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Abstract—Today’s supply chain are highly complex and 
globally set-up underlying a constant change with increasing 
speed. This has to be reflected by the planning processes and 
algorithms being utilized in the different stages of a supply chain. 
In the context of production planning, meta-heuristics are usually 
applied due to their ability to handle high complex problems.  As 
a consequence, these algorithms require adaptation to the new 
scenario or even new solution approaches/strategies have to be 
devised. However, designing a meta-heuristic of good performance 
for a problem is a hard task, since it requires deep knowledge on 
the problem, as well as on the meta-heuristic side. Therefore, the 
existence of supporting guidelines for meta-heuristics might ease 
and speed-up the adaptation or design of these algorithms to better 
cope with the problem. In this paper, meta-heuristics are 
deconstructed into its components and an approach for 
component-based analysis is proposed to gain knowledge about 
their performance and how they perform the search. Based on the 
results of this analysis, guidelines can be devised. The proposed 
approach is applied for analyzing components of a good 
performing Genetic Algorithm (GA) for multi-level capacitated lot 
sizing problem (MLCLSP) and initial guidelines for the 
construction of GA in the domain of MLCLSP are generated. 

I. INTRODUCTION 
Nowadays, supply chains show an ever increasing 

complexity due to several influences such as globalization of the 
supplier base and heterogeneity in customer needs [1]. Due to 
competitiveness and ever growing requirement of global 
markets they are underlying a constant change with increasing 
speed [2]. Changes in the supply chain are reflected in the 
planning process and algorithms being utilized in the different 
stages of a supply chain. In order to handle the ever changing 
requirements of global markets and the responding supply chain, 
the problem structure of planning algorithms needs to be adapted 
accordingly. In the majority of cases planning problems are hard 
to solve due to high problem sizes and many constraints. A focal 
planning decision in the supply chain is the determination of lot 
sizes. A well-known example is the multi-level capacitated lot 
sizing problem (MLCLSP). In addition to the determination of 
optimal production volumes and production periods under 
consideration of inventory holding costs and setup costs, the 
MLCLSP includes multiple production levels and capacity 
restrictions. In order to find good solutions in reasonable amount 

of time for suchlike problems, the usage of meta-heuristics is 
favored due to their flexibility [4] and ability to cope with 
complex optimization problems [5]. 

The design of an efficient and effective meta-heuristic is a 
laborious task. Even though, a lot of research is conducted in the 
field of meta-heuristics, they still represent black box methods 
[6]. Little is known about the characteristics of each meta-
heuristic component and how they contribute to the search 
process. In this context, the component is referred to as an 
exchangeable part of a meta-heuristic procedure. Selection and 
composition of suitable components usually requires deep 
knowledge on the problem domain and on meta-heuristics.  

In order to support a good design of meta-heuristics, some 
guidelines have already been proposed in the literature.  Most 
publications support either the setting of parameter values [7], 
the choice of a particular component [8] or portray general 
principles for good metaheuristic construction [9]. Furthermore, 
the recommendation of meta-heuristic components and their 
combinations that results in one or more intended design aspects 
of the algorithm (e.g. intensification, diversification, the trade-
off between solution quality and execution time, among others) 
is of importance. This could be achieved by a detailed analysis 
of the different components, their specific implementations and 
combinations throughout the search process. Although such 
guidelines would likely be dependent on the problem under 
analysis, they could ease and speed-up the adaptation or design 
of algorithms to better cope with other problems that have 
similar characteristics. 

With this paper, we aim to propose an approach for the 
development of supporting guidelines on the example of the 
MLCLSP. Our contributions consist in finding an alternative 
way to evaluate meta-heuristics in supply chain planning by 
means of analyzing its components, their variants and 
combinations to the search process. The proposed approach 
could enable a better understanding of meta-heuristics and may 
provide fundaments for defining guidelines to support meta-
heuristic construction in the area of supply chain management.  

The structure of the paper is as follows: Section 2 introduces 
the procedure for component analysis and prospection of 
guidelines. In Section 3 the proposed procedure is evaluated and 

* Visiting Professor at the University of Johannesburg, currently on 
Sabbatical at the Westfälische Wilhelms-Universität Münster 

2015 IEEE Symposium Series on Computational Intelligence

978-1-4799-7560-0/15 $31.00 © 2015 IEEE

DOI 10.1109/SSCI.2015.149

1029



validated on the MLCLSP. Experiments are analyzed in Section 
4, followed by the identification of resulting guidelines in 
Section 5.  

II. PROCEDURE FOR COMPONENT ANALYSIS AND PROSPECTION 
OF GUIDELINES 

The design of a meta-heuristic for a problem is often based 
on previous knowledge and intuitions of its designer. Since there 
are hundreds of techniques [10], this task is becoming even more 
difficult due to the large amount of possible designs. Little is 
known about the reasons why a particular algorithm finds good 
or bad solutions, or which of its components are important in the 
search process. All the above commented problems have to be 
tackled by a deeper analysis of meta-heuristics. 

In Watson et al. [11] a procedure was introduced to gain 
deeper knowledge of meta-heuristic behavior. They developed a 
deconstruction-based analysis of a particular version of Tabu 
Search (TS) which solves the Job-Shop Scheduling problem. 
The findings from such analysis enables to understand the 
benefits of some supplementary TS components, as well as the 
conclusion that the choice of tabu search is not responsible for 
the good results achieved by the meta-heuristic procedure. Main 
results of Watson’s analysis is to determine whether different 
trajectory-based meta-heuristics are able to achieve results 
similar to the specific version of TS under analysis. This is 
pursued via the elaboration of a common scheme for 
instantiating different core meta-heuristics (i.e. meta-heuristics 
in their canonical form) and assessing whether they present as 
good results as the core TS when using the same operators. Later 
on, the impact of long-term memory and different probabilities 
for intensification and diversification are analyzed in a 
quantitative and qualitative manner.  

The approach presented by Watson et. al for a component-
based analysis portrays a good method for gaining knowledge 
on how meta-heuristics work. However, even more knowledge 
can be retrieved by the use of qualitative measures for assessing 
the behavior of components in regards to the search process [12]. 
Additionally, the analysis of several variants of core meta-
heuristic components would enable a better understanding 
concerning their performance. The results of this thorough 
analysis could then be used for prospecting useful guidelines 
that support a faster design of an efficient meta-heuristic for a 
problem at hand, as shown in Fig. 1.  

 
Fig. 1. Overview of the proposed processes for supporting the rapid 
construction of good performing meta-heuristics. 

As a first step in the direction of supporting a rapid 
construction of good performing meta-heuristics, our goals for 
this work are (i) extending Watson’s approach by including 
more qualitative measures for better assessing the behavior of 
meta-heuristics, (ii) analyzing several variants of core meta-
heuristic components; and (iii) exemplary generating a guideline 

for a given problem and algorithm. Impacts of components on 
the search process and on the fitness has to be evaluated in an 
isolated manner. For this purpose, a procedure based on 
Watson’s approach was conceived, comprising a first draft of a 
future procedural method for component analysis.  

Fig. 2 presents the procedure proposal. The Watson’s 
procedure is enhanced by the usage of behavior measurements, 
the analysis of core component variants and the elaboration of 
guidelines. It is a top-down approach and comprises four 
processes: (i) selection of a meta-heuristic, (ii) analysis of 
different components, and (iii) prospection of guidelines. The 
first process relates to the identification of good performing 
meta-heuristic for the problem at hand. Then, the impact of 
components on the search process and on the fitness has to be 
evaluated in an isolated way. 

 
Fig. 2. Proposed procedure for component analysis and prospection of 
guidelines. 

The component analysis encompasses two steps: (a) analysis 
of core components and (b) analysis of supplementary 
components. Both analyses aim at identifying the contribution 
of each component to the search success and at generating 
information to support the prospection of guidelines. However, 
each analysis focuses on a different set of components. For the 
first step, only variants for the core meta-heuristic components 
are selected. Furthermore, a set of promising and well-
established configurations of those components are defined and 
performance is investigated in an isolated way. The 
configuration that results in the best algorithm’s performance is 
taken for the second step analysis. In this step, supplementary 
components are iteratively included in the basic structure and 
further investigation regarding their contribution is conducted. 
Both analyses provide results for the identification of guidelines 
in terms of suitable configuration combinations and the 
application of supplementary components. 

Fig. 2 also presents the experiment design and measures 
which are used for the analysis of components and resulting 
prospection of guidelines. Experiments are performed using a 
factorial design. Moreover, several measures can be used for 
assessing performance and behavior of meta-heuristics. Besides 
solution quality and execution time, behavioral measures enable 
the understanding of how an algorithm performs the search. In 
addition, box plot and ranking of solutions can be carried out on 
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the measures in order to enable and substantiate conclusions 
regarding the meta-heuristic components. 

The next section shows how the proposed procedure is 
applied for the analysis of meta-heuristic components and 
defining guidelines. Given that MLCLSP represents a focal 
planning decision in the supply chain, the procedure is applied 
to investigate meta-heuristic components in this domain. 

III. APPLICATION OF THE PROCEDURE IN MLCLSP 
The above presented component analysis based procedure is 

validated and evaluated for the multi-level capacitated lot sizing 
problem. 

A. Meta-heuristics in MLCLSP 
Several meta-heuristics have been proposed in the literature 

and applied to the MLCLSP. Even though, they aim the same 
problem, formulations differ slightly in product structure and 
overtime acceptance. Procedures are mainly characterized by 
two different solution representations: production quantities and 
binary setup variables. The latter reduces the optimization 
problem to the machine setup decision, which is used in the 
mathematical programming solver for calculating the 
appropriate lot sizes. The choice of the solution representation 
has impact on the definition of the neighborhood structure and 
operators. While the quantity representation considers quantity 
shifting between periods, the binary representation defines flip 
actions of the variables. In many cases, the setup representation 
is favored in meta-heuristic procedures due to its simplicity and 
resulting reduced amount of variables to be optimized. In 
addition, approaches can be classified into basic and hybrid 
algorithms, of which the latter combines an additional 
optimization technique with meta-heuristics.  

TABLE I. depicts an overview of identified publications, the 
applied meta-heuristic algorithms, its hybrid method and the 
solution representation. Basic approaches for meta-heuristic 
application in MLCLSP applying Simulated Annealing (SA), 
Tabu Search (TS), Genetic Algorithm (GA) and Evolution 
Strategy (ES) are proposed by Helber [15]. All algorithms apply 
a binary representation and a considerably problem-unspecific 
implementation with a neighborhood consisting of variable flip 
operations. Barabarosoglû [18] and Özdamar [19] both solve the 
MLCLSP with simulated annealing and by shifting production 
quantities each iteration. While the former evaluates different 
feasibility options, the latter includes a Lagrangian Relaxation 
(LR) approach to identify the initial solution. Toledo [21][22] 
proposes a genetic algorithm featuring a hierarchical structure of 
solutions and a mathematical optimization procedure. A  Max-
Min Ant System (MMAS) is applied by Almeder [25]. The 
meta-heuristic evaluates a binary setup pattern including 
pheromone-based partial fixing. 

B. Choice of Algorithm 
In accordance with the above described procedure, an 

appropriate MLCLSP meta-heuristic has to be selected for 
analysis. Most interesting for investigation is the best 
performing approach since it enables a deeper understanding on 
which components contribute to the good results. However, the 
assessment and comparison of meta-heuristics is a challenging 
task. On the one hand, evaluation is almost exclusively based 

on the final solution quality, ignoring the search process and 
thus discarding important information for the evaluation. On 
the other hand, comparison between different methods is 
generally not feasible without re-implementing due to different 
test data sets as well as different measurements and aggregated 
values. An assessment is thus only targetable for an agreed-
upon test environment [1] and in the present case only possible 
to a limited extend. Consequently, the choice has to be based 
on other criteria.  

TABLE I.  OVERVIEW OF METAHEURISTIC APPROACHES IN MLCLSPS 

Publication MH algor. Hybrid method Representation 
Chen [13]  LS LR Quantities 
Zhao [14] VNDS LS Quantities 

Helber [15] SA, TS, GA, 
ES - Setup 

Kuik [16] SA, TS LP relaxation Setup 
Berretta [17] SA/ TS Heuristic method - 
Barabarosoglû [18] SA - Quantities 
Özdamar [19] SA LR Quantities 
Xie [20] GA - Setup 

Toledo [21] [22] GA Fix-and-
Optimize Setup 

Berretta [23] Memetic Heuristic Quantities 
Pitakaso [24] MMAS Decomposition Parameters 
Almeder [25] MMAS LS Setup 

As a suitable meta-heuristic procedure, the two meta-
heuristic approaches presented by Toledo et al. [21][22] 
emerged. Besides the good results achieved for established data 
sets, they define a recent approach which applies one of the 
most popular meta-heuristic algorithms (i.e. GA). In addition, 
the procedures comprise components that are said to perform 
well for other problems as well as a heuristic procedure [21]. 
Both approaches are essentially the same algorithm and 
contains the same set of components (with distinct values for 
some parameters) applied to solve two different MLCLSP 
formulations:  allowing overtime [21], and considering 
backlogging and setup of product families [22]. In this paper 
we investigate the meta-heuristic components for the MLCLSP 
with overtime [21]. 

C. Algorithm Description 
The realization of a component-based meta-heuristic 

evaluation requires a common understanding of the term 
component. Several publications employ the component term 
among them [11] and [26], yet no generally accepted definition 
exists. In addition, the meaning of a component differs between 
characteristics of an approach and deconstruction of meta-
heuristics into its constituent parts. In the present work, our 
understanding of the term is the deconstruction of the meta-
heuristic into search strategy elements and configuration 
elements. The component depicts an element and its specific 
implementation. When necessary, components can also be 
assigned characteristics. As an example, the components 
proposed by Toledo et al. [21] are presented in Fig. 3. 
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Fig. 3. Overview of components used in MGAFO procedure. 

The meta-heuristic procedure that was chosen for analysis is 
the multi-population genetic algorithm combined with the fix-
and-optimize heuristic (MGAFO) presented by Toledo et al. 
[21]. It consists of five configuration and five search strategy 
elements (cf. Fig. 3). The procedure makes use of a setup 
variable representation. Exceedances of capacity are penalized 
in the objective function. In order to obtain initial solutions, 
variables are fixed to 1 and the resulting quantities are 
calculated. If the production quantity has zero amount, the setup 
of this period is removed. A time limitation on 180 seconds is 
set on the execution of the algorithm. The procedure also 
includes multiple populations (i.e. 3 populations) arranged in a 
ring design. After all populations have converged, the best 
solution is spread among populations.  

In addition to these configuration components, four mutation 
and crossover variants are defined and randomly selected during 
execution. Mutation varies between flip of one setup variable 
and two variables of either the same period, the same product or 
random variables. Crossover can either be uniform, single point 
by product or period or in form of a four sector (i.e. submatrices) 
crossover. In order to select parents for crossover, the population 
is arranged in a quaternary tree structure. One leading solution 
is followed by four supporting solutions (in total 21). A leader 
and its connected supporter are randomly chosen for mating. If 
the offspring exhibit better fitness, it replaces the supporting 
parent. After all populations have converged (i.e. no supporting 
parent was replaced by the offspring), the best individuals 
migrate to other population, and the best overall solution is 
improved applying a fix-and-optimize heuristic. In this heuristic, 
setup variables are iteratively divided up into fixed and 
optimized variables applying a window size on both the products 
and periods in a rolling horizon basis. The resulting mixed linear 
program is solved optimally and the best solution is updated 
accordingly for each rolling horizon. 

D. Configuration of Experiments for the Analysis of 
Components 
The MGAFO, as described above, comprises three 

supplementary components (multi-population, hierarchical 
structure and the fix-and-optimize heuristic) and five core GA 
components (initialization, selection, crossover, mutation and 
replacement). Although the MGAFO performs well, it is not 
clear which component contributes the most to the high quality 
solutions. For this reason, the analysis of supplementary 

components and the prospection of guidelines regarding their 
use for MLCLSP are main focus of this investigation. 

Both core and supplementary components are analyzed for 
class B+ in accordance to the procedure proposed in the previous 
section. Class B+ is a group of problem instances defined by 
Stadtler [27] with 10 products, 3 machines and a time horizon of 
24 periods. It comprises 19 instances of the problem. Unlike 
class A+, it takes setup times into account, which leads to an 
increase complexity due the inclusion of additional constraints, 
and it is more often used in the literature than class A+.   

The first step analysis is conducted on the five core GA 
components. In addition to the specific implementation of core 
components used by MGAFO, other variants are also taken into 
consideration. They are either modified versions of those used 
in the algorithm, or variants commonly used and taken from the 
literature: Initialization: (3 variants) random; as defined in 
MGAFO; and, half random / half as defined in MGAFO; Parent 
selection: (3 variants) tournament with size of five; roulette 
wheel; and, random between tournament and roulette wheel; 
Crossover: (7 variants) uniform with three different uniform rate 
(0.1, 0.25 and 0.5); one point product; one point period; 
submatrices; and, as defined in MGAFO; Mutation: (7 variants) 
probabilistic with three different probabilistic rate (0.015, 0.05 
and 0.1); random one flip; two flip product; two flip period; and, 
as defined in MGAFO; and, Replacement: (4 variants) elitism 
with three different elitism rate (10%, 25% and 50% of the best 
solutions are passed to the next population); and, best solution 
replacement, since it is used in MGAFO. The elitism with 
different rates are further referred to as soft elitism. 

In order to avoid the combinatorial explosion of all 1,764 
possible combinations of the basic GA components, a selection 
of promising components precedes the factorial analysis of 
possible configurations. For this selection procedure, all core 
GA components are set according to the variants used by 
MGAFO. Since the hierarchical structure is not defined as a core 
component, the selection component is set to random between 
tournament and roulette wheel. Then, at each time one 
component is analyzed separately and the performance is 
investigated in an isolated way. For example, for analyzing the 
crossover variants, all other core GA components are fixed but 
the crossover. The same procedure is carried out for all other 
core GA components. Subsequently, the two most promising 
variants of each component are selected. Experiments on all 
possible combinations for these components are conducted in 
order to identify inter-component dependencies. 

The best configuration of core components obtained from 
the factorial analysis is taken as basis for the second analysis 
step. In this step all possible combinations of the supplementary 
components are tested. Given the data obtained from both 
experiments, guidelines in terms of suitable configuration 
combinations and the application of supplementary components 
can be identified. 

The amount of instances used in each analysis step is 
gradually extended. The selection of promising component 
variants uses 20% of the instances (i.e.  G521132, G512131, 
K511141 and K522131); the factorial design over the selected 
core components uses 50% (i.e. G521132, G512131, G511132, 
G522132, G522130, K512132, K521131, K521142, K511141 
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and K522131); and, the factorial design over the supplementary 
components uses all. Half of the instances selected in each 
analysis considers the general operation structure, while the 
other half considers the assembly operation structure. 

Computational experiments are implemented in JAVA 8 and 
executed on an Intel Xeon CPU E31270 3.4GHz, 16GB of 
RAM, Windows Server 2008 R2 Standard 64 bits. Linear 
programs are solved with CPLEX. The number of calls to the 
fitness function is used as a stopping criteria instead of the 
execution time, since this is not the same environment as the one 
used by the authors of MGAFO [21], as well as no information 
concerning the implementation language was reported in the 
referred paper. The selected stopping criteria enables 
comparison of results without the necessity of having the same 
computational environment. For the second step analysis, which 
includes the multi-population structure (3 populations in total), 
the stopping criteria is set to 45,000 calls to the fitness function, 
resulting in an average of 15,000 calls for each population. For 
this reason, the stop criteria is set to 15,000 calls to the fitness 
function for the analysis of core GA components. Each 
configuration of components were executed 15 times for each 
instance. 

E. Performance Assessment  
In order to gain knowledge about the performance and 

behavior of the different component configurations for the 
MLCLSP, several measurements are employed. The 
identification of most promising configuration of components is 
based on the dispersion of results (i.e. box-plot), and ranking of 
configurations with respect to all considered instances and 
executions. Regarding the latter analysis, for each instance l all 
configurations c are ranked over all executions k according to 
the final solution. The rank rclk of each configuration is summed 
up for all instances, resulting in the final rank Rc (1).  

  ��
� �

�
L

l

K

k
clkc rR

1 1
 (1) 

In addition, other measures are used to provide information 
regarding behavioral aspects of meta-heuristics. Those 
information are used to understand why in general a set of 
components achieved better solution qualities than others. This 
could expose possible weaknesses or strengths of components, 
and might uncover potential directions for improvements. For 
this purpose, the following measures are used: improvement 
over iterations – shows how the best solution improves over 
iterations; Solution similarity [27] – measures how much a 
candidate solution differs from others in a population; Amount 
of improvement [27] – measures how much a solution improves 
after including one or more components; and, Coverage of the 
Solution Space [27] – measures the ability of an algorithm to 
generate distinct candidate solutions. 

IV. RESULT OF EXPERIMENTS 
 Results of experiments are analyzed in order to gain deeper 

knowledge about the components and their impact on the search 
process.  An error in the original problem formulation in [21] 
was discovered during the implementation of the approach. The 
upper bound ��� in the setup constraint disregards the additional 
availability of overtime capacity. Since the upper bound 

parameter cannot be defined from the overtime capacity variable 
we define the upper bound parameter only by the total demand 
�������	 of product 
 at period �.  This is possible due to the fact 
that the updated problem formulation results in a greater upper 
bound, which might only cause higher computational time. On 
the other side the error in the previous formulation of the upper 
bound can prevent the meta-heuristic to reach better results in 
cases where overtime capacity is used. 

A. Analysis of core GA Components 
The first part of this step consists in the identification of the 

two most promising instantiations for each component. For this 
reason, the proposed instantiations are evaluated in an isolated 
way. The assessment of each component is based on ranking of 
the fitness values for each instance. Best performing 
instantiations are: Initial Solution: MGAFO/ Random, MGAFO; 
Parent Selection: Tournament, Random; Crossover: One Point 
Product Crossover, Submatrices Crossover; Mutation: Random 
One Flip, MGAFO; Replacement: Soft Elitism (0.25), Soft 
Elitism (0.5). For most components, results deduce a clear rank 
order of the corresponding instantiations. In the case of the 
replacement component the ranking is not definite. Soft elitism 
however achieved significantly better results than strict elitism. 
Thus, only the two best variants are considered. 

The second part of this step is the factorial analysis of 
different configurations and the investigation of related mutual 
dependencies. The assessment of the best set of instantiations for 
the second step is realized via a box-plot representation and the 
above described ranking procedure. Box-plots enable the 
visualization of variability of experiments with regard to their 
fitness value. Due to their one-dimensional shape, visual 
comparison of different configurations is facilitated. Results 
indicate configuration performance differences among 
instances. None of the configurations clearly outperforms all the 
others considering single instances as well as the combination of 
all instances. For this reason the ranking procedure is considered 
for the selection based on the minimal overall rank. The best 
performing configuration based on the ranking approach is 
composed by the following instantiations: MGAFO/ random 
(initial solution), random (parent selection), one point period 
(crossover), MGAFO (mutation) and soft elitism 0.25 
(replacement).  

The examination of the ranks of the evaluated configurations 
allows for conclusion to be drawn regarding the impact of 
instantiations and combinations on the overall fitness. The 
ranking of the configurations indicate a cluster of similar good 
results for the best eight configurations. Those configurations 
are characterized by the same crossover and mutation variant. 
This statement is emphasized by Fig. 4. The bar chart depicts the 
sum of the position in the ranking of each instantiation 
considering all instances. The dotted line displays the minimal 
value. Results show that variations in crossover and mutation 
seems to have main impact on the final meta-heuristic 
performance, while the initial solution, parent selection and 
population selection only slightly influence the solution quality.  

In addition to the evaluation of different configurations, 
results are investigated regarding different metrics and resulting 
implications of components on the search process. In this 
section, the improvement over iterations, the solution similarity 
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and the coverage of solution space is considered. For this 
purpose, the best and the worse configuration are chosen and 
compared against each other. Analysis has been performed on 
all instances, yet for visualization purposes values are 
exemplarily taken from experiments of instance K511141. Only 
negligible deviation between instances has been observed. In 
order to assess variability, minimum, average and maximum 
values are calculated for each metric. Fig. 5 illustrates the results 
for the fitness improvement metric. Two conclusions can be 
obtained from the time series patterns. On the one hand, greater 
improvement in the first iterations lead to better final fitness (for 
the investigated number of iterations) even though results 
converge. On the other hand, the improvement pattern is 
characteristically for the specific configuration. Deviations 
between different experiments of the same configuration are 
small. Further investigation revealed that the patterns are 
representative for the two different types of crossover. The one-
point period crossover leads to faster decrease in the fitness 
value, while the submatrices crossover requires more iterations 
for the same improvement. This metric emphasizes the 
importance of the crossover component in meta-heuristic 
design. 

 
Fig. 4. Comparison of component influence. 

 
Fig. 5. Improvement over Iterations for instance K511141. 

The second metric analysis considers the solution similarity. 
Fig. 6 presents the similarity value between the best solution and 
the remaining population for each iteration. The higher the value 
the more differs the population from the best solution. 
Therefore, low solution similarity values indicate exploitation of 
the search space. The mean development of the solution 
similarity over iterations displays a similar pattern for both 
configurations. On average, the best solution differs from the 
remaining population by less than 10 %. Nonetheless, the 
solution similarity is slightly higher for the worse configuration. 
In particular, the deviation from the mean value is larger. The 

higher solution similarity could indicate that the search is not 
exploited around the best solution, thus leading to worse 
performance. Given these results, a thorough investigation 
around the search space of good individuals is recommendable. 

 
Fig. 6. Solution Similarity for instance K511141. 

The third metrics comprises the coverage of the solution 
space. The coverage refers to the percentage of distinct solutions 
contrasted to the number of generated solutions during the 
search process. In order to explore the search space effectively, 
high percentage is desirable. TABLE II. depicts an overview of 
the mean values for this metric considering different iterations 
(1500, 5000, 10000 and 15000) and four configurations (best 
and worse configuration for each crossover variant). In general, 
most solutions present novel solutions. As the likelihood to 
generate novel solutions decreases during the search process, the 
coverage value decreases as well. Besides that, the crossover 
variant influences the generation of novel solutions. The 
percentage of distinct solutions is higher for the one point 
crossover during the first 500 iterations. Iterations 1000 to 1500 
are probably more influenced by other components due to 
deviant behavior within the crossover variants. This metric 
infers that the selection of a crossover variant strongly 
influences the first phase of the search process. These results are 
in accordance with the first metric and thus strengthens the 
statement regarding the importance of the crossover.  

TABLE II.  COVERAGE OF SOLUTION SPACE 

Iterations 
One Point Period 

Crossover Submatrices Crossover 

Best  Worse Best Worse 
1500 0.98164 0.98031 0.93778 0.93316 
5000 0.97336 0.97114 0.93305 0.92624 

10000 0.94768 0.91756 0.92585 0.91947 
15000 0.90553 0.81692 0.91024 0.88400 

B. Analysis of Supplementary Components 
This analysis step focuses on the supplementary components 

used by MGAFO. In order to reduce computation time, the 
maximum window size for the fix-and-optimize component is 
set to seven. Due to the deterministic nature of the fix and 
optimize heuristic, results do not change when the procedure is 
called with the same inputs. Thus, it is only executed if either 
the best individual or the window size differs from the last 
execution. For representing configurations of supplementary 
components, the following abbreviations are used: fixed-and-
optimize heuristic (FaO), hierarchical structure (Struc), multiple 
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populations (Multi) and the best core genetic algorithm 
configuration (GA). 

In contrast to the analysis of core components, from the 
boxplot it is possible to conclude that the algorithms GA+FaO, 
GA+Struc+FaO and GA+Struc+Multi+FaO outperform all 
others. In Fig. 7 exemplarily the boxplots for instances K521131 
and G521132 are shown. While other configurations present 
higher dispersion and median, the three aforementioned 
configurations have less dispersion and better solution quality. 
The same is observed for the other problem instances.  

 
Fig. 7. Boxplot of solution quality for different configurations of 
supplementary components. 

Among those three configurations, however, it is difficult to 
distinguish which outperforms the others. For this reason, the 
summed ranking for all configurations is computed and results 
are presented in Fig. 8. Algorithms GA+FaO and 
GA+Struc+FaO both present similar results for the problem 
under investigation. Taking into consideration the boxplot and 
the summed ranking, the following observations can be drawn: 

� Hierarchical structure: when included into the core 
GA the final solution quality is diminished and, most 
of times, the dispersion is greater. Even worse results 
are achieved when included together with the multi-
population. However, in combination with the fix and 
optimize component, results are improved.  

� Multi-Population: only slight improvements of the 
fitness is observed for some instances when included 
in the core GA. However, combined with the fix and 
optimize heuristic, better overall results are achieved.   

� Fix and optimize: This component seems to mainly 
contribute to the fitness improvement. With respect to 
the ranking and the boxplot, all configurations using 
FaO present better solution qualities. As can be noted, 
solutions are worse when multi population is used in 
combination with fix and optimize. 

A deeper investigation on the number of calls to the fix and 
optimize heuristic enables a better understanding of the 
algorithm success rate in finding better solutions. It reveals that 
the success is directly proportional to the number of calls to this 
component. Although the maximum number of iterations and 
the convergence criteria (which is used for triggering the FaO 
component) are the same for all configurations, each different 
combination of components causes different convergence time. 
The inclusion of the hierarchical structure favors early and a 
higher number of calls to the fix-and-optimize heuristic because 
solutions are only replaced in the population if the offspring is 
better than the support parent, leading to a faster convergence. 

Additionally, the use of multiple populations results in late and 
reduced number of calls, since all populations need to converge 
in order to call the FaO heuristic. 

 
Fig. 8. Summed ranking of the supplementary components. 

Fig. 9 depicts the aforementioned impact on the fitness 
value of the hierarchical structure and the FaO component, 
exemplarily shown for the problem instance K521142, for 
which the highest improvement in solution quality is achieved 
after including the FaO heuristic into the GA (i.e. 8%). The 
metric improvement over iterations for the configurations with 
and without the fix-and-optimize component overlaps each 
other until the FaO is called and further improves the solution. 
A faster improvement of solution quality is observed for 
configurations that use hierarchical structure. 

 
Fig. 9. Improvement over iterations for the instance K521142. Impact of 
hierarchical structure and fix and optimize components. 

Although the fix and optimize heuristic is a very good 
performing component for escaping local optima, it requires 
high computational time. Fig. 10 depicts the mean and standard 
deviation of the total execution time for the different 
configurations including the FaO component. The total 
execution time includes the total time required for the FaO and 
for all other GA operations, including other supplementary 
components. The average execution time of the underlying GA 
remains almost the same, with slight changes on the mean and 
standard deviation depending on the inclusion of different 
supplementary components. This means that the inclusion of 
other components but the FaO do not imply additional time 
consumption. In contrast, the FaO heuristic requires much 
additional computation time, depending on the number of calls. 

The computational cost of the FaO heuristic is further 
analyzed in order to compare its efficacy and efficiency across 
the distinct combinations of supplementary components. Fig. 11 
and Fig. 12 show the share of the FaO component to the total 
execution cost (GA+FaO and GA+Struct+Multi+FaO, 
respectively) for each problem instance. The total computation 
cost consumed by the FaO is composed of (i) cost of executions 
that led to solution improvements and (ii) those that did not 
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improve solutions. In addition, the accumulated solution 
improvement after all FaO executions is reported. Shown in the 
figures, a substantial part of the FaO total execution time does 
not result in solution improvements, particular in the case of 
GA+FaO. Since there is no guarantee to find better values for 
the setup variables within the window size, it is possible that the 
FaO does not improve the candidate solution. Besides that, the 
mathematical solver takes more time to find an optimal solution 
when the window size increases. As Fig. 12 shows, the total cost 
of the FaO heuristic decreases when multiple populations are 
included. This is due to the reduced number of calls to the FaO 
component. In addition, a greater portion of the total cost led to 
improvement of the solution quality. Nevertheless, the 
accumulated solution improvement is similar for both 
configurations of components.  

 
Fig. 10. Mean and standard deviation of the total execution time. 

 
Fig. 11. Mean computational cost of the FaO heuristic in GA+FaO. Percentages 
on the bars indicate the minimum and maximum values of accumulated solution 
improvement.  

 
Fig. 12. Mean computational cost of the FaO heuristic in 
GA+Struc+Multi+FaO. Percentages on the bars indicate the minimum and 
maximum values of accumulated solution improvement. 

The analysis of the solution similarity to the best individual 
indicates that the FaO heuristic collaborates for keeping the 
diversity of the population, due to the generation of new and best 
individuals. Fig. 13 exemplarily shows the solution similarity 

for GA+Struc and for one population of GA+Struc+Multi and 
their respective versions including FaO. Instances G522142 and 
K511141 are respectively selected, as they show the highest 
improvement in solution quality when the FaO heuristic is used 
(9% and 8%, respectively). For the GA+Struc, a higher value of 
solution similarity is observed in the interval from 9,000 to 
27,000 iterations for the configuration that includes the FaO. 
Although the best solution differs greatly from the entire 
population within the mentioned interval, solution similarity 
decreases afterwards, suggesting that candidate solutions are 
exploiting the region around the best individual. For one of the 
population of GA+Struc+Multi+FaO, a similar increase of 
solution similarity is observed. However, at the end of the 
execution the best individual still differs more from other 
candidate solutions in relation to the version that does not use 
the FaO heuristic. This suggests that candidate solutions are still 
exploring regions which are further away from the best 
individual.

 
Fig. 13. Solution similarity for the instances G522142 and K511141 of the best 
individual for GA+Struc and GA+Struc+FaO, and for GA+Struc+Multi and 
GA+Struc+Multi+FaO, respectively.  

V. PROSPECTION OF GUIDELINES FOR COMPONENT SELECTION 
The selection of components in MLCLSP requires deep 

knowledge in meta-heuristic construction as well as in the 
domain of lot sizing. In order to support practitioners in the 
construction of meta-heuristic procedures in MLCLSP, a set of 
guidelines from the analysis of components and metrics are 
developed. The proposed guidelines depict initial results. In 
order to validate and possibly generalize the guidelines further 
experiments on different algorithms and settings are required. 

A.  Core Component Guidelines 
The first guideline that can be deduced from the analysis of 

core GA components covers the impact of components on the 
algorithm performance. Results obtained by the rank analysis of 
different configurations as well as the metrics improvement over 
iterations and coverage of solution space emphasize the 
following statement: 

The selection of the crossover component and the mutation 
component has major influence on the meta-heuristic 
performance.  

 As a consequence, a large part of the effort spent on 
designing a meta-heuristic for the MLCLSP should be dedicated 
on the instantiation of the crossover and mutation component. It 
is recommendable to test several variants and select the most 
promising combination. In the present work, results indicate that 
the combination of the one-point product crossover and the 
MGAFO mutation is a promising combination for the data under 

Mean SD Mean SD Mean SD Mean SD

GA+FaO GA+Multi +FaO GA+Struc +FaO GA+Struc
+Multi+FaO

FaO 651.1 966.9 12.2 11.7 751.7 1459.0 175.0 366.2
GA 213.6 6.5 208.2 3.9 215.5 6.0 210.9 4.5
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investigation. Other components only have little influence on the 
algorithm performance, and thus optimization portrays a minor 
role.  

The second guideline relates to the results from the solution 
similarity metric and an investigation of the promising mutation 
and crossover combination obtained during this analysis step 
leading to the following statement:  

A thourough exploitation of the search space around the best 
solution enables the improvement of meta-heuristic 
performance. 

The instantiation of crossover and mutation should be 
selected in a way that exploration and exploitation is covered 
simultaneously. Besides exploiting the search space in the area 
near to the best solution, exploration of different search spaces 
is required to overcome local minima. A possible explanation of 
why the MGAFO mutation and the one-point product crossover 
performs best could be that crossover enables exploration by 
combining different product set ups and mutation is responsible 
for exploiting product set ups. Thus, an exploitation of the search 
space around the best solutions is achieved by the mutation 
component. The crossover component combines promising 
product set ups. In general, however, a good combination of 
mutation and crossover is difficult to acquire. It requires a lot of 
knowledge and experience in the field of meta-heuristics and the 
application domain. In order to generate a more detailed 
guideline, further experiments on these components, their 
interaction, dependencies and the problem domain is necessary.  

B. Supplementary Component Guidelines 
Based on the boxplots, all configurations including the FaO 

heuristic present better final solution qualities. Besides that, the 
summed ranking and the comparison of improvement over time 
emphasizes this observation. While configurations without the 
FaO component in general converge to local optima, the use of 
this heuristic encourages further solution improvements. 
Although this component was exclusively tested with GA, other 
meta-heuristics which make use of the setup variables 
representation might profit from the usage of the FaO heuristic 
investigated here. Thus, the following statement can be deduced: 

The fix and optimize component is a great heuristic for escaping 
local optima and further improving candidate solutions. 

The FaO favors diversity of high quality solutions by 
introducing new and better candidate solutions into the 
population. It gives the opportunity for the meta-heuristic to 
escape from local optima. However, experiments revealed that 
it is hard for the GA to further improve solutions found by the 
heuristic, even though it is able to improve solutions towards the 
best found so far. This means that after some iterations, the FaO 
was mainly responsible for further solution improvements.  

There are two possible reasons for that: (i) the underlying 
GA is not exploiting well the region, or (ii) better solutions are 
further away from the identified local optimum, thus requiring 
an exploration of the solution space. In the case of GA, one 
possibility to deal with this issue is by adapting the crossover 
and mutation to perform fewer changes in the individual as the 
execution approaches the end. For this reason, further 
investigation regarding different variants and combinations of 

those components, especially those that incorporates heuristics 
to perform fine adjustment on individuals, can lead to 
improvements of the solution quality. 

Depending on the difficulty for solving the sub-problems, 
the FaO can have high computation cost, but just a small 
proportion results in solution improvements, as depicted in Fig. 
11. Therefore, it is necessary to devise a proper criteria for 
triggering this heuristic and for changing window sizes, since 
this plays an important role for balancing the trade-off between 
solution quality and execution time. 

Based on the comparison of the improvement over iterations 
between configurations with and without the hierarchical 
structure component, it is possible to deduce the following 
statement: 

The use of the hierarchical structure component collaborates 
for a faster convergence towards a local optimum. 

The reason for a faster convergence refers mainly to how 
individuals are replaced in the population. The hierarchy based 
on the solution quality is mainly used for enabling an easy and 
fast selection of at least one good solution. After applying the 
crossover and mutation, the new candidate solution is only 
included into the population if it is fitter than the worse parent. 
This strategy restricts the inclusion of diverse solutions, leading 
to a faster convergence. However, when used in combination 
with the FaO heuristic and the convergence criteria, it allows 
earlier and more frequent calls to the FaO. This leads to 
successful improvement of the best solution in a reduced number 
of iterations. The conclusion is supported by the analysis of 
improvement over iterations, boxplots, summed ranking and the 
number of calls to FaO when the hierarchical structure is used. 
Thus, the following statement can be deduced: 

The joint use of the hierarchical structure component and the 
fix and optimize heuristic leads to more successful improvement 
of the best solution in a reduced number of iterations. 

The multiple population component enables multiple 
independent executions of the meta-heuristic, increasing the 
chance of generating diverse solutions, due to the stochastic 
nature of the search procedure. Thus, it collaborates to a better 
exploration of the search space. With regard to the combination 
of the multiple population component with the hierarchical 
structure and the FaO, good solutions are found requiring less 
computation time. On the one hand, solutions are worse in 
comparison to those obtained by GA+FaO and GA+Struc+FaO, 
although difference is small as can be seen in the boxplots. On 
the other hand, the total time required for the 
GA+Struc+Multi+FaO to find good solutions is on average 45% 
(40%) of the total execution time of GA+FaO (GA+Struc+FaO). 
Thus, the following statement can be deduced:  

The combination of Struc+Multi+FaO enables a better 
balancing between solution quality and execution time. 

VI. CONCLUSION 

The present paper depicts a first attempt towards a thorough 
component analysis based procedure that enables the generation 
of guidelines for an efficient and effective design of meta-
heuristics. This is necessary with regard to current supply chain 
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requirements. Due to increasing speed of changes in the supply 
chain, fast adaptations of the production plans are crucial. The 
put forward guideline is thought of supporting the practitioner in 
developing a good meta-heuristic. This is done initially for the 
genetic algorithm. The approach was validated on the multi-
level capacitated lot sizing problem (for class B+ of Stadtler’s 
dataset) using a genetic algorithm. A set of guidelines 
concerning the instantiation and inclusion of components have 
been identified for the usage of genetic algorithm in MLCLSP. 
Even though the guidelines could be further improved, they 
portray a starting point for further research. Nonetheless, with 
this work a proof of concepts is attempted. Thus, the procedure 
and the resulting guidelines do not aim a concluded work, but 
rather present initial ideas for facilitating meta-heuristic design. 
To the best of our knowledge, no such support is provided to 
problems with similar characteristics, hence the deemed value 
of this work. 

Future research will target the advancement of the presented 
component analysis based procedure. In order to adjust and 
adapt the procedure, further testing and validation of the 
approach is required. On the other hand, the enhancement and 
extension of guidelines for production planning problems need 
to be addressed. An elaborated catalog of guidelines for different 
planning problems is intended. By analyzing additional core 
component instantiations, further supplementary components, 
different meta-heuristics as well as additional planning problems 
more sophisticated guidelines can be acquired.  
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