
The influence of the picking times of the components
in time and space assembly line balancing problems:

an approach with evolutionary algorithms

Emanuel F. Alsina∗, Nicola Capodieci∗, Giacomo Cabri∗, Alberto Regattieri†,
Mauro Gamberi‡, Francesco Pilati‡, and Maurizio Faccio‡

∗Department of Physics, Informatics and Mathematics

University of Modena and Reggio Emilia

Via Campi, 213/A, 41125 Modena, Italy

{emanuelfederico.alsina, nicola.capodieci}@unimore.it
†Department of Industrial Engineering

University of Bologna

Viale del Risorgimento, 2, 40136 Bologna, Italy
‡Department of Management and Engineering

University of Padova

Stradella San Nicola, 3, 36100 Vicenza, Italy

Abstract—The balancing of assembly lines is one of the most
studied industrial problems, both in academic and practical
fields. The workable application of the solutions passes through
a reliable simplification of the real-world assembly line systems.
Time and space assembly line balancing problems consider a
realistic versions of the assembly lines, involving the optimization
of the entire line cycle time, the number of stations to install, and
the area of these stations. Components, necessary to complete
the assembly tasks, have different picking times depending on
the area where they are allocated. The implementation in the
real world of a line balanced disregarding the distribution of the
tasks which use unwieldy components can result unfeasible. The
aim of this paper is to present a method which balances the line
in terms of time and space, hence optimizes the allocation of
the components using an evolutionary approach. In particular, a
method which combines the bin packing problem with a genetic
algorithm and a genetic programming is presented. The proposed
method can be able to find different solutions to the line balancing
problem and then evolve they in order to optimize the allocation
of the components in certain areas in the workstation.

I. INTRODUCTION

In the standardized industrial production world as well as
in the production of customized products, assembly lines are
flow oriented systems extremely diffused. An assembly line
consists in a set of work stations settled arranged in series or
parallel, creating a flow of assembling operation. The pieces
of semi-assembled are consecutively moved from one station
to the next, through a conveyor or a similar mechanical ma-
terial handling equipment, supplying continuously the various
stations[1].

The assembling process is divided into a set of tasks which
are cyclically performed. Each assembly task j requires a
different operation time tj for its execution. The assignment of
the workload (i.e., a subset of tasks) to each station respecting
some constraints or objectives, is one of the most usual

and hard problems in the field, known as the assembly line
balancing (ALB) problem [2], [3], [4]. Generally, each station
has a fixed common time to complete its tasks, called cycle
time CT , after which the semi-assembled piece is transported
from one station to the subsequent. Each station has a station
workload time, that is the cumulative operation times of the
workload assigned to the station. If the cycle time is imposed, a
line is considered balanced and feasible only if the workload
time of each station does not exceed the CT . Performing a
task does not require only a certain time, but also a series of
other factors, i.e., the completion of previous tasks, equipment
of machines, components, skills of workers, and so on. ALB
problems consist in assign all the tasks to the various stations,
respecting the constraints of time and further. In other words,
the goal is to assign to each station a group of tasks that
minimizes the inefficiency of the line (its downtime) and that
respects all the constraints imposed on the tasks and on the
stations [5]. Due to the complexity of the problem and the
great variety of possible assembly lines, the previous research
activities have focused in one or more of those aspects and the
fulfilling of certain restrictions in the stations.

The more simple family of problems considers the time
and the precedence of some tasks respect other as the only
constrains. The modeling and solving of these problems are
called simple assembly line balancing (SALB) [6]. The pur-
pose of this family of problems is principally to minimize
the number of station (given a fixed cycle time), or minimize
the cycle time (given a fixed number of stations). Or further,
simultaneously minimize the cycle time and number of station
achieving multi-objective cost and profit purposes.

However, the assumptions made in the SALB problems
are very restricting with respect to real-world assembly line
systems. When other constraints and considerations are added
to the SALB, the problems are called general assembly line
balancing (GALB) [1]. This family of problems wants to
sew up the gap between the academic discussion and prac-

2015 IEEE Symposium Series on Computational Intelligence

978-1-4799-7560-0/15 $31.00 © 2015 IEEE

DOI 10.1109/SSCI.2015.148

1021

tical applications. GALB problems can consider for instance
equipment selection and cost [7], parallel stations [8], U-
shaped line layout [9], among others [10]. Belonging to this
family, Bautista and Pereira [5] defined a set of problems that
they call time and space constrained assembly line (TSALB),
where the spatial constraint of the components necessary to
operate the tasks is considered. In fact, in the assembling of
big components (i.e., automotive industry) the items normally
are allocated in designated areas close to each station. It is
important to keep the components as near to the workplace as
possible, considering the space limitations. According to Chica
et al. [11] these kinds of problems contain three conflicting
objectives to be accomplished: the cycle time of the assembly
line, the number of the stations, and the area of these stations.
Bukchin [12] considered that the components can be allocated
in some traditional shelves or boxes, studying the TSALB
problems focused on the dimensions of these containers for
different components and their allocation along the line. How-
ever, TSALB problems do not consider different picking times
of the components according to where they are allocated. These
picking times can depend by their distance from the worker,
the weight and manageability of the components themselves.
Usually, racks for small components (screws, bolts, etc.) are
arranged very close to the worker, in order to limit the number
of travels to pick up a large number of small components.
While bigger and often heavier components are arranged
behind the worker much or less close to her. Solving a TSALB
problem do not considering the picking time of the components
could to culminate in a solution which assign to a single station
several tasks with a lot of heavy components which increase
more and more their time to be picked up. This because
heavy components have limited space close to the worker.
It is not just an issue of adding the pickup time to the task
time, because the picking time can be different according to
the area where the components are allocated. For this reason,
our study considers the physical allocation of the components
necessary to complete the different tasks, and the consequently
optimizing of the global picking time to achieve them. This
paper proposes two models to optimize the allocation of the
components in different areas within the stations, ensuring the
respect of the cycle time. In particular, the main contribution
of this study is to consider the physical allocation of the
components necessary to complete the different tasks, and the
consequently optimizing of the global picking time to achieve
them.

The present paper is organized as follows. Section II
introduces the evolutionary algorithms used in the proposed
approaches. In Section III a mathematical formulation of the
problem is provided. The method to optimize the allocation of
the components is presented in Section IV. The limitations of
the proposed approaches are explored in Section V. Finally,
some conclusions of this study are presented in Section VI.

II. EVOLUTIONARY ALGORITHMS

Taking into account the large number of constraints im-
posed by the GALB problems, traditional search techniques
for optimal solutions may not be the best approach. That can
be true especially when the number of stations and tasks to take
in consideration are particularly high. These traditional search
techniques include a large variety of exact, heuristic, and
metaheuristics procedures, mainly based on branch and bound

and dynamic programming approaches [13]. We therefore
investigating towards the use of a bio-inspired approach as
an alternative artificial intelligence method for exploring the
search space. Bio-inspired artificial intelligence is a term that
groups together several computational models and algorithms
that are designed in order to mimic the efficiency of complex
mechanisms that are observable in nature. Genetic algorithms
(GA) [14], [15] are a branch of bio-inspired intelligence; such
algorithms are population based in the sense that an initially
randomized population of chromosomes represents the starting
point for this mechanism. Different chromosomes represent
a different solution for the same optimization problem, and
each chromosome is encoded as a set of parameters needed
for defining such solution. During the course of a generation,
the population of solutions get through the evaluation phase
in which each chromosome is tested in order to evaluate its
fitness value (how well that specific solution is solving the
problem); the subsequent phase of a standard genetic algorithm
is the selection phase in which chromosomes featuring higher
fitness values are more likely to survive and to be inserted into
the next iteration (generation). Generation after generation,
the selected individuals undergo a process of evolution and/or
mutation, so to expand the search space in the vicinity of
best performing chromosomes. In order to maintain diversity
and maximize the exploration capabilities of the population,
individuals that are not selected are usually replaced by ran-
domized chromosomes. Rubinovitz and Levitin [16] applied
a GA to solve a SALB, recommending the use of those
algorithms when solutions diversity is more important than
their accuracy. The authors noted how GAs perform much
faster then traditional search techniques for problems with
large number of stations. Several studies have been explored
further, mainly to cope with the multiple objectives of an
assembly line [17], [18], [19], [20].

Depending on the dimensionality and complexity of the
optimization problem to solve, GAs may have the tendency
to get stuck into local optima or may require an unfeasible
number of generations, therefore in this paper we also in-
vestigate the use of genetic programming (GP) [21]. GP is a
specialization of GA in the sense that the chromosomes are not
encoded as set of parameters needed for the specific problem,
instead GP uses a set of actions represented as nodes in tree
structures. Nodes can be extrapolated from known heuristics so
to combine sequences of actions with the purpose of evolving
programs (instead of parameters) towards the optimal solution.
Practically, GP allows the induction of computer programs to
solve problems without explicitly programming them. Liu et
al. [22] adopted a GP structure to solve a GALB problem
which considers parallel assembly lines. Baykasouglu and
Özbakır [23] tried to solve SALB problems using composite
task assignment rules which are discovered through a GP
structure. The purpose of the authors was to evolve different
heuristics in order to optimize a predefined objective function.
In this way the GP can adapt to solve different problem
constraints and pursue different objectives. Their results argued
the ability and potential of GP for solving combinatorial
optimization problems. Some other few studies have been
developed to generate heuristic decision rules in manufacturing
system applications [24], [25], [26], [27].

GAs and GP can be applied to almost any optimization
problem [28], however in our specific case of GALB problems,

1022

it can be useful to investigate a pre-processing phase in which
we can use with the purpose of relaxing some constraints so
to apply an evolutionary strategy (GA or GP) to a problem
with a smaller dimension compared to the one we started. The
well known Bin Packing problem [29] for instance, perfectly
suits this need: having defined our problem to optimize an
assembly line taking into account the cycle time CT , number
of components Z, number of picking areas and respective
picking times with an unknown number of assembly stations
K, we can apply a 1D bin packing problem in order to find
the minimum number of stations in order to satisfy the CT
constraint. We can then apply an evolutionary strategy to the
remaining objectives.

III. PROBLEM FORMULATION

As introduced in the Section I, the assembly process is
divided into a set of J tasks. Each task j requires a positive
operation time tj to be accomplished. Assigning to each station
k (k = 1, 2, ..., K) a subset of tasks Sk to be completed,
each station will have a station workload time t(Sk) that is
equal to the sum of the tasks’ times assigned to this station.
Each station have to respect the known cycle time CT of the
assembly line, therefore the t(Sk) of all the stations has to be
lower or equal to CT . Each task j can be assigned only to a
single station k, and all the tasks has to be assigned to one
station. In this preliminary study, we hypothesize that each task
is independent from each other, in other words there are no
precedence constraints among the operation of different tasks.
Other hypothesis include:

• Assembling is referred to a single product;

• Setting up times of stations and move time between
them are negligible;

• No more than one task can be execute at the same
time in the station;

• Task times are known and deterministic;

• Each station is equally equipped with respect to ma-
chines and workers.

In addition to those time constraints, space constraints
have to be considered. Indeed, each task j has a list of
components which are necessary to complete the task. They
include different materials and semi-assembled parts that have
to be carry to the work station to be assembled. Each of these
components z has obviously a volume. Each station k has
a limited volumetric area Ak where the components can be
allocated. Hypothesizing that the components require a volume
simplified to a parallelepiped, each task will require an area
equal to the sum of the areas of the components necessary to
complete it; and each station will require an allocation area
equal to the sum of the areas of all the components of each
task assigned to that station. This hypothesis does not make the
model dissimilar from the reality. In fact often the components
are transported along the assembly line through boxes. The
required area for the components must be not larger than the
available area Ak of the station k. We assume that the available
area Ak is the same for all the stations. We divided this space
hypothetically in three areas: Area 1, Area 2, and Area 3,
as shown in Figure 1. Each area w has a different available
space, in terms of volume. Each component has a different

picking time PTzw, according to the area where it is allocated
and its manageability. The picking time in the different areas
is something a priori known in the problem. A box easy
to transport can have a monotonic increasing of the picking
time, due only to the distance from the worker. But some
unwieldiness components can have non linear picking times
in the different areas. In this preliminary study, we supposed
that the picking times are equal to all the stations. It means
that the picking time PTzw of the component z in the area w
is equal in the station 1, 2, and k.

Generally, declaring the following variables:

j = 1, ..., J Tasks
z = 1, ..., Z Components
k = 1, ..., K Assembly stations
w = 1, 2, 3 Allocation areas within each station

The modeling of the TSALB problem considering the
allocation of the components is based on the mathematical
formulation of the SALB problem provided by Patterson and
Albracht [30]. In addition to those time constraints, constraints
concerning the dimensional parameters of the components
have to be considered. Therefore, using the following decision
variables:

Xjk =

{
1, if task j is assigned to station k

0, otherwise
(1)

Yzw =

{
1, if component z is stored in the area w

0, otherwise
(2)

The following constraints were established in our TSALB
problem:

K∑
k=1

Xjk = 1 ∀j (3)

3∑
w=1

Yzw ≥ Ajz ·Xjk ∀j, z, k (4)

J∑
j=1

(tj ·Xjk +
Z∑

z=1

Ajz ·
3∑

w=1

PTzw · Yzw) ≤ CT ∀k (5)

Z∑
z=1

Az · Yzw ≤ Amax
wk ∀w, k (6)

Xjk, Yzwk ∈ {0, 1} ∀j, z, w, k (7)

Equality 3 ensures that each task is assigned to only one
assembly station. Constraint 4, where Ajz is equal to 1 if
the task j requires the component z, ensures that all the
components necessary to a task will be allocated within the
station. Inequality 5 ensure that each station workload time
does not exceed the cycle time. In this constraint, PTzw is the
picking time of the component z from area w. And finally,

1023

Fig. 1. A representation of an ideal assembly line with different available areas where to allocate the components.

6 is concerned with the physical area upper bound, where
Amax

wk represents the limit of the allocation areas. 7 defines the
domain of the decision variables. The variable Y will provide
the assignment of the components to specific allocation areas,
while the variable X will provide the assignment of the tasks
to specific assembly stations. The objective is to minimize the
the inefficiency of the line (i.e. the downtime of the stations);
that in objective functions become:

min(CT −
J∑

j=1

(tj ·Xjk +
Z∑

z=1

Ajz ·
3∑

w=1

PTzw · Yzw)) (8)

The main idea of our TSALB problem is that given a set of
tasks with their temporal and spatial attributes, each task must
be assigned to just one station providing that (1) there is not
any station with a workload time greater than the cycle time,
(2) there is not any station with a required area greater than the
global available area A, and (3) the components are allocated
along the line in order to optimize their global picking time.

IV. PROPOSED APPROACH

In this section we propose the algorithms that can be
used to solve the TSALB problem presented in Section III.
Like previously stated, the way we are going to address such
problem is to logically decompose the whole problem into
two phases. At the end of the first phase, we can rely on

several starting conditions and all of them have to obey the
CT constraint: by operating this first preprocessing phase, we
can focus the rest of the algorithms in order to the search
of the optimal solutions without taking into account the CT
constraint.

A. Bin Packing problem

This first phase is represented by solving a 1D bin packing
problem (BPP) using time as the only dimension. BPP was
already used in past to solve SALB problems [31], [32], [33].
In our case, each bin represents a station with its maximum
time for processing being equal to CT : having a plurality of
stations working in parallel ensures that cycle time constraint
is respected. The items to pack are the tasks, with each task
having its own processing time. So, simplifying the Equation
5 to consider only the execution times, the BPP trivially the
following condition holds:

J∑
j=1

T (tj) ≤ CT (9)

With J the number of tasks within the same station/bin,
T (tj) the time needed for complete task j. We tested an
implementation of BPP able to provide an exhaustive search
that exploit the concept of branch and bound and propa-
gation algorithms preprocessed with a First Fit Decreasing

1024

strategy [34]. The Java implementation we used for the BPP is
able to solve a moderately sized problem (26 unique tasks, 75
components, real world application data) in under 10 ms using
a Intel CORE i7, jre 1.8.40, 16 GB of RAM, therefore we can
conclude that it should be feasible to apply a 2 or 3D BPP
for similarly sized problems, so to satisfy more constraints in
this initial phase; however, as we are conducting a preliminary
investigation on such class of problems, we consider this phase
just to be applied to the 1D model.

The BPP algorithm provides two important output in this
first phase: (1) the minimum number of stations needed in
order to satisfy CT , and (2) the list of tasks to be executed
in each station particular station. The minimum number of
stations K can be also mathematically verified, taking into
account the execution time of each task, picking times, and
cycle time of the line:

K =

⎡
⎢⎢⎢
∑

j

(
tj +

∑
z

(
min
x

(PTzw)
))

CT

⎤
⎥⎥⎥ (10)

In Equation 10, the number of stations is defined as the
sum of the execution times of all the tasks and the lowest
picking time of each component; the result is then divided
by the cycle time of the line. Concerning the tasks assigned
to each station, BPP algorithm is biased to fill the first bins
with smaller items, while the last bins are more likely to be
filled with bigger items. More specifically to our case study,
it is convenient to think that the stations are ideally located
one next to the other on a straight line: the leftmost station
is usually occupied with many tasks with small time require-
ments, while the rightmost station is most likely responsible of
a small number of very time demanding tasks. This particular
output configuration enables us to quickly find alternative and
equivalent solutions: by exchanging tasks assigned to different
stations that are characterized by a similar time requirement
and/or by shifting low time demanding tasks from the leftmost
bins to the rightmost bins (whenever it is possible) we are
creating different starting conditions for the following phase
of the algorithm (see Fig. 2). It is trivial to verify that the CT
constraint is easily satisfiable in each newly created solution;
we create as many solutions depending on the size of the
problem and for future reference we indicate as SBPP the
set of solutions found with this mechanism.

B. Genetic algorithm

A genetic algorithm can be now applied in order to solve
the picking time minimization objective. It is important to
notice that up until now, we left the notion of components and
picking areas out of any equation as we were only interested
in the CT constraint: we can now forget about that constraint
and therefore we will not take into account the different tasks
for each station. Instead of thinking about tasks, we are now
considering the list of N components that are needed for
the completion of every task. We start by picking a specific
solution s ∈ SBPP so that we can model each station as
a series of n tuples with n being the number of different
picking areas, three in our case. Each picking area features a
variable number of components zx, and both the components
and the picking areas influence the total picking time that the

Fig. 2. The above graph displays the solution of BPP applied to our case
study: it appears that four stations are a minimum requirement. It is important
to note how tasks with larger time requirements ended up in the rightmost
bins (different colors indicates different tasks. On the Y axis we can see
the proportional time occupancy normalized from 0 to 1). The second graph
below is an example of equivalent solution, obtained from the original one by
switching tasks with similar time requirements among different stations.

human operator has to spend in order to process a specific
component. To summarize all of this, for each of the station
k we can encode a chromosome as seen in 11:

Station1〈c0, . . . , cj〉 p0
...

...

... 〈ck, . . . , cn〉 pn−1

...

Stationw〈c′0, . . . , c′j〉 p0
...

〈c′k, . . . , c′n〉 pn−1

(11)

Random permutations of components within different pick-
ing areas give us our initial population of chromosomes
(represented as in 11) that we use as a starting point for the
genetic algorithm. Do note that permutations are only admis-
sible within the same station. The search process begins with
the first evaluation of every individual against the proposed
objective function, hence for the selection of fittest individuals
any selection operator normally used in literature is feasible.
Similar conclusions can be drawn for mutation operators and
elitism. The self-imposed constraint to contain mutations and
generations of new individuals within the same station have
pros and cons: the biggest advantage is represented by the
fact that by restricting migration of single components only

1025

within different picking areas of the same station we are still
satisfying the CT constraint; on the other side, the limitation of
this approach is that by doing so we are limiting the exploration
space as we are optimizing locally each station instead of
moving towards a global optimal solution that concerns every
station. On this latter remark, it has to be highlighted that
such a genetic algorithm can be easily implemented to run in
a parallel way w.r.t. every element ∈ SBPP , so to minimize
the possibility of being stuck in local optima.

C. Genetic Programming

In this section we speculate on how to use genetic pro-
gramming as an alternative to genetic algorithms in order to
evolve programs as set of actions able to solve the remaining
constraints imposed by our objective function. Chromosomes
here are therefore encoded as set of nodes in tree-like structures
in which we can randomly generate, select and evolve and
so forth for a typically large number of generations. The
set of possible actions to combine are divided into different
layers, knowing that the first layer (symbolized by the choice
of a station) will always be encoded into the root node of
our evolutionary program. We constrain the subsequent layers
to have implications: a specific layer la that implies layer
lb means that if an heuristic belonging to la is chosen, the
subsequent or precedent heuristic must belong to lb: if we take
a look at table I a summary of layers, some of their example
heuristics and their respective implications is shown.

Once the a first station is chosen, different chromosomes
can be formed by randomly picking heuristics belonging to the
other layers. If, for instance, Move to Area is selected after the
root node, it means that the program will attempt to move to a
specific component to a specific picking area within the same
station, and those two artifacts (area and components) will be
picked by following the heuristics indicated in the layers Move
to area and Select Component(s). We can therefore think that
constructing a program as two phase process: the first phase
a general structure of the program will be laid down, while
in the second phase the generic structure will be translated as
a set of actions, therefore shaping the terminal nodes of the
tree-structure representing the program as an individual of the
chromosomes population (see Fig.3 for an example situation).

Once an initial population of programs have been created,
the following steps of the GP closely follows a standard
genetic algorithm: each program is tested iterating over a
maximum amount of steps or until the current action is
found to be unfeasible due to breaking previously imposed
constraints (such as the CT). We select, evolve, mutate and
re-initialize the population over each generation by following
known genetic operators. As far as mutation operators are
concerned, limits must be imposed on the maximum amount
of actions that forms the program so to avoid excessively
bloated solutions. It has to be pointed out that it is possible
that consecutive sequences of actions may not bring any
changes to the components/task distribution over the different
picking areas/stations: choosing to erase such sequences while
creating or evolving the programs may results in increasing
computational complexity and therefore it is advisable not to
detect those situations. Moreover, due to the fact that testing
such sequences against the objective function will result in
lower fitness values, programs that are largely constituted

by these ineffective sequences are significantly less likely to
survive for the subsequent generations.

V. LIMITATIONS

In this paper we proposed the main idea of a method
to address the TSALB problems, considering in addition the
picking times of the components within the workstations. As
what we are presenting here is a speculation of the best
approach to take in such a complex problem, we are still
investigating towards the following points:

• All the heuristics and actions shown in table I re-
garding GP, are still under investigations and as of
now, just heuristics with deterministic outcomes are
considered: in the future it may be useful to study how
the algorithm reacts with the insertion of stochastic
actions (e.g., pick a random station/component etc...).

• The bin packing problem can suggest solutions able
to respect the time constraint but it does not satisfy
the spacial constraint, thus failing to find a solution
at the proposed TSALB problem. In a moderate sized
dimension of the problem, it could be feasible to run a
2D BPP solver algorithm with space being the second
dimension. When such extension becomes computa-
tionally intractable, we can think about taking into ac-
count the space constraint as a variable that influences
the fitness of each genetically evolved individual. By
doing this, the solutions which do not respect the space
constraint will obtain a low fitness score, therefore
such inefficient individuals will not be considered
in future generations. We are still investigating the
implementation details of these different mechanisms.

VI. CONCLUSION AND FUTURE WORKS

Time and space assembly line balancing problems model
a close version to existing real-world situations of assembly
lines. The existing approaches to solve TSALB problems
do not take in consideration an important real scenario of
the physical allocation of the components used during the
executions of the tasks. In this paper we have presented a
method which addresses this issue, balancing of an assem-
bly line trying to optimize the global picking time of its
components. In particular, the proposed approach is able to
produce solutions which respect of the time constraint and
then evolve them in order to optimize the allocation of the
components in different areas, complying the spatial constraint.
We ideologically divided our method in two phases. The first
phase is represented by solving a 1D Bin Packing Problem
using time as the only dimension. Each bin represents a station
with its maximum time for processing being equal to the cycle
time of the entire line. The items to pack are therefore the
operation times of the single tasks. In the second part, the
optimization of the components’ allocation and the conformity
of the solutions with the spatial constraint are considered. We
proposed two different evolutionary approaches at this point:
a genetic algorithm and a genetic programming. The genetic
algorithm requires a variety of initial solutions given by the
bin packing problem, in order to avoid a limited exploration
of the solution space. The genetic programming approach,
on the other hand, sets some nodes in tree-like structures in

1026

TABLE I. LAYERS, IMPLICATIONS AND PROPOSED HEURISTICS FOR GP

Layer Example heuristics Implies
Select Station Pick station having the largest/smallest number of tasks, Pick station having the largest/smallest number of components ... -

Move Task Pick task having the most/least time demanding task, pick task having the largest/smallest number of components... Select Station

Select Component(s) Pick component having the largest/smallest picking time ... Move to area

Move to area Pick closest/2nd/3rd ... closest area to human operator Select components

Fig. 3. Example situation of a randomly generated program. A first phase creates the program general structure that allows us to identify implications. From
these implications we are able to translate the general structure in a program as a sequence of actions.

which we can randomly generate a series of heuristics which
solve the remaining constraints imposed by our objective
function. Selecting, evolving, mutating and reinitializing the
heuristics, following known genetic operators, the approach
can be able to find sub-optimal solutions for the proposed
TSALB problem. As we pointed out in the previous section,
the presented work represents just a speculative preliminary
investigation of solving methodologies for such a complex
problem; however the suggested evolutionary approaches look
promising as they have been already used for solving problems
characterized by less constraints. First of all, as future work,
a concrete implementation of the presented approach tested
against real world data will be conducted in order to prove
the validity of this presented approach. After that, some other
points can be explored, such as the assembling of mixed
products, availability of different allocation areas for each
station, different picking times depending on the stations, and
so on.

REFERENCES

[1] C. Becker and A. Scholl, “A survey on problems and methods in
generalized assembly line balancing,” European Journal of Operational
Research, vol. 168, no. 3, pp. 694–715, 2006.

[2] M. Chica, J. Bautista, Ó. Cordón, and S. Damas, “A multiobjective
model and evolutionary algorithms for robust time and space assembly

line balancing under uncertain demand,” Omega, vol. 58, pp. 55–68,
2016.

[3] C. A. Yano and R. Rachamadugu, “Sequencing to minimize work
overload in assembly lines with product options,” Management Science,
vol. 37, no. 5, pp. 572–586, 1991.

[4] M. Faccio, M. Gamberi, A. Persona, A. Regattieri, and F. Sgarbossa,
“Design and simulation of assembly line feeding systems in the au-
tomotive sector using supermarket, kanbans and tow trains: a general
framework,” Journal of Management Control, vol. 24, no. 2, pp. 187–
208, 2013.

[5] J. Bautista and J. Pereira, “Ant algorithms for a time and space
constrained assembly line balancing problem,” European Journal of
Operational Research, vol. 177, no. 3, pp. 2016–2032, 2007.

[6] A. Scholl and C. Becker, “State-of-the-art exact and heuristic solution
procedures for simple assembly line balancing,” European Journal of
Operational Research, vol. 168, no. 3, pp. 666–693, 2006.

[7] J. Bukchin and M. Tzur, “Design of flexible assembly line to minimize
equipment cost,” Iie transactions, vol. 32, no. 7, pp. 585–598, 2000.

[8] P. M. Vilarinho and A. S. Simaria, “A two-stage heuristic method
for balancing mixed-model assembly lines with parallel workstations,”
International Journal of Production Research, vol. 40, no. 6, pp. 1405–
1420, 2002.

[9] R. Gamberini, A. Grassi, M. Gamberi, R. Manzini, and A. Regattieri,
“U-shaped assembly lines with stochastic tasks execution times: heuris-
tic procedures for balancing and re-balancing problems,” Simulation
Series, vol. 36, no. 2, p. 137, 2004.

[10] N. Boysen, M. Fliedner, and A. Scholl, “Assembly line balancing:
Which model to use when?” International Journal of Production
Economics, vol. 111, no. 2, pp. 509–528, 2008.

1027

[11] M. Chica, O. Cordón, S. Damas, and J. Bautista, “A new diversity
induction mechanism for a multi-objective ant colony algorithm to solve
a real-world time and space assembly line balancing problem,” Memetic
computing, vol. 3, no. 1, pp. 15–24, 2011.

[12] Y. Bukchin and R. D. Meller, “A space allocation algorithm for
assembly line components,” IIE Transactions, vol. 37, no. 1, pp. 51–61,
2005.

[13] N. Kriengkorakot and N. Pianthong, “The assembly line balancing
problem,” KKU Enginieering Journal, vol. 34, no. 2, pp. 133–140, 2007.

[14] M. Mitchell, An introduction to genetic algorithms. MIT press, 1998.

[15] H. John, “Adaptation in natural and artificial systems: An introductory
analysis with applications to biology, control and artificial intelligence,”
1992.

[16] J. Rubinovitz and G. Levitin, “Genetic algorithm for assembly line
balancing,” International Journal of Production Economics, vol. 41,
no. 1, pp. 343–354, 1995.

[17] Y. K. Kim, Y. J. Kim, and Y. Kim, “Genetic algorithms for assembly
line balancing with various objectives,” Computers & Industrial Engi-
neering, vol. 30, no. 3, pp. 397–409, 1996.

[18] J. F. Gonçalves and J. R. De Almeida, “A hybrid genetic algorithm
for assembly line balancing,” Journal of Heuristics, vol. 8, no. 6, pp.
629–642, 2002.

[19] M. Chica, O. Cordon, and S. Damas, “An advanced multiobjective
genetic algorithm design for the time and space assembly line balancing
problem,” Computers & Industrial Engineering, vol. 61, no. 1, pp. 103–
117, 2011.

[20] S. O. Tasan and S. Tunali, “A review of the current applications of
genetic algorithms in assembly line balancing,” Journal of intelligent
manufacturing, vol. 19, no. 1, pp. 49–69, 2008.

[21] J. R. Koza and R. Poli, “Genetic programming,” in Search Methodolo-
gies. Springer, 2005, pp. 127–164.

[22] Y.-j. LIU, T.-l. GU, Z.-b. XU, and L. CHANG, “Parallel assembly
sequence planning based on improved genetic programming,” Computer
Integrated Manufacturing Systems, vol. 6, p. 010, 2013.

[23] A. Baykasoğlu and L. Özbakır, “Discovering task assignment rules for
assembly line balancing via genetic programming,” The International
Journal of Advanced Manufacturing Technology, vol. 76, no. 1-4, pp.
417–434, 2015.

[24] C. Dimopoulos and A. M. Zalzala, “Investigating the use of genetic
programming for a classic one-machine scheduling problem,” Advances
in Engineering Software, vol. 32, no. 6, pp. 489–498, 2001.

[25] J. C. Tay and N. B. Ho, “Evolving dispatching rules using genetic
programming for solving multi-objective flexible job-shop problems,”
Computers & Industrial Engineering, vol. 54, no. 3, pp. 453–473, 2008.

[26] D. Jakobović and L. Budin, “Dynamic scheduling with genetic pro-
gramming,” in Genetic Programming. Springer, 2006, pp. 73–84.

[27] J. Park, S. Nguyen, M. Zhang, and M. Johnston, “Evolving ensembles of
dispatching rules using genetic programming for job shop scheduling,”
in Genetic Programming. Springer, 2015, pp. 92–104.

[28] C. Dimopoulos and A. Zalzala, “Recent developments in evolutionary
computation for manufacturing optimization: problems, solutions, and
comparisons,” Evolutionary Computation, IEEE Transactions on, vol. 4,
no. 2, pp. 93–113, 2000.

[29] S. Martello and P. Toth, Knapsack problems: algorithms and computer
implementations. John Wiley & Sons, Inc., 1990.

[30] J. H. Patterson and J. J. Albracht, “Technical noteassembly-line bal-
ancing: Zero-one programming with fibonacci search,” Operations
Research, vol. 23, no. 1, pp. 166–172, 1975.

[31] T. Wee and M. J. Magazine, “Assembly line balancing as generalized
bin packing,” Operations Research Letters, vol. 1, no. 2, pp. 56–58,
1982.

[32] P. Schaus, Y. Deville et al., “A global constraint for bin-packing with
precedences: Application to the assembly line balancing problem.” in
AAAI, 2008, pp. 369–374.

[33] C. Boutevin, M. Gourgand, and S. Norre, “Bin packing extensions for
solving an industrial line balancing problem,” in Assembly and Task
Planning, 2003. Proceedings of the IEEE International Symposium on.
IEEE, 2003, pp. 115–121.

[34] C. McGeoch, A Guide to Experimental Algorithmics. Cambridge
Univerisity Press, 2012.

1028

