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Abstract—Manufacturing companies are using collaborative
planning for the coordination of lot-sizing decisions in inter-
organisational supply chains. By using collaborative planning,
the members of a supply chain try to identify a production
plan which results in lower costs compared to individual plans
by simultaneously preserving their autonomy. A distributed lot-
sizing problem with rivaling agents (DULR) is studied where
each item can be produced by more than one member (agent)
of the coalition. Thereby, it occurs that agents compete for the
production quotas of items. However, the goal of this contribution
is to extend the DULR by considering two types of items.
One type can be produced by more than one agent, while the
other one can only be produced by an appointed agent due to
contractual obligations. We denote the former type of items as
concurrent items and the latter one as compulsory items. To solve
the DULR with different types of items, an existing negotiation
mechanism based on simulated annealing is applied and modified.
A benchmark study shows that the modified solution approach
outperforms the best-known approach for the DULR. Based on
this finding, a second study is applied where the impact of
compulsory items is investigated for the DULR.

I. INTRODUCTION

Material resource planning of an inter-organisational sup-
ply chain with multiple decision makers is crucial due to
small margins in many industries. An important subproblem
of material resource planning is lot-sizing. Over a planning
horizon of multiple periods, a decision maker (referred to as
agent) has to determine the production quantity of each item in
each period. The goal is to minimize the total production costs
over the planning period [1]–[3]. Hereby, the decision maker
has to balance setup and inventory holding costs for every item.
Main challenges for lot-sizing in a supply-chain with multiple
decision makers are asymmetric and private information of the
decision makers and the selfish goal of each decision maker
to minimize the own costs (referred to as local costs). To deal
with these issues a collaborative planning approach based on
a negotiation mechanism is applied. Related approaches are
also discussed by [4]–[9]. Collaborative planning enables the
decision makers to preserve their autonomy and coordinating
their local plans in order to achieve a joint (global) production
plan that is superior compared to non-coordinated planning
[10], [11].

Point of origin for this paper is the distributed multi-level
uncapacitated lot-sizing problem with rivaling agents (DULR)

which was introduced by Buer et al. [12] and Eslikizi et al.
[13]. The DULR considers many features of real-world supply
chains like a multi-level product structure, setup and inventory
holding decisions, and multiple decision makers. Therefore, it
can be seen as a representative planning problem for lot-sizing
in supply chains. The DULR generalizes the distributed multi-
level uncapacitated lot-sizing problem (DMLUSLP, [14]–[16]).
In the DULR and in the DMLULSP each decision maker is
able to produce a subset of items. In the DMLULSP these
subsets are disjoint, i.e., every item is produced by only one
agent. The agents compete for the effective production date of
their items but not on the production quantity of each item over
the planning period. However, in the DULR the assignment
of items to agents is no longer disjoint. Some items may be
produced by more than one agent, these items are denoted
as concurrent items. With respect to concurrent items, the
agents compete on the production quantity over the planning
horizon. Clearly, this increases competition and stresses the
agents to preserve private information during the coordination
of planning. While the DULR introduced by Buer et al. [12]
considers only a subset of items as concurrent, Eslikizi et al.
[13] consider all items as concurrent.

We introduce the DULR with Production Limitations
(DULR-PL). Like the DULR, the DULR-PL considers con-
current items but also compulsory items. Compulsory items
have to be produced by an appointed agent. The reasons for
having compulsory items are for example safety concerns or
premium goods for which a manufacturing company has to
be able to distinguish between the type of service performed
on the item. In this paper, two service types are considered: a
standard service and a premium service. If a standard service
is requested for an item, this item can be produced by any
member of the coalition, while an item with a premium service
has to be produced by an appointed agent. Depending on the
service, items differ with respect to their impact on costs and
production plans. The corresponding items of these services
are denoted as concurrent and compulsory items.

Collaborative planning is also relevant in other logistic ar-
eas, e.g., transportation planning [17]–[21]. However, different
types of items like compulsory items are hardly discussed.
These types of items are prohibited to be fulfilled by a different
company because of contractual obligations [22]. In transporta-
tion planning items are usually denoted as requests. The impact
of different types of requests has already been addressed in978-1-4799-7560-0/15/$31 c⃝2015 IEEE
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transportation planning. Schönberger [23] studies compulsory
requests for a pickup and delivery problem with time windows
(PDPTW) and two different modes of transportation (own fleet
and common carriers). Ziebuhr and Kopfer [24] analyze the
impact for a PDPTW with three different transportation modes
(own fleet, long-term carriers, and common carriers). In terms
of distributed lot-sizing in supply chains, there is a lack of
approaches which consider different types of items.

Therefore, the goal of this paper is to study the effects of
compulsory items on the total costs of a DULR. The DULR
is extended by considering concurrent items and compulsory
items at the same time. To solve the DULR-PL an existing
negotiation mechanism is modified and applied. The idea of
the negotiation approach is that in each negotiation round a
mediator proposes a binary encoded production plan to the
decision makers. If all agents approve the proposal then the
proposal is accepted. However, slightly worse proposals may
also be approved, because a simulated annealing acceptance
criterion is applied. We extend the negotiation mechanism
by two features. The first modification reduces the variation
range of the solution quality by modifying the binary coded
production plan. The second modification ensures that only
feasible production plans for the DULR-PL are generated.

The remaining paper is structured as follows. Section II
describes the DULR-PL. Section III extends a negotiation
mechanism from the literature to solve the DULR-PL. Sec-
tion IV presents results of computational studies. Finally,
Section V concludes the paper and gives some ideas for future
research.

II. DISTRIBUTED LOT-SIZING WITH COMPULSORY ITEMS

The DULR-PL is jointly solved by multiple independent
decision makers who have to coordinate their lot-sizing de-
cisions over multiple planning periods in order to meet the
given customer demand for each product in each period. In
the DULR-PL a set 𝐴 of agents is given who jointly produce
a set 𝐼 of 𝑚 items. Agent 𝑎 ∈ 𝐴 produces the set of items
𝐼𝑎 with 𝐼 =

∪
𝑎∈𝐴 𝐼𝑎. In the DULR-PL and in contrast to

earlier approaches like [14] or [12], the allocation of items
to agents is usually non-disjoint, i.e.,

∩
𝑎∈𝐴 𝐼𝑎 ∕= ∅. An

item is denoted as concurrent item, if more than one agent
is able to produce it. Let 𝐼𝑐 denote the set of concurrent
items and let 𝐼𝑐𝑎 ⊂ 𝐼𝑐 denote the set of concurrent items of
agent 𝑎 ∈ 𝐴. The existence of concurrent items complicates
the coordination problem significantly. Furthermore, there are
items denoted as compulsory items which have to be produced
by an appointed agent. Let 𝐼𝑑 denote the set of compulsory
items and let 𝐼𝑑𝑎 ⊂ 𝐼𝑑 denote the set of compulsory items of
agent 𝑎 ∈ 𝐴. The following relationship between concurrent
items and compulsory items holds for each instance of the
DULR-PL: 𝐼 = 𝐼𝑐 ∪ 𝐼𝑑 and 𝐼𝑐 ∩ 𝐼𝑑 = ∅.

The DULR-PL covers also aspects of typical dynamic
multi-level lot-sizing problems. The considered lot-sizing
problem is dynamic because the set of items 𝐼 has to be
produced during a set 𝑇 of 𝑛 periods. Among the items
there are interdependencies, which are defined by a multi-
level product structure (i.e. a gozintograph) which defines the
composition of end products by intermediate products and raw
materials. For each item 𝑖 ∈ 𝐼 the set of all direct successors is

given by the set Γ+(𝑖) while the set of all direct predecessors
is given by the set Γ−(𝑖). Final products have an empty set of
successors, raw materials have an empty set of predecessors.
The production coefficient 𝑟𝑖𝑗 indicates the required units of
item 𝑖 to produce one unit of item 𝑗. Without loss of generality,
𝑟𝑖𝑗 = 1 is assumed. For all final products an exogenous
demand 𝑑𝑖𝑡𝑎 ≥ 0 is given (𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇, 𝑎 ∈ 𝐴). Furthermore,
for each 𝑖 ∈ 𝐼 and each 𝑎 ∈ 𝐴 the setup costs 𝑠𝑖𝑎, the inventory
holding costs ℎ𝑖𝑎, and a function to calculate the unit costs
𝑢𝑎𝑖(𝑥𝑎𝑖𝑡) are given.

There are five types of decision variables. The binary
variable 𝑦𝑖𝑡𝑎 indicates whether a machine setup for item 𝑖 ∈ 𝐼
occurs in period 𝑡 ∈ 𝑇 by agent 𝑎 ∈ 𝐴 (𝑦𝑖𝑡𝑎 = 1) or not
(𝑦𝑖𝑡𝑎 = 0). Variable 𝑥𝑖𝑡𝑎 ≥ 0 indicates the lot-size of item
𝑖 ∈ 𝐼 in period 𝑡 ∈ 𝑇 produced by agent 𝑎 ∈ 𝐴. Furthermore,
we have to decide about the internal demand 𝑑𝑖𝑡𝑎 ≥ 0 (𝑖 ∈ 𝐼
with Γ+(𝑖) ∕= ∅, 𝑡 ∈ 𝑇, 𝑎 ∈ 𝐴) and the inventory 𝑙𝑖𝑡𝑎 ≥ 0
(𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇, 𝑎 ∈ 𝐴). Finally, the last family of decision
variables 𝑎𝑙𝑎𝑖 allocates the relative production quantity of each
item 𝑖 ∈ 𝐼 to an agent 𝑎 ∈ 𝐴 (shared production). The relative
production quantity of an item, i.e., the production quota, is
effective during the entire planning horizon. For example, a
production quota of 𝑎𝑙𝑖𝑎 = 0.35 means that agent 𝑎 is awarded
35 percent of the production quantity of item 𝑖 over all periods.

In Buer et al. [12] the complete production quantity of
an item was always assigned to only one agent, splitting the
production quantity to several agents has not been supported.
The reason lies in the used objective function for the multi-
agent case, which is closely adapted from the single-agent
case of the multi-level uncapacitated lot-sizing problem. This
traditional objective function does not have to consider unit
costs because there is only one (central) agent and the required
quantity of every item is exogenously given; furthermore, due
to a lack of production capacities (unlike, e.g. [5], [6], [25]),
overtime costs of machines are not considered in the objective
function. For such an objective function, it is not reasonable to
allocate the production quantity of an item to more than one
agent. To solve this issue in Eslikizi et al. [13] it is proposed
to extend the objective function by integrating unit costs and
reducing the existing setup costs. In the DULR-PL we use 𝑓𝑎
as the local cost function of agent 𝑎 ∈ 𝐴, which is the same
as presented in Eslikizi et al. [13].

min 𝑓𝑎 =
∑
𝑖∈𝐼𝑎

∑
𝑡∈𝑇

(𝑠𝑖𝑎 ⋅ 𝑦𝑖𝑡𝑎 + ℎ𝑖𝑎 ⋅ 𝑙𝑖𝑡𝑎 + 𝑢𝑖𝑎(𝑥𝑖𝑡𝑎)) (1)

The local costs 𝑓𝑎 of agent 𝑎 consist of all setup costs, all
inventory holding costs, and the variable production costs.
The variable production costs are determined by the function
𝑢𝑖𝑎(𝑥𝑖𝑡𝑎) which implicitly takes machine capacities into ac-
count, because it assumes that the unit costs 𝑢𝑖𝑎 increase by
the factor 𝛼 when the production quantity 𝑥𝑖𝑡 exceeds a given
threshold 𝑑𝑖 (𝑖 ∈ 𝐼). For the sake of simplicity, we simply
assume 𝛼 = 2 in the remainder. For an actual instance of the
DULR-PL the threshold value 𝑑𝑖 is calculated as the average
demand per item and per period. The variable cost function is
defined as:

𝑢𝑖𝑎(𝑥𝑖𝑡𝑎) =

{
𝑢𝑖𝑎𝑥𝑖𝑡𝑎 if 𝑥𝑖𝑡𝑎 ≤ 𝑑𝑖
𝑢𝑖𝑎𝑑𝑖 + 𝛼𝑢𝑖𝑎(𝑥𝑖𝑡𝑎 − 𝑑𝑖) if 𝑥𝑖𝑡𝑎 > 𝑑𝑖

(2)

Each agent 𝑎 ∈ 𝐴 wants to minimize the local costs 𝑓𝑎, while
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the constraints (3) to (11) have to be satisfied:

𝑙𝑖𝑡𝑎 = 𝑙𝑖,𝑡−1,𝑎 + 𝑥𝑖𝑡𝑎 − 𝑑𝑖𝑡𝑎 , ∀𝑖 ∈ 𝐼𝑎, ∀𝑡 ∈ 𝑇, (3)

𝑙𝑖𝑜𝑎 = 0 , ∀𝑖 ∈ 𝐼𝑎, (4)

𝑙𝑖𝑡𝑎 ≥ 0 , ∀𝑖 ∈ 𝐼𝑎, ∀𝑡 ∈ 𝑇 ∖ {𝑜}, (5)

𝑑𝑖𝑡𝑎 = (
∑

𝑗∈Γ+(𝑖)

𝑟𝑖𝑗 ⋅ 𝑥𝑗,𝑡+𝑡𝑖,𝑎) ⋅ 𝑎𝑙𝑖𝑎 ,

∀𝑖 ∈ {𝑗 ∈ 𝐼𝑎 ∣ Γ+(𝑗) ∕= ∅}, 𝑡 ∈ 𝑇,
(6)

𝑎𝑙𝑖𝑎 = 1 , ∀𝑖 ∈ 𝐼𝑑𝑎 , (7)

𝑥𝑖𝑡𝑎 −𝑀 ⋅ 𝑦𝑖𝑡𝑎 ≤ 0 , ∀𝑖 ∈ 𝐼𝑎, ∀𝑡 ∈ 𝑇, (8)

𝑥𝑖𝑡𝑎 ≥ 0 , ∀𝑖 ∈ 𝐼𝑎, ∀𝑡 ∈ 𝑇, (9)

𝑎𝑙𝑖𝑎 ≥ 0 , ∀𝑖 ∈ 𝐼𝑐𝑎, (10)

𝑦𝑖𝑡𝑎 ∈ {0, 1} , ∀𝑖 ∈ 𝐼𝑎, ∀𝑡 ∈ 𝑇. (11)

The inventory balance constraint (3) ensures that the in-
ventory 𝑙𝑖𝑡𝑎 of item 𝑖 at the end of the current period 𝑡 is
determined by the inventory of the previous period 𝑡− 1 and
the amount 𝑥𝑖𝑡𝑎 produced in the current period minus the
demand for item 𝑖 in the current period. For all items, the
inventory of the first period 𝑡 = 0 is zero (4) and for remaining
periods non-negative (5). The endogenous demand for the
components and raw materials are determined by constraint
(6) where the shared production is taken into account by the
allocation parameter 𝑎𝑙𝑖𝑎. The latter constraints ensure that
the shared production of item 𝑗 in period 𝑡 + 𝑡𝑖 triggers a
corresponding demand 𝑑𝑖𝑡𝑎 for all 𝑖 ∈ Γ−(𝑗), that means
that there is a demand for each item 𝑖 preceding item 𝑗 in
the multi-level item structure. The lot-size 𝑥𝑖𝑡𝑎 is defined by
constraint (8) and (9). By constraint (8) it is ensured that if
an agent 𝑎 produces an item 𝑖 in period 𝑡 then the binary
variable 𝑦𝑖𝑡𝑎 is one and otherwise zero. Obviously, lot-sizes
cannot be negative which is defined by constraint (9). In terms
of the shared production, constraint (7) ensures that all units
of a compulsory item 𝑖 ∈ 𝐼𝑑𝑎 have to be produced by agent
𝑎 while constraint (10) ensures that the allocation parameter
𝑎𝑙𝑎𝑖 cannot be negative for concurrent items.

The model (1) to (11) takes the point of view of a single
decision maker. When we consider the group decision variant
of the DULR-PL the following constraint family has to be met
additionally. It ensures that the production quota for each item
sum up to 100 percent:∑

𝑎∈𝐴
𝑎𝑙𝑖𝑎 = 1 , ∀𝑖 ∈ 𝐼𝑐. (12)

Furthermore, the goal is to find and agree on a joint production
plan 𝑝 := ((𝑦𝑖𝑡𝑎), (𝑎𝑙𝑖𝑎)) which minimizes the global supply
chain costs. The global costs are defined as the sum of the
local costs of each agent:

min 𝑓(𝑝) =
∑
𝑎∈𝐴

𝑓𝑎(𝑝) (13)

Generally, minimizing the local costs of each agent and
minimizing the global costs of the supply chain are conflicting
goals. Therefore, we propose a collaborative planning approach
based on negotiations.

III. NEGOTIATION OF LOT-SIZING CONTRACTS VIA
SIMULATED ANNEALING

To solve the DULR-PL a simulated annealing negotiation
mechanism is applied. A simulated annealing is a metaheuristic
based on local search [26] which can be used to escape
from local optima by allowing moves that deteriorate the
objective function value. The applied negotiation mechanism
evaluates lot-sizing contracts with a shared production via
a simulated annealing and was introduced by Eslikizi et al.
[13]. The mechanism is known as SA. In this paper, the SA
is extended by a new procedure for identifying a promising
shared production among the members of the coalition as well
as in case of a procedure for handling compulsory items. The
extended SA is denoted as SAA.

The SAA is based on a negotiation mechanism which was
introduced by Homberger [14] for solving the DMLULSP and
was extended by Buer et al. [12] and Eslikizi et al. [13] for
solving the DULR. The difference between these approaches
for the DULR is that in Buer et al. [12] agents compete for
the production of an item where the favorable agent gets the
whole production volume of an item. In Eslikizi et al. [13]
multiple agents produce the same item. By applying the SA
for the DULR, we identified that the quality of the solutions as
well as the fluctuation range of the approach can be improved
by slightly changing the shared production procedures of the
SA.

The SAA is controlled by a neutral mediator and is outlined
in Algorithm 1. At the beginning of the algorithm, an initial
production plan 𝑝 has to be determined by the mediator. In
our scenario, a production plan is defined by an allocation
parameter 𝑎𝑙 and a contract 𝑐. The allocation parameter defines
the fraction of items that are produced by rivaling agents
while the contract represents an encoded solution of the setup
decision for each item of the coalition. In our scenario, a
contract 𝑐 has three dimensions, it specifies if an agent 𝑎 ∈ 𝐴
is allowed to produce a specific item 𝑖 ∈ 𝐼 in a given period
𝑡 ∈ 𝑇 or not. The first contract is generated randomly while
the initial allocation is generated by splitting the fraction of
every item equally among the rivaling agents which means in
a scenario with two rivaling agents that both agents produce
50% of the demanded units of an item. In Eslikizi et al. [13]
the initial allocation parameter is generated by identifying the
best allocation for each item 𝑖 ∈ 𝐼 based on the initial contract
𝑐. We realized that this procedure cannot be recommended
because the initial contract is generated randomly and therefore
might lead into a local optima. Based on the initial production
plan 𝑝, each agent 𝑎 ∈ 𝐴 evaluates 𝑝 by the local cost function
𝑓𝑎(𝑝) and determines the cooling schedule 𝜏𝑎. For more details
of determining cooling schedules, it is referred to Homberger
[14].

As soon as the cooling schedules are determined, the nego-
tiation phase takes place where in each round 𝑟𝑛 out of 𝑟𝑛𝑚𝑎𝑥
negotiation rounds a new proposal for a production plan 𝑝′ is
generated by the mediator. A new allocation parameter 𝑎𝑙′ is
generated by slightly updating the allocation parameter 𝑎𝑙 (see
Algorithm 2). A new contract 𝑐′ is generated by simultaneously
flipping one element of the contract 𝑐 for each rivaling agent.
Based on the updated allocation parameter 𝑎𝑙′ and contract 𝑐′,
each agent 𝑎 ∈ 𝐴 evaluates the production plan 𝑝′ by the local
cost function 𝑓𝑎(𝑝′). An agent accepts a production plan 𝑝′
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if the plan reduces the local costs or by a specific probability
𝑃𝑎(𝑝, 𝑝

′, 𝑟) if the production plan increases the local costs. In
[13], [27] it is proposed to consider additional side payments
based for the evaluation of a production plan, however, they
are difficult to compute under asymmetric information and
are not directly related to compulsory items, therefore we do
not use side payments in this approach. If all agents accept
the production plan 𝑝′, the contract 𝑐′ and the allocation
parameter 𝑎𝑙′ will be accepted as 𝑐 and 𝑎𝑙 and can be used
to generate a new contract and allocation parameter. After a
specific number of rounds, the accepted contract is used for
an allocation improvement procedure where the best allocation
for each item 𝑖 ∈ 𝐼 is determined (see Algorithm 3). In each
negotiation round, the individual temperatures 𝑇𝑎 are updated
corresponding to the schedule 𝜏𝑎. The negotiation phase is
terminated as soon as each negotiation round is investigated.
At the end, the best mutually accepted contract and allocation
parameters are returned.

Algorithm 1 SAA (cf. Eslikizi et al. [13])

1: Data: problem data, allocation parameter (𝑠𝑖𝑎𝑙, 𝑜𝑞𝑎𝑙)
2: mediator: generate initial allocation 𝑎𝑙
3: mediator: generate initial contract 𝑐
4: each 𝑎 ∈ 𝐴: evaluate 𝑝 by local objective function 𝑓𝑎(𝑝)
5: each 𝑎 ∈ 𝐴: compute cooling schedule 𝜏𝑎
6: while 𝑟𝑛 < 𝑟𝑛𝑚𝑎𝑥 do
7: mediator: generate a new allocation 𝑎𝑙′ ← 𝑁(𝑎𝑙)
8: mediator: generate a new contract 𝑐′ ← 𝑁(𝑐)
9: each 𝑎 ∈ 𝐴: evaluate 𝑝′ with 𝑓𝑎(𝑝′)

10: each 𝑎 ∈ 𝐴: accept 𝑝′ with probability 𝑃𝑎(𝑝, 𝑝
′, 𝑟)

11: if all agents accept the production plan 𝑝′ then
12: mediator: update contract 𝑐← 𝑐′
13: mediator: update allocation 𝑎𝑙← 𝑎𝑙′
14: if allocation improvement is activated then
15: mediator: identify the best allocation 𝑎𝑙
16: end if
17: end if
18: each 𝑎 ∈ 𝐴: update temperature 𝑇𝑎
19: mediator: 𝑟𝑛 ← 𝑟𝑛 + 1
20: end while
21: return mutually accepted contract and allocation

As mentioned, the shared production procedures of Eslikizi
et al. [13] are modified with the goal to improve the quality of
the SAA solution. In Eslikizi et al. [13] it is proposed to update
the allocation parameter after a specific number of negotiation
rounds. We identified that the allocation parameters should be
slightly updated like the contract in each negotiation round.
Furthermore, we propose to use the allocation improvement
procedure during the negotiation instead of using it for iden-
tifying a promising initial allocation parameter like in the SA.

In each negotiation round of the SAA, the allocation
parameter 𝑎𝑙 is updated by slightly changing some of the item
allocations. The pseudocode is represented by Algorithm 2.
Thereby, the mediator chooses a subset 𝐼𝑎𝑙 ⊂ I of items
randomly. The size of 𝐼𝑎𝑙 is defined by the given parameter
𝑠𝑖𝑎𝑙 and the change of order quantity 𝑜𝑞𝑎𝑙. Each item 𝑖
in 𝐼𝑎𝑙 is investigated for the modification of the allocation.
Corresponding to the selected item the rivaling agents 𝑎1 and
𝑎2 are identified with their current best allocation 𝑎𝑙𝑖 and
1−𝑎𝑙𝑖. In a next step, the allocation is increased or decreased

randomly which is defined by the operator 𝑜𝑎𝑙. The allocation
updating procedure terminates when each item has been looked
at. The procedure is repeated in each negotiation round.

Algorithm 2 Updating the allocation parameter

1: Data: problem data, 𝑠𝑖𝑎𝑙, 𝑜𝑞𝑎𝑙, 𝑎𝑙𝑖
2: mediator: choose items and store them in 𝐼𝑎𝑙

3: for 𝑖 ∈ 𝐼𝑎𝑙 do
4: mediator: identify rivaling agents 𝐴𝑎𝑙

𝑖
5: mediator: choose operation 𝑜𝑎𝑙 ∈ {0, 1} randomly
6: if (𝑜𝑎𝑙 = 1 ∨ 𝑎𝑙𝑖 + 𝑜𝑞𝑎𝑙 ≤ 100) ∧ (𝑜𝑎𝑙 = 0 ∨ 𝑎𝑙𝑖 −
𝑜𝑞𝑎𝑙 ≤ 0) then

7: mediator: update 𝑎𝑙𝑖 ← 𝑎𝑙𝑖 + 𝑜𝑞
𝑎𝑙

8: end if
9: if (𝑜𝑎𝑙 = 1 ∨ 𝑎𝑙𝑏𝑖 + 𝑜𝑞𝑎𝑙 ≥ 100) ∧ (𝑜𝑎𝑙 = 0 ∨ 𝑎𝑙𝑖 −
𝑜𝑞𝑎𝑙 ≥ 0) then

10: mediator: update 𝑎𝑙𝑖 ← 𝑎𝑙𝑖 − 𝑜𝑞𝑎𝑙
11: end if
12: return 𝑎𝑙𝑖 the best allocation of item 𝑖
13: end for

Instead of identifying a promising allocation parameter for
the initial contract like in the SA, it is proposed to use this
procedure during the negotiation when the approach is close
to be trapped in a local optima. The allocation improvement
procedure is executed as soon as 𝑓𝑖𝑎𝑙 negotiation rounds are
executed and is repeated as soon as a new mutually accepted
production plan is identified and at least 1000 negotiation
rounds are performed. As soon as the procedure is activated,
the allocation parameter is rebuilt from the scratch by seeking
for each item 𝑖 ∈ 𝐼 the best allocation parameter 𝑎𝑙𝑖 which
is defined by Algorithm 3. For the initial allocation one agent
𝑎1 gets zero percent (𝑎𝑙′𝑖 = 0) of the production volume of
item 𝑖 and his rivaling agent 𝑎2 receives hundred percent. In
the first round 𝑎𝑙′𝑖 is stored as the best allocation parameter 𝑎𝑙𝑖
and the set of rivaling agents 𝐴𝑎𝑙

𝑖 is identified. Corresponding
to the current allocation parameter 𝑎𝑙′𝑖 for item 𝑖 the demand,
the lot-size, and the inventory of the rivaling agents have to be
updated. Each agent 𝑎 ∈ 𝐴𝑎𝑙

𝑖 evaluates the updated contract
with 𝑎𝑙′𝑖 for 𝑎1 and 1−𝑎𝑙′𝑖 for 𝑎2, respectively. Every time when
the allocation parameter 𝑎𝑙′𝑖 leads to less costs than the best
allocation parameter 𝑎𝑙𝑖 the parameter has to be updated. As
long as the allocation parameter 𝑎𝑙′𝑖 does not include the whole
production volume, the process will be repeated by increasing
the allocation parameter 𝑎𝑙′𝑖 of agent 𝑎1 by 0.5%. If the stop
criterion is reached, the procedure is repeated for the remaining
items in 𝐼 .

To be suitable for compulsory items it is proposed to mod-
ify the shared production procedures defined by Algorithm 2
and Algorithm 3. First, it is necessary that the initial alloca-
tion parameter considers compulsory items besides concurrent
items. If a compulsory item is selected, the responsible agent
will receive the whole production share of the item. Secondly,
Algorithm 2 has to be modified in order that compulsory
items are skipped for the updating phase. At last, Algorithm 3
is modified in order that the responsible agent of an item
receives the whole production share of an item. Based on these
extensions the solution approach can be used for solving the
DULR-PL.
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Algorithm 3 Identifying a new allocation parameter
1: Data: problem data, 𝑐
2: for 𝑖 ∈ 𝐼 do
3: mediator: identify rivaling agents 𝐴𝑎𝑙

𝑖
4: mediator: compute allocation by 𝑎𝑙′𝑖 ← 0
5: mediator: update best allocation 𝑎𝑙𝑖 ← 𝑎𝑙′𝑖
6: while 𝑎𝑙′𝑖 ≤ 200 do
7: each 𝑎 ∈ 𝐴𝑎𝑙

𝑖 : evaluate 𝑐 with 𝑓𝑎(𝑐) by 𝑎𝑙′𝑖
8: if 𝑓(𝑎𝑙′𝑖) < 𝑓(𝑎𝑙𝑖) then
9: mediator: update allocation 𝑎𝑙𝑖 ← 𝑎𝑙′𝑖

10: end if
11: mediator: update allocation 𝑎𝑙′𝑖 ← 𝑎𝑙′𝑖 + 0.5
12: end while
13: return 𝑎𝑙𝑖 best allocation of item 𝑖
14: end for

IV. COMPUTATIONAL RESULTS

The performance of the algorithm SAA and the effect
of compulsory items in the DULR-PL are evaluated. Sec-
tion IV-A describes the setup of the study and the generated
test instances. In Section IV-B our solution approach SAA is
compared to the SA from Eslikizi et al. [13] by means of a
benchmark study. In Section IV-C the impact of compulsory
items is studied by two additional experiments.

A. Setup of computational studies

In the literature there do not exist test instances for the
DULR-PL. That is the reason why it is proposed to modify
the DULR instances presented by Eslikizi et al. [13] such that
some items can only be produced by one agent. We use the
DULR instances of Eslikizi et al. [13] instead of Buer et al.
[12] because the former approach ensures a shared production
by using reduced setup and integrating unit costs. The DULR
instances trace back to instances for a distributed lot-sizing
problem without rivaling agents [14] which on their parts are
based on instances of the multi-level uncapacitated lot-sizing
problem [28]. The DULR instance set includes four groups of
instances denoted as 𝑠3, 𝑠5, 𝑚3, and 𝑚5 with a total of 178
instances. In our research, we focus on the instance groups 𝑚3
and 𝑚5 where either 40 or 50 items have to be produced by
three agents (𝑚3) or five agents (𝑚5) over several production
periods. The remaining instance groups are excluded from our
investigation because their number of items is five only which
this is not suitable for determining the impact of compulsory
items.

In our computational experiments, instances with different
ratios of compulsiveness are generated. Ratios of 10%, 20%,
30%, and 40% are considered, 10% means for example, that
10% of all items are compulsory items and 90% are concurrent
items. Thereby, it is necessary to determine which item is se-
lected as a compulsory item and which rivaling agent produces
all units of this compulsory item. Both selections are executed
randomly. Fifteen samples are generated for each ratio and
instance. In total 60 samples are generated per instance, which
are solved once.

In a preliminary study, appropriate parameter values for
the SAA are identified. The study uses ten random instances
from the instance groups 𝑚3 and 𝑚5. The focus of the study

is on the percentage of changeable items 𝑠𝑖𝑎𝑙, the percentage
of changeable order quantity 𝑜𝑞𝑎𝑙, the number of negotiation
rounds 𝑟𝑛𝑚𝑎𝑥, the end temperature 𝑇𝐸 , and the first activation
of the allocation improvement phase 𝑓𝑖𝑎𝑙. Table I shows the
identified values. The SAA is implemented in JAVA (JDK 1.7)
and the computational experiments are executed on a Windows
7 personal computer with Intel Core i7-2600 processor (3.4
GHz and 16 GB main memory).

TABLE I. PARAMETER OF SAA PER INSTANCE GROUP

Group 𝑠𝑖𝑎𝑙 𝑜𝑞𝑎𝑙 𝑟𝑛𝑚𝑎𝑥 𝑇𝑒 𝑓𝑖𝑎𝑙

m3 2.5% 0.1% 400000 0.01 160000
m5 2.5% 0.1% 400000 10 120000

B. The SAA in comparison with the SA

In this section, the SAA and the SA from Eslikizi et al.
[13] are compared regarding the quality of the solutions and
the variation range of the solutions. Each instance is solved
three times per solution approach. The best solutions from both
approaches are presented in Table II. Thereby, the best solution
of the SA is determined out of twelve solutions because the SA
uses four different solution strategies and each solution strategy
is applied three times per instance. Table II shows that SAA

TABLE II. GLOBAL COSTS ACHIEVED BY SA AND SAA

No.
∣𝐴∣ = 3 agents ∣𝐴∣ = 5 agents

SA SAA SA SAA

m01 759985.02 685141.81 778936.79 712127.65
m02 687545.60 614205.20 727333.09 641543.70
m03 1086089.11 1010118.84 1106915.64 1007190.56
m04 860086.20 805668.98 866018.42 800859.28
m05 1580327.01 1445365.10 1560647.75 1415650.00
m06 119290.82 105682.38 132523.86 111466.31
m07 622895.81 573645.31 630651.38 592323.62
m08 341277.72 322437.10 354097.10 328454.34
m09 701352.42 669115.25 707833.82 668569.27
m10 695321.03 620964.45 692166.15 624480.07
m11 2878993.28 2751008.15 2904481.25 2714465.48
m12 2592415.63 2314365.52 2617284.94 2349151.61
m13 915806.01 860621.23 981255.49 878482.00
m14 1264060.93 1077118.95 1255948.30 1108384.33
m15 2144132.99 1971335.68 2100621.57 1952109.18
m16 1210373.02 1075056.03 1276869.30 1107464.10
m17 2885857.03 2709147.90 2937496.08 2737008.52
m18 2213306.91 1946159.95 2284017.16 1953077.38
m19 778879.63 697896.15 819053.25 736060.31
m20 659816.25 571054.81 682764.42 595560.01
m21 1571572.91 1445561.03 1585372.43 1457849.85
m22 733602.68 675464.79 721462.56 659424.94
m23 2029045.86 1878867.59 2027576.94 1881469.41
m24 1342887.04 1245906.77 1335475.59 1234960.46
m25 247199.80 233676.94 258842.50 234070.02
m26 246334.21 227652.17 253456.11 226948.91
m27 1390227.37 1291415.78 1415592.65 1302254.72
m28 683908.57 641018.66 687528.08 642794.74
m29 2348688.68 2221812.47 2337850.64 2216032.48
m30 1265675.40 1200274.46 1223338.26 1174446.83
m31 5277262.81 5040619.25 5478064.86 5121352.26
m32 314004.11 289300.36 322084.86 298130.71
m33 1734672.10 1611625.96 1796772.88 1620648.81
m34 1368306.39 1228153.37 1319663.31 1208041.70
m35 3758096.16 3460015.42 3820414.65 3433879.13
m36 2181687.99 2042050.46 2223391.42 2056270.27
m37 6517142.22 6234355.45 6618031.87 6211692.30
m38 3353490.36 3176007.16 3408114.91 3182427.85
m39 1515636.55 1380737.27 1541220.44 1392516.36
m40 1166154.56 1077637.27 1202244.64 1093404.97

mean 1601085.20 1485706.54 1624835.38 1492076.11
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outperforms SA on 80 out of 80 instances. The achieved cost
reduction is about 7.94% per instance of the instance group𝑚3
and 8.77% per instance of the instance group𝑚5. Furthermore,
the fluctuation rate of the solutions can be reduced from 5.6%
to 1.2% per instance for instance group 𝑚5 and from 3.2%
to 0.9% per instance for instance group 𝑚3. A fluctuation
range of 1.2% means that the worst solution has 1.2% higher
costs than the best solution of a particular instance. Obviously,
the SAA is the favorable approach that even outperforms the
SA on all instances in case the approach is only executed
once. Corresponding to these figures it is identified that the
new allocation procedure is suitable for solving the DULR.
Especially the reduced fluctuation of the solution quality is
important for the investigation of the impact of compulsory
items because a high fluctuation rate might falsifies the result
of our experiments. A disadvantage of the SAA is the forced
acceptance of the allocation parameter after the allocation
improvement procedure where a globally improving solution
is preferred. However, the allocation improvement procedure
is activated in less than 0.01% of all negotiation rounds and
the procedure generates a cost reduction of about 4.5% per
instance (examined instances are 𝑚20−𝑚29).

C. The impact of compulsory items

In the following experiments, the impact of compulsory
items is examined by considering different ratios of compul-
sory items. As in the previous section, we solve each instance
of the instance groups 𝑚3 and 𝑚5, but this time for the
DULR-PL. Thereby, we consider fifteen samples per ratio
where each instance is solved once due to the computational
effort. As mentioned, we investigate ratios between 10% to
40%. In Table III the percentage of cost increases are shown
per compulsory item. The figures of the instance 𝑚01 can
be interpreted as follows: a coalition with three agents has
to compensate an average cost increase of about 0.57% of
the original production costs per compulsory item. Table III
shows that the consideration of compulsory items always leads
to higher production costs than without them. Furthermore, it
can be derived that the increase of costs is almost independent
from the size of the coalition. On average, the coalition has
additional costs of 0.46% (𝑚3) or 0.47% (𝑚5) per compulsory
item. By considering the results for the different ratios, it is
also observed that the increase of costs decreases by higher
ratios of compulsory items. Usually, it is expected that higher
ratios lead to higher additional costs like in the approach
presented by Ziebuhr and Kopfer [24]. However, the DULR-PL
has the characteristics of an uncapacitated production volume
and different cost levels corresponding to the product structure.
It is assumed that if an item of a higher level of the production
structure is selected as a compulsory item it will lead to higher
additional costs compared to an item on a lower level. Thereby,
it is obvious that we have higher costs for low ratios because
the instances are more sensitive in these scenarios.

A second study is applied with the goal to confirm our
assumption concerning the dependance of the additional costs
and the product structure. In contrast to the first study, we
do not use a random selection of compulsory items. It is
proposed that each item of the same level of the product
structure is selected as a compulsory item. Furthermore, we
do not consider the instances 𝑚21−𝑚40 in our investigation
because their product structures have several predecessors

TABLE III. INCREASE OF COSTS BY CONSIDERING COMPULSORY

ITEMS (IN %)

No.
∣𝐴∣ = 3 agents ∣𝐴∣ = 5 agents

10% 20% 30% 40% mean 10% 20% 30% 40% mean

m01 0.59 0.56 0.58 0.56 0.57 0.51 0.48 0.48 0.50 0.49
m02 0.35 0.39 0.45 0.44 0.41 0.62 0.37 0.45 0.43 0.47
m03 0.32 0.43 0.53 0.41 0.42 0.79 0.61 0.56 0.52 0.62
m04 0.44 0.43 0.36 0.45 0.42 0.42 0.36 0.35 0.39 0.38
m05 0.97 0.70 0.71 0.72 0.78 1.29 0.94 0.77 0.79 0.95
m06 2.11 1.35 1.28 0.81 1.39 0.60 0.60 0.36 0.60 0.54
m07 0.43 0.47 0.36 0.42 0.42 0.34 0.32 0.32 0.44 0.36
m08 0.37 0.29 0.38 0.28 0.33 0.24 0.19 0.23 0.29 0.24
m09 0.30 0.39 0.31 0.31 0.33 0.44 0.42 0.39 0.35 0.40
m10 0.52 0.52 0.49 0.57 0.53 0.54 0.47 0.47 0.48 0.49
m11 0.56 0.54 0.48 0.52 0.53 0.62 0.60 0.61 0.48 0.58
m12 0.58 0.63 0.55 0.56 0.58 0.62 0.53 0.54 0.49 0.54
m13 0.48 0.32 0.38 0.29 0.37 0.40 0.40 0.30 0.34 0.36
m14 0.71 0.50 0.53 0.50 0.56 0.73 0.58 0.51 0.39 0.55
m15 0.49 0.56 0.43 0.50 0.49 0.45 0.42 0.42 0.51 0.45
m16 0.57 0.58 0.53 0.40 0.52 0.64 0.55 0.43 0.55 0.54
m17 0.48 0.46 0.52 0.46 0.48 0.49 0.56 0.55 0.54 0.53
m18 0.54 0.52 0.53 0.55 0.54 0.76 0.61 0.59 0.56 0.63
m19 0.46 0.45 0.43 0.43 0.44 0.43 0.36 0.30 0.28 0.34
m20 0.46 0.34 0.45 0.35 0.40 0.44 0.37 0.39 0.25 0.36
m21 0.43 0.42 0.48 0.41 0.44 0.47 0.46 0.43 0.44 0.45
m22 0.49 0.53 0.50 0.37 0.47 0.57 0.51 0.44 0.45 0.49
m23 0.36 0.45 0.40 0.46 0.42 0.46 0.54 0.49 0.43 0.48
m24 0.52 0.54 0.53 0.49 0.52 0.72 0.46 0.43 0.46 0.52
m25 0.41 0.07 0.10 0.22 0.20 0.66 0.50 0.63 0.52 0.58
m26 0.33 0.28 0.24 0.26 0.28 0.76 0.44 0.38 0.28 0.46
m27 0.45 0.44 0.46 0.46 0.45 0.48 0.43 0.39 0.39 0.42
m28 0.30 0.32 0.33 0.33 0.32 0.26 0.30 0.35 0.31 0.31
m29 0.47 0.56 0.38 0.43 0.46 0.39 0.50 0.52 0.38 0.45
m30 0.44 0.44 0.36 0.39 0.41 0.40 0.29 0.39 0.38 0.37
m31 0.36 0.41 0.43 0.44 0.41 0.45 0.43 0.36 0.40 0.41
m32 0.68 0.41 0.23 0.23 0.39 0.05 0.08 0.06 0.08 0.07
m33 0.32 0.36 0.41 0.34 0.36 0.39 0.48 0.55 0.49 0.48
m34 0.50 0.49 0.46 0.45 0.47 0.51 0.47 0.47 0.44 0.47
m35 0.55 0.51 0.48 0.47 0.51 0.57 0.58 0.43 0.49 0.51
m36 0.54 0.51 0.47 0.44 0.49 0.53 0.51 0.53 0.43 0.50
m37 0.34 0.45 0.43 0.43 0.41 0.49 0.50 0.51 0.49 0.50
m38 0.36 0.39 0.47 0.39 0.40 0.52 0.44 0.41 0.41 0.45
m39 0.38 0.40 0.38 0.40 0.39 0.58 0.43 0.44 0.45 0.47
m40 0.28 0.28 0.40 0.29 0.31 0.61 0.46 0.32 0.36 0.44

mean 0.51 0.47 0.45 0.43 0.46 0.53 0.46 0.44 0.43 0.47

which belong to different agents on a different production
level. That is why we apply our study on the remaining
instances which have two different production structures. One
product structure is denoted as 𝑡1 (𝑚01, 𝑚03, 𝑚05, 𝑚07,
𝑚09, 𝑚11, 𝑚13, 𝑚15, 𝑚17, 𝑚19) which has got a five level
product structure. The other one is denoted as 𝑡2 (𝑚02, 𝑚04,
𝑚06, 𝑚08, 𝑚10, 𝑚12, 𝑚14, 𝑚16, 𝑚18, 𝑚20) and has got
an eight level product structure. In Table IV the results are
presented, which can be interpreted as in the previous study.
Table IV shows that the increase of costs per compulsory item

TABLE IV. IMPACT OF PRODUCT STRUCTURE (IN %)

Type ∣𝐴∣ Level of product structure

1 2 3 4 5 6 7 8 9

t1 3 7.86 1.52 0.49 0.23 0.16 - - - -
t1 5 6.04 1.33 0.57 0.25 0.21 - - - -
t2 3 7.50 1.38 0.83 0.87 0.50 0.45 0.39 0.32 0.31
t2 5 4.97 1.21 0.61 0.52 0.43 0.39 0.32 0.30 0.18

decreases from the first production level to the last one in both
scenarios (𝑡1, 𝑡2). It can be concluded that the product level
of an item has a significant impact on the additional costs.
For example, when an item of the first level concerning the
product structure is selected as a compulsory item then it is
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recommended to be aware of higher costs compared to the case
when an item of the last level concerning the product structure
is selected. By considering the figures of Table IV, it can be
observed that especially the first level of the product structure
has a significant impact on the solution.

V. CONCLUSION

This paper studies the DULR-PL. The DULR-PL is an
inter-organizational lot-sizing problem with rivaling agents
where some items have to be produced by an appointed mem-
ber of the coalition. These items are denoted as compulsory
items. To solve this problem a simulated annealing negotiation
mechanism denoted as SAA is applied. The SAA extends an
existing solution approach by a new procedure for identifying
a suitable shared production among the members of a coalition
and a procedure for handling compulsory items.

In a benchmark study, we compare the SAA with the only
existing approach for the DULR. Thereby, we identify that
SAA outperforms the other approach on 80 out of 80 instances
where on average over all instances a cost reduction of about
8% per instance is achieved by simultaneously reducing the
fluctuation range of the approach. Based on these figures, the
SAA is used for solving the DULR-PL where several findings
could be derived. The experiments show that compulsory items
always lead to higher production costs and that items on a
higher level of the product structure have a higher impact
on the fulfillment costs. In our study, we identify that each
compulsory item causes additional costs of about 0.47% of
the total costs.

For future research it appears promising to apply our
findings for developing an improved solution approach where
the heuristic focuses on the investigation of items on a higher
level of the product structure because their impact on the
solution quality is more significant. Further on, it might
be interesting to develop a combined solution approach for
solving simultaneously the lot-sizing problem together with the
corresponding transportation planning problem by considering
compulsory items.
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