the aggregators

of the lattice in the popup menu labelled as “Aggregator”.

Such popup takes its values from the connectives defined in

the loaded lattice, so, previously, it is mandatory to load some

lattice.

Every aggregator has an associated arity that determines

the number of parameters it works with. Once an aggregator

is selected, the system unlocks as much controls labelled as

“Term i” as its arity.

The “Term i” controls are popup menus that take their values

from the truth values defined by the lattice, together with an

“undefined” value, called “xi”, which acts as a variable in the

evaluation of the connectives.
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Figure 9. Screenshot of LatticeMaker managing a non well-formed lattice.

This submenu offers the following options:

• Evaluate: It allows to evaluate the connective with the

values selected on each “Term i” popup as its parameters.

The result of the evaluation is shown in the box below.

• Test aggregator: To use this option the user has to select a

property to be tested in the aggregator.We are nowadays

implementing a wide range of properties into the system.

In Figure 9 we show the current look of LatticeMaker. In

this case we have loaded a badly formulated lattice with an

incomplete ordering relation.

IV. CONCLUSIONS AND FUTURE WORK

FLOPER is a “Fuzzy LOgic Programming Environment

for Research” trying to help the development of applications

supporting approximated reasoning and uncertain knowledge

in the fields of AI, symbolic computation, soft-computing,

semantic web, declarative programming and so on. The tool,

which is able to directly translate a powerful kind of fuzzy

logic programs belonging to the so-called “multi-adjoint logic

approach” into standard PROLOG code, currently offers run-

ning/debugging/tracing capabilities with close connections to

other sophisticated manipulation techniques (program opti-

mization, program specialization, etc.) under development in

our research group. Our philosophy is to friendly connect

this fuzzy framework with PROLOG programmers: our system,

apart for being implemented in PROLOG, also translates the

fuzzy code to classical clauses (in two different representa-

tions) and, as we have seen in this paper, a wide range of

lattices modeling powerful and flexible notions of truth degrees

also admit a nice rule-based characterization into PROLOG.

The main goal of this work has been the introduction of

a graphical tool for aiding the construction of such structures

whose comfortable and accurate design has crucial importance

for further fuzzy logic computations. It is important to remark

that LatticeMaker has not been conceived for competing with

other commercial tools developed for academic or industrial

purposes (which must be even more popular or powerful)

since all them lack of the ability for generating PROLOG

code modeling lattices according the guidelines required by

FLOPER. Anyway, apart for using LatticeMaker when feed-

ing the FLOPER system with lattices of truth-degrees, the

tool can be used in isolation for alternative mathematical,

academic or research purposes. Since in the current version

of the applicacion we have mainly focused on the treatment

of the elements and the ordering relation established on a given

lattice, for the future we plan to reinforce the design of wide

repertoires of connectives and to check their properties in a

graphical aided way.
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