
Component Analysis Based Approach to Support the
Design of Meta-heuristics for MLCLSP Providing

Guidelines
Luis Filipe de Araujo Pessoa, Carolin Wagner,

Bernd Hellingrath
Department of Information Systems

Westfälische Wilhelms-Universität Münster (WWU)
Leonardo-Campus 3, 48149 Münster, Germany
{filipe.pessoa, wagner, hellingrath}@ercis.de

Fernando Buarque de Lima Neto*
Departamento de Engenharia da Computação

Universidade de Pernambuco (UPE)
Rua Benfica, 455, Madalena, Recife, Pernambuco, Brasil

fbln@ecomp.poli.br

Abstract—Today’s supply chain are highly complex and
globally set-up underlying a constant change with increasing
speed. This has to be reflected by the planning processes and
algorithms being utilized in the different stages of a supply chain.
In the context of production planning, meta-heuristics are usually
applied due to their ability to handle high complex problems. As
a consequence, these algorithms require adaptation to the new
scenario or even new solution approaches/strategies have to be
devised. However, designing a meta-heuristic of good performance
for a problem is a hard task, since it requires deep knowledge on
the problem, as well as on the meta-heuristic side. Therefore, the
existence of supporting guidelines for meta-heuristics might ease
and speed-up the adaptation or design of these algorithms to better
cope with the problem. In this paper, meta-heuristics are
deconstructed into its components and an approach for
component-based analysis is proposed to gain knowledge about
their performance and how they perform the search. Based on the
results of this analysis, guidelines can be devised. The proposed
approach is applied for analyzing components of a good
performing Genetic Algorithm (GA) for multi-level capacitated lot
sizing problem (MLCLSP) and initial guidelines for the
construction of GA in the domain of MLCLSP are generated.

I. INTRODUCTION
Nowadays, supply chains show an ever increasing

complexity due to several influences such as globalization of the
supplier base and heterogeneity in customer needs [1]. Due to
competitiveness and ever growing requirement of global
markets they are underlying a constant change with increasing
speed [2]. Changes in the supply chain are reflected in the
planning process and algorithms being utilized in the different
stages of a supply chain. In order to handle the ever changing
requirements of global markets and the responding supply chain,
the problem structure of planning algorithms needs to be adapted
accordingly. In the majority of cases planning problems are hard
to solve due to high problem sizes and many constraints. A focal
planning decision in the supply chain is the determination of lot
sizes. A well-known example is the multi-level capacitated lot
sizing problem (MLCLSP). In addition to the determination of
optimal production volumes and production periods under
consideration of inventory holding costs and setup costs, the
MLCLSP includes multiple production levels and capacity
restrictions. In order to find good solutions in reasonable amount

of time for suchlike problems, the usage of meta-heuristics is
favored due to their flexibility [4] and ability to cope with
complex optimization problems [5].

The design of an efficient and effective meta-heuristic is a
laborious task. Even though, a lot of research is conducted in the
field of meta-heuristics, they still represent black box methods
[6]. Little is known about the characteristics of each meta-
heuristic component and how they contribute to the search
process. In this context, the component is referred to as an
exchangeable part of a meta-heuristic procedure. Selection and
composition of suitable components usually requires deep
knowledge on the problem domain and on meta-heuristics.

In order to support a good design of meta-heuristics, some
guidelines have already been proposed in the literature. Most
publications support either the setting of parameter values [7],
the choice of a particular component [8] or portray general
principles for good metaheuristic construction [9]. Furthermore,
the recommendation of meta-heuristic components and their
combinations that results in one or more intended design aspects
of the algorithm (e.g. intensification, diversification, the trade-
off between solution quality and execution time, among others)
is of importance. This could be achieved by a detailed analysis
of the different components, their specific implementations and
combinations throughout the search process. Although such
guidelines would likely be dependent on the problem under
analysis, they could ease and speed-up the adaptation or design
of algorithms to better cope with other problems that have
similar characteristics.

With this paper, we aim to propose an approach for the
development of supporting guidelines on the example of the
MLCLSP. Our contributions consist in finding an alternative
way to evaluate meta-heuristics in supply chain planning by
means of analyzing its components, their variants and
combinations to the search process. The proposed approach
could enable a better understanding of meta-heuristics and may
provide fundaments for defining guidelines to support meta-
heuristic construction in the area of supply chain management.

The structure of the paper is as follows: Section 2 introduces
the procedure for component analysis and prospection of
guidelines. In Section 3 the proposed procedure is evaluated and

* Visiting Professor at the University of Johannesburg, currently on
Sabbatical at the Westfälische Wilhelms-Universität Münster

2015 IEEE Symposium Series on Computational Intelligence

978-1-4799-7560-0/15 $31.00 © 2015 IEEE

DOI 10.1109/SSCI.2015.149

1029

validated on the MLCLSP. Experiments are analyzed in Section
4, followed by the identification of resulting guidelines in
Section 5.

II. PROCEDURE FOR COMPONENT ANALYSIS AND PROSPECTION
OF GUIDELINES

The design of a meta-heuristic for a problem is often based
on previous knowledge and intuitions of its designer. Since there
are hundreds of techniques [10], this task is becoming even more
difficult due to the large amount of possible designs. Little is
known about the reasons why a particular algorithm finds good
or bad solutions, or which of its components are important in the
search process. All the above commented problems have to be
tackled by a deeper analysis of meta-heuristics.

In Watson et al. [11] a procedure was introduced to gain
deeper knowledge of meta-heuristic behavior. They developed a
deconstruction-based analysis of a particular version of Tabu
Search (TS) which solves the Job-Shop Scheduling problem.
The findings from such analysis enables to understand the
benefits of some supplementary TS components, as well as the
conclusion that the choice of tabu search is not responsible for
the good results achieved by the meta-heuristic procedure. Main
results of Watson’s analysis is to determine whether different
trajectory-based meta-heuristics are able to achieve results
similar to the specific version of TS under analysis. This is
pursued via the elaboration of a common scheme for
instantiating different core meta-heuristics (i.e. meta-heuristics
in their canonical form) and assessing whether they present as
good results as the core TS when using the same operators. Later
on, the impact of long-term memory and different probabilities
for intensification and diversification are analyzed in a
quantitative and qualitative manner.

The approach presented by Watson et. al for a component-
based analysis portrays a good method for gaining knowledge
on how meta-heuristics work. However, even more knowledge
can be retrieved by the use of qualitative measures for assessing
the behavior of components in regards to the search process [12].
Additionally, the analysis of several variants of core meta-
heuristic components would enable a better understanding
concerning their performance. The results of this thorough
analysis could then be used for prospecting useful guidelines
that support a faster design of an efficient meta-heuristic for a
problem at hand, as shown in Fig. 1.

Fig. 1. Overview of the proposed processes for supporting the rapid
construction of good performing meta-heuristics.

As a first step in the direction of supporting a rapid
construction of good performing meta-heuristics, our goals for
this work are (i) extending Watson’s approach by including
more qualitative measures for better assessing the behavior of
meta-heuristics, (ii) analyzing several variants of core meta-
heuristic components; and (iii) exemplary generating a guideline

for a given problem and algorithm. Impacts of components on
the search process and on the fitness has to be evaluated in an
isolated manner. For this purpose, a procedure based on
Watson’s approach was conceived, comprising a first draft of a
future procedural method for component analysis.

Fig. 2 presents the procedure proposal. The Watson’s
procedure is enhanced by the usage of behavior measurements,
the analysis of core component variants and the elaboration of
guidelines. It is a top-down approach and comprises four
processes: (i) selection of a meta-heuristic, (ii) analysis of
different components, and (iii) prospection of guidelines. The
first process relates to the identification of good performing
meta-heuristic for the problem at hand. Then, the impact of
components on the search process and on the fitness has to be
evaluated in an isolated way.

Fig. 2. Proposed procedure for component analysis and prospection of
guidelines.

The component analysis encompasses two steps: (a) analysis
of core components and (b) analysis of supplementary
components. Both analyses aim at identifying the contribution
of each component to the search success and at generating
information to support the prospection of guidelines. However,
each analysis focuses on a different set of components. For the
first step, only variants for the core meta-heuristic components
are selected. Furthermore, a set of promising and well-
established configurations of those components are defined and
performance is investigated in an isolated way. The
configuration that results in the best algorithm’s performance is
taken for the second step analysis. In this step, supplementary
components are iteratively included in the basic structure and
further investigation regarding their contribution is conducted.
Both analyses provide results for the identification of guidelines
in terms of suitable configuration combinations and the
application of supplementary components.

Fig. 2 also presents the experiment design and measures
which are used for the analysis of components and resulting
prospection of guidelines. Experiments are performed using a
factorial design. Moreover, several measures can be used for
assessing performance and behavior of meta-heuristics. Besides
solution quality and execution time, behavioral measures enable
the understanding of how an algorithm performs the search. In
addition, box plot and ranking of solutions can be carried out on

Deconstructing
meta-heuristic

Component
analysis

Prospection of
guidelines

Construction of
good performing

meta-heuristic
Identification of

promising
components

enables

enables supports

supports

Analysis of
supplementary

components

Prospection of
Guidelines

Selection of a
meta-heuristic

Analysis of core
components

Factorial�Design

Solution�Quality
Execution�time

Solution�Similarity
Amount�of�Improvement

Coverage�of�the�Solution�Space�
Box�plot

Ranking�Solutions��

Experiments

Performance Assessment

PROCEDURE

1030

the measures in order to enable and substantiate conclusions
regarding the meta-heuristic components.

The next section shows how the proposed procedure is
applied for the analysis of meta-heuristic components and
defining guidelines. Given that MLCLSP represents a focal
planning decision in the supply chain, the procedure is applied
to investigate meta-heuristic components in this domain.

III. APPLICATION OF THE PROCEDURE IN MLCLSP
The above presented component analysis based procedure is

validated and evaluated for the multi-level capacitated lot sizing
problem.

A. Meta-heuristics in MLCLSP
Several meta-heuristics have been proposed in the literature

and applied to the MLCLSP. Even though, they aim the same
problem, formulations differ slightly in product structure and
overtime acceptance. Procedures are mainly characterized by
two different solution representations: production quantities and
binary setup variables. The latter reduces the optimization
problem to the machine setup decision, which is used in the
mathematical programming solver for calculating the
appropriate lot sizes. The choice of the solution representation
has impact on the definition of the neighborhood structure and
operators. While the quantity representation considers quantity
shifting between periods, the binary representation defines flip
actions of the variables. In many cases, the setup representation
is favored in meta-heuristic procedures due to its simplicity and
resulting reduced amount of variables to be optimized. In
addition, approaches can be classified into basic and hybrid
algorithms, of which the latter combines an additional
optimization technique with meta-heuristics.

TABLE I. depicts an overview of identified publications, the
applied meta-heuristic algorithms, its hybrid method and the
solution representation. Basic approaches for meta-heuristic
application in MLCLSP applying Simulated Annealing (SA),
Tabu Search (TS), Genetic Algorithm (GA) and Evolution
Strategy (ES) are proposed by Helber [15]. All algorithms apply
a binary representation and a considerably problem-unspecific
implementation with a neighborhood consisting of variable flip
operations. Barabarosoglû [18] and Özdamar [19] both solve the
MLCLSP with simulated annealing and by shifting production
quantities each iteration. While the former evaluates different
feasibility options, the latter includes a Lagrangian Relaxation
(LR) approach to identify the initial solution. Toledo [21][22]
proposes a genetic algorithm featuring a hierarchical structure of
solutions and a mathematical optimization procedure. A Max-
Min Ant System (MMAS) is applied by Almeder [25]. The
meta-heuristic evaluates a binary setup pattern including
pheromone-based partial fixing.

B. Choice of Algorithm
In accordance with the above described procedure, an

appropriate MLCLSP meta-heuristic has to be selected for
analysis. Most interesting for investigation is the best
performing approach since it enables a deeper understanding on
which components contribute to the good results. However, the
assessment and comparison of meta-heuristics is a challenging
task. On the one hand, evaluation is almost exclusively based

on the final solution quality, ignoring the search process and
thus discarding important information for the evaluation. On
the other hand, comparison between different methods is
generally not feasible without re-implementing due to different
test data sets as well as different measurements and aggregated
values. An assessment is thus only targetable for an agreed-
upon test environment [1] and in the present case only possible
to a limited extend. Consequently, the choice has to be based
on other criteria.

TABLE I. OVERVIEW OF METAHEURISTIC APPROACHES IN MLCLSPS

Publication MH algor. Hybrid method Representation
Chen [13] LS LR Quantities
Zhao [14] VNDS LS Quantities

Helber [15] SA, TS, GA,
ES - Setup

Kuik [16] SA, TS LP relaxation Setup
Berretta [17] SA/ TS Heuristic method -
Barabarosoglû [18] SA - Quantities
Özdamar [19] SA LR Quantities
Xie [20] GA - Setup

Toledo [21] [22] GA Fix-and-
Optimize Setup

Berretta [23] Memetic Heuristic Quantities
Pitakaso [24] MMAS Decomposition Parameters
Almeder [25] MMAS LS Setup

As a suitable meta-heuristic procedure, the two meta-
heuristic approaches presented by Toledo et al. [21][22]
emerged. Besides the good results achieved for established data
sets, they define a recent approach which applies one of the
most popular meta-heuristic algorithms (i.e. GA). In addition,
the procedures comprise components that are said to perform
well for other problems as well as a heuristic procedure [21].
Both approaches are essentially the same algorithm and
contains the same set of components (with distinct values for
some parameters) applied to solve two different MLCLSP
formulations: allowing overtime [21], and considering
backlogging and setup of product families [22]. In this paper
we investigate the meta-heuristic components for the MLCLSP
with overtime [21].

C. Algorithm Description
The realization of a component-based meta-heuristic

evaluation requires a common understanding of the term
component. Several publications employ the component term
among them [11] and [26], yet no generally accepted definition
exists. In addition, the meaning of a component differs between
characteristics of an approach and deconstruction of meta-
heuristics into its constituent parts. In the present work, our
understanding of the term is the deconstruction of the meta-
heuristic into search strategy elements and configuration
elements. The component depicts an element and its specific
implementation. When necessary, components can also be
assigned characteristics. As an example, the components
proposed by Toledo et al. [21] are presented in Fig. 3.

1031

Fig. 3. Overview of components used in MGAFO procedure.

The meta-heuristic procedure that was chosen for analysis is
the multi-population genetic algorithm combined with the fix-
and-optimize heuristic (MGAFO) presented by Toledo et al.
[21]. It consists of five configuration and five search strategy
elements (cf. Fig. 3). The procedure makes use of a setup
variable representation. Exceedances of capacity are penalized
in the objective function. In order to obtain initial solutions,
variables are fixed to 1 and the resulting quantities are
calculated. If the production quantity has zero amount, the setup
of this period is removed. A time limitation on 180 seconds is
set on the execution of the algorithm. The procedure also
includes multiple populations (i.e. 3 populations) arranged in a
ring design. After all populations have converged, the best
solution is spread among populations.

In addition to these configuration components, four mutation
and crossover variants are defined and randomly selected during
execution. Mutation varies between flip of one setup variable
and two variables of either the same period, the same product or
random variables. Crossover can either be uniform, single point
by product or period or in form of a four sector (i.e. submatrices)
crossover. In order to select parents for crossover, the population
is arranged in a quaternary tree structure. One leading solution
is followed by four supporting solutions (in total 21). A leader
and its connected supporter are randomly chosen for mating. If
the offspring exhibit better fitness, it replaces the supporting
parent. After all populations have converged (i.e. no supporting
parent was replaced by the offspring), the best individuals
migrate to other population, and the best overall solution is
improved applying a fix-and-optimize heuristic. In this heuristic,
setup variables are iteratively divided up into fixed and
optimized variables applying a window size on both the products
and periods in a rolling horizon basis. The resulting mixed linear
program is solved optimally and the best solution is updated
accordingly for each rolling horizon.

D. Configuration of Experiments for the Analysis of
Components
The MGAFO, as described above, comprises three

supplementary components (multi-population, hierarchical
structure and the fix-and-optimize heuristic) and five core GA
components (initialization, selection, crossover, mutation and
replacement). Although the MGAFO performs well, it is not
clear which component contributes the most to the high quality
solutions. For this reason, the analysis of supplementary

components and the prospection of guidelines regarding their
use for MLCLSP are main focus of this investigation.

Both core and supplementary components are analyzed for
class B+ in accordance to the procedure proposed in the previous
section. Class B+ is a group of problem instances defined by
Stadtler [27] with 10 products, 3 machines and a time horizon of
24 periods. It comprises 19 instances of the problem. Unlike
class A+, it takes setup times into account, which leads to an
increase complexity due the inclusion of additional constraints,
and it is more often used in the literature than class A+.

The first step analysis is conducted on the five core GA
components. In addition to the specific implementation of core
components used by MGAFO, other variants are also taken into
consideration. They are either modified versions of those used
in the algorithm, or variants commonly used and taken from the
literature: Initialization: (3 variants) random; as defined in
MGAFO; and, half random / half as defined in MGAFO; Parent
selection: (3 variants) tournament with size of five; roulette
wheel; and, random between tournament and roulette wheel;
Crossover: (7 variants) uniform with three different uniform rate
(0.1, 0.25 and 0.5); one point product; one point period;
submatrices; and, as defined in MGAFO; Mutation: (7 variants)
probabilistic with three different probabilistic rate (0.015, 0.05
and 0.1); random one flip; two flip product; two flip period; and,
as defined in MGAFO; and, Replacement: (4 variants) elitism
with three different elitism rate (10%, 25% and 50% of the best
solutions are passed to the next population); and, best solution
replacement, since it is used in MGAFO. The elitism with
different rates are further referred to as soft elitism.

In order to avoid the combinatorial explosion of all 1,764
possible combinations of the basic GA components, a selection
of promising components precedes the factorial analysis of
possible configurations. For this selection procedure, all core
GA components are set according to the variants used by
MGAFO. Since the hierarchical structure is not defined as a core
component, the selection component is set to random between
tournament and roulette wheel. Then, at each time one
component is analyzed separately and the performance is
investigated in an isolated way. For example, for analyzing the
crossover variants, all other core GA components are fixed but
the crossover. The same procedure is carried out for all other
core GA components. Subsequently, the two most promising
variants of each component are selected. Experiments on all
possible combinations for these components are conducted in
order to identify inter-component dependencies.

The best configuration of core components obtained from
the factorial analysis is taken as basis for the second analysis
step. In this step all possible combinations of the supplementary
components are tested. Given the data obtained from both
experiments, guidelines in terms of suitable configuration
combinations and the application of supplementary components
can be identified.

The amount of instances used in each analysis step is
gradually extended. The selection of promising component
variants uses 20% of the instances (i.e. G521132, G512131,
K511141 and K522131); the factorial design over the selected
core components uses 50% (i.e. G521132, G512131, G511132,
G522132, G522130, K512132, K521131, K521142, K511141

1032

and K522131); and, the factorial design over the supplementary
components uses all. Half of the instances selected in each
analysis considers the general operation structure, while the
other half considers the assembly operation structure.

Computational experiments are implemented in JAVA 8 and
executed on an Intel Xeon CPU E31270 3.4GHz, 16GB of
RAM, Windows Server 2008 R2 Standard 64 bits. Linear
programs are solved with CPLEX. The number of calls to the
fitness function is used as a stopping criteria instead of the
execution time, since this is not the same environment as the one
used by the authors of MGAFO [21], as well as no information
concerning the implementation language was reported in the
referred paper. The selected stopping criteria enables
comparison of results without the necessity of having the same
computational environment. For the second step analysis, which
includes the multi-population structure (3 populations in total),
the stopping criteria is set to 45,000 calls to the fitness function,
resulting in an average of 15,000 calls for each population. For
this reason, the stop criteria is set to 15,000 calls to the fitness
function for the analysis of core GA components. Each
configuration of components were executed 15 times for each
instance.

E. Performance Assessment
In order to gain knowledge about the performance and

behavior of the different component configurations for the
MLCLSP, several measurements are employed. The
identification of most promising configuration of components is
based on the dispersion of results (i.e. box-plot), and ranking of
configurations with respect to all considered instances and
executions. Regarding the latter analysis, for each instance l all
configurations c are ranked over all executions k according to
the final solution. The rank rclk of each configuration is summed
up for all instances, resulting in the final rank Rc (1).

 ��
� �

�
L

l

K

k
clkc rR

1 1
 (1)

In addition, other measures are used to provide information
regarding behavioral aspects of meta-heuristics. Those
information are used to understand why in general a set of
components achieved better solution qualities than others. This
could expose possible weaknesses or strengths of components,
and might uncover potential directions for improvements. For
this purpose, the following measures are used: improvement
over iterations – shows how the best solution improves over
iterations; Solution similarity [27] – measures how much a
candidate solution differs from others in a population; Amount
of improvement [27] – measures how much a solution improves
after including one or more components; and, Coverage of the
Solution Space [27] – measures the ability of an algorithm to
generate distinct candidate solutions.

IV. RESULT OF EXPERIMENTS
 Results of experiments are analyzed in order to gain deeper

knowledge about the components and their impact on the search
process. An error in the original problem formulation in [21]
was discovered during the implementation of the approach. The
upper bound ��� in the setup constraint disregards the additional
availability of overtime capacity. Since the upper bound

parameter cannot be defined from the overtime capacity variable
we define the upper bound parameter only by the total demand
�������	 of product
 at period �. This is possible due to the fact
that the updated problem formulation results in a greater upper
bound, which might only cause higher computational time. On
the other side the error in the previous formulation of the upper
bound can prevent the meta-heuristic to reach better results in
cases where overtime capacity is used.

A. Analysis of core GA Components
The first part of this step consists in the identification of the

two most promising instantiations for each component. For this
reason, the proposed instantiations are evaluated in an isolated
way. The assessment of each component is based on ranking of
the fitness values for each instance. Best performing
instantiations are: Initial Solution: MGAFO/ Random, MGAFO;
Parent Selection: Tournament, Random; Crossover: One Point
Product Crossover, Submatrices Crossover; Mutation: Random
One Flip, MGAFO; Replacement: Soft Elitism (0.25), Soft
Elitism (0.5). For most components, results deduce a clear rank
order of the corresponding instantiations. In the case of the
replacement component the ranking is not definite. Soft elitism
however achieved significantly better results than strict elitism.
Thus, only the two best variants are considered.

The second part of this step is the factorial analysis of
different configurations and the investigation of related mutual
dependencies. The assessment of the best set of instantiations for
the second step is realized via a box-plot representation and the
above described ranking procedure. Box-plots enable the
visualization of variability of experiments with regard to their
fitness value. Due to their one-dimensional shape, visual
comparison of different configurations is facilitated. Results
indicate configuration performance differences among
instances. None of the configurations clearly outperforms all the
others considering single instances as well as the combination of
all instances. For this reason the ranking procedure is considered
for the selection based on the minimal overall rank. The best
performing configuration based on the ranking approach is
composed by the following instantiations: MGAFO/ random
(initial solution), random (parent selection), one point period
(crossover), MGAFO (mutation) and soft elitism 0.25
(replacement).

The examination of the ranks of the evaluated configurations
allows for conclusion to be drawn regarding the impact of
instantiations and combinations on the overall fitness. The
ranking of the configurations indicate a cluster of similar good
results for the best eight configurations. Those configurations
are characterized by the same crossover and mutation variant.
This statement is emphasized by Fig. 4. The bar chart depicts the
sum of the position in the ranking of each instantiation
considering all instances. The dotted line displays the minimal
value. Results show that variations in crossover and mutation
seems to have main impact on the final meta-heuristic
performance, while the initial solution, parent selection and
population selection only slightly influence the solution quality.

In addition to the evaluation of different configurations,
results are investigated regarding different metrics and resulting
implications of components on the search process. In this
section, the improvement over iterations, the solution similarity

1033

and the coverage of solution space is considered. For this
purpose, the best and the worse configuration are chosen and
compared against each other. Analysis has been performed on
all instances, yet for visualization purposes values are
exemplarily taken from experiments of instance K511141. Only
negligible deviation between instances has been observed. In
order to assess variability, minimum, average and maximum
values are calculated for each metric. Fig. 5 illustrates the results
for the fitness improvement metric. Two conclusions can be
obtained from the time series patterns. On the one hand, greater
improvement in the first iterations lead to better final fitness (for
the investigated number of iterations) even though results
converge. On the other hand, the improvement pattern is
characteristically for the specific configuration. Deviations
between different experiments of the same configuration are
small. Further investigation revealed that the patterns are
representative for the two different types of crossover. The one-
point period crossover leads to faster decrease in the fitness
value, while the submatrices crossover requires more iterations
for the same improvement. This metric emphasizes the
importance of the crossover component in meta-heuristic
design.

Fig. 4. Comparison of component influence.

Fig. 5. Improvement over Iterations for instance K511141.

The second metric analysis considers the solution similarity.
Fig. 6 presents the similarity value between the best solution and
the remaining population for each iteration. The higher the value
the more differs the population from the best solution.
Therefore, low solution similarity values indicate exploitation of
the search space. The mean development of the solution
similarity over iterations displays a similar pattern for both
configurations. On average, the best solution differs from the
remaining population by less than 10 %. Nonetheless, the
solution similarity is slightly higher for the worse configuration.
In particular, the deviation from the mean value is larger. The

higher solution similarity could indicate that the search is not
exploited around the best solution, thus leading to worse
performance. Given these results, a thorough investigation
around the search space of good individuals is recommendable.

Fig. 6. Solution Similarity for instance K511141.

The third metrics comprises the coverage of the solution
space. The coverage refers to the percentage of distinct solutions
contrasted to the number of generated solutions during the
search process. In order to explore the search space effectively,
high percentage is desirable. TABLE II. depicts an overview of
the mean values for this metric considering different iterations
(1500, 5000, 10000 and 15000) and four configurations (best
and worse configuration for each crossover variant). In general,
most solutions present novel solutions. As the likelihood to
generate novel solutions decreases during the search process, the
coverage value decreases as well. Besides that, the crossover
variant influences the generation of novel solutions. The
percentage of distinct solutions is higher for the one point
crossover during the first 500 iterations. Iterations 1000 to 1500
are probably more influenced by other components due to
deviant behavior within the crossover variants. This metric
infers that the selection of a crossover variant strongly
influences the first phase of the search process. These results are
in accordance with the first metric and thus strengthens the
statement regarding the importance of the crossover.

TABLE II. COVERAGE OF SOLUTION SPACE

Iterations
One Point Period

Crossover Submatrices Crossover

Best Worse Best Worse
1500 0.98164 0.98031 0.93778 0.93316
5000 0.97336 0.97114 0.93305 0.92624

10000 0.94768 0.91756 0.92585 0.91947
15000 0.90553 0.81692 0.91024 0.88400

B. Analysis of Supplementary Components
This analysis step focuses on the supplementary components

used by MGAFO. In order to reduce computation time, the
maximum window size for the fix-and-optimize component is
set to seven. Due to the deterministic nature of the fix and
optimize heuristic, results do not change when the procedure is
called with the same inputs. Thus, it is only executed if either
the best individual or the window size differs from the last
execution. For representing configurations of supplementary
components, the following abbreviations are used: fixed-and-
optimize heuristic (FaO), hierarchical structure (Struc), multiple

1034

populations (Multi) and the best core genetic algorithm
configuration (GA).

In contrast to the analysis of core components, from the
boxplot it is possible to conclude that the algorithms GA+FaO,
GA+Struc+FaO and GA+Struc+Multi+FaO outperform all
others. In Fig. 7 exemplarily the boxplots for instances K521131
and G521132 are shown. While other configurations present
higher dispersion and median, the three aforementioned
configurations have less dispersion and better solution quality.
The same is observed for the other problem instances.

Fig. 7. Boxplot of solution quality for different configurations of
supplementary components.

Among those three configurations, however, it is difficult to
distinguish which outperforms the others. For this reason, the
summed ranking for all configurations is computed and results
are presented in Fig. 8. Algorithms GA+FaO and
GA+Struc+FaO both present similar results for the problem
under investigation. Taking into consideration the boxplot and
the summed ranking, the following observations can be drawn:

� Hierarchical structure: when included into the core
GA the final solution quality is diminished and, most
of times, the dispersion is greater. Even worse results
are achieved when included together with the multi-
population. However, in combination with the fix and
optimize component, results are improved.

� Multi-Population: only slight improvements of the
fitness is observed for some instances when included
in the core GA. However, combined with the fix and
optimize heuristic, better overall results are achieved.

� Fix and optimize: This component seems to mainly
contribute to the fitness improvement. With respect to
the ranking and the boxplot, all configurations using
FaO present better solution qualities. As can be noted,
solutions are worse when multi population is used in
combination with fix and optimize.

A deeper investigation on the number of calls to the fix and
optimize heuristic enables a better understanding of the
algorithm success rate in finding better solutions. It reveals that
the success is directly proportional to the number of calls to this
component. Although the maximum number of iterations and
the convergence criteria (which is used for triggering the FaO
component) are the same for all configurations, each different
combination of components causes different convergence time.
The inclusion of the hierarchical structure favors early and a
higher number of calls to the fix-and-optimize heuristic because
solutions are only replaced in the population if the offspring is
better than the support parent, leading to a faster convergence.

Additionally, the use of multiple populations results in late and
reduced number of calls, since all populations need to converge
in order to call the FaO heuristic.

Fig. 8. Summed ranking of the supplementary components.

Fig. 9 depicts the aforementioned impact on the fitness
value of the hierarchical structure and the FaO component,
exemplarily shown for the problem instance K521142, for
which the highest improvement in solution quality is achieved
after including the FaO heuristic into the GA (i.e. 8%). The
metric improvement over iterations for the configurations with
and without the fix-and-optimize component overlaps each
other until the FaO is called and further improves the solution.
A faster improvement of solution quality is observed for
configurations that use hierarchical structure.

Fig. 9. Improvement over iterations for the instance K521142. Impact of
hierarchical structure and fix and optimize components.

Although the fix and optimize heuristic is a very good
performing component for escaping local optima, it requires
high computational time. Fig. 10 depicts the mean and standard
deviation of the total execution time for the different
configurations including the FaO component. The total
execution time includes the total time required for the FaO and
for all other GA operations, including other supplementary
components. The average execution time of the underlying GA
remains almost the same, with slight changes on the mean and
standard deviation depending on the inclusion of different
supplementary components. This means that the inclusion of
other components but the FaO do not imply additional time
consumption. In contrast, the FaO heuristic requires much
additional computation time, depending on the number of calls.

The computational cost of the FaO heuristic is further
analyzed in order to compare its efficacy and efficiency across
the distinct combinations of supplementary components. Fig. 11
and Fig. 12 show the share of the FaO component to the total
execution cost (GA+FaO and GA+Struct+Multi+FaO,
respectively) for each problem instance. The total computation
cost consumed by the FaO is composed of (i) cost of executions
that led to solution improvements and (ii) those that did not

5929.5
5969

9611.5
16675

22560
23427

25765
28003

0 5000 10000 15000 20000 25000 30000

GA+Struc+FaO
GA+FaO

GA+Struc+Multi+FaO
GA+Multi+FaO

GA+Multi
GA

GA+Struc
GA+Struc+Multi

Summed ranking

1035

improve solutions. In addition, the accumulated solution
improvement after all FaO executions is reported. Shown in the
figures, a substantial part of the FaO total execution time does
not result in solution improvements, particular in the case of
GA+FaO. Since there is no guarantee to find better values for
the setup variables within the window size, it is possible that the
FaO does not improve the candidate solution. Besides that, the
mathematical solver takes more time to find an optimal solution
when the window size increases. As Fig. 12 shows, the total cost
of the FaO heuristic decreases when multiple populations are
included. This is due to the reduced number of calls to the FaO
component. In addition, a greater portion of the total cost led to
improvement of the solution quality. Nevertheless, the
accumulated solution improvement is similar for both
configurations of components.

Fig. 10. Mean and standard deviation of the total execution time.

Fig. 11. Mean computational cost of the FaO heuristic in GA+FaO. Percentages
on the bars indicate the minimum and maximum values of accumulated solution
improvement.

Fig. 12. Mean computational cost of the FaO heuristic in
GA+Struc+Multi+FaO. Percentages on the bars indicate the minimum and
maximum values of accumulated solution improvement.

The analysis of the solution similarity to the best individual
indicates that the FaO heuristic collaborates for keeping the
diversity of the population, due to the generation of new and best
individuals. Fig. 13 exemplarily shows the solution similarity

for GA+Struc and for one population of GA+Struc+Multi and
their respective versions including FaO. Instances G522142 and
K511141 are respectively selected, as they show the highest
improvement in solution quality when the FaO heuristic is used
(9% and 8%, respectively). For the GA+Struc, a higher value of
solution similarity is observed in the interval from 9,000 to
27,000 iterations for the configuration that includes the FaO.
Although the best solution differs greatly from the entire
population within the mentioned interval, solution similarity
decreases afterwards, suggesting that candidate solutions are
exploiting the region around the best individual. For one of the
population of GA+Struc+Multi+FaO, a similar increase of
solution similarity is observed. However, at the end of the
execution the best individual still differs more from other
candidate solutions in relation to the version that does not use
the FaO heuristic. This suggests that candidate solutions are still
exploring regions which are further away from the best
individual.

Fig. 13. Solution similarity for the instances G522142 and K511141 of the best
individual for GA+Struc and GA+Struc+FaO, and for GA+Struc+Multi and
GA+Struc+Multi+FaO, respectively.

V. PROSPECTION OF GUIDELINES FOR COMPONENT SELECTION
The selection of components in MLCLSP requires deep

knowledge in meta-heuristic construction as well as in the
domain of lot sizing. In order to support practitioners in the
construction of meta-heuristic procedures in MLCLSP, a set of
guidelines from the analysis of components and metrics are
developed. The proposed guidelines depict initial results. In
order to validate and possibly generalize the guidelines further
experiments on different algorithms and settings are required.

A. Core Component Guidelines
The first guideline that can be deduced from the analysis of

core GA components covers the impact of components on the
algorithm performance. Results obtained by the rank analysis of
different configurations as well as the metrics improvement over
iterations and coverage of solution space emphasize the
following statement:

The selection of the crossover component and the mutation
component has major influence on the meta-heuristic
performance.

 As a consequence, a large part of the effort spent on
designing a meta-heuristic for the MLCLSP should be dedicated
on the instantiation of the crossover and mutation component. It
is recommendable to test several variants and select the most
promising combination. In the present work, results indicate that
the combination of the one-point product crossover and the
MGAFO mutation is a promising combination for the data under

Mean SD Mean SD Mean SD Mean SD

GA+FaO GA+Multi +FaO GA+Struc +FaO GA+Struc
+Multi+FaO

FaO 651.1 966.9 12.2 11.7 751.7 1459.0 175.0 366.2
GA 213.6 6.5 208.2 3.9 215.5 6.0 210.9 4.5

0.0
200.0
400.0
600.0
800.0

1000.0
1200.0
1400.0
1600.0

Total Execution Time (s)

GA FaO

5% 9%

0%
20%
40%
60%
80%

100%

GA+FaO - Improvement costs

Impr. cost Non-improv. cost Sol. Improv.

4% 9%

0%

20%

40%

60%

80%

GA+Struc+Multi+FaO - Improvement costs

Impr. cost Non-improv. cost Sol. Improv.

1036

investigation. Other components only have little influence on the
algorithm performance, and thus optimization portrays a minor
role.

The second guideline relates to the results from the solution
similarity metric and an investigation of the promising mutation
and crossover combination obtained during this analysis step
leading to the following statement:

A thourough exploitation of the search space around the best
solution enables the improvement of meta-heuristic
performance.

The instantiation of crossover and mutation should be
selected in a way that exploration and exploitation is covered
simultaneously. Besides exploiting the search space in the area
near to the best solution, exploration of different search spaces
is required to overcome local minima. A possible explanation of
why the MGAFO mutation and the one-point product crossover
performs best could be that crossover enables exploration by
combining different product set ups and mutation is responsible
for exploiting product set ups. Thus, an exploitation of the search
space around the best solutions is achieved by the mutation
component. The crossover component combines promising
product set ups. In general, however, a good combination of
mutation and crossover is difficult to acquire. It requires a lot of
knowledge and experience in the field of meta-heuristics and the
application domain. In order to generate a more detailed
guideline, further experiments on these components, their
interaction, dependencies and the problem domain is necessary.

B. Supplementary Component Guidelines
Based on the boxplots, all configurations including the FaO

heuristic present better final solution qualities. Besides that, the
summed ranking and the comparison of improvement over time
emphasizes this observation. While configurations without the
FaO component in general converge to local optima, the use of
this heuristic encourages further solution improvements.
Although this component was exclusively tested with GA, other
meta-heuristics which make use of the setup variables
representation might profit from the usage of the FaO heuristic
investigated here. Thus, the following statement can be deduced:

The fix and optimize component is a great heuristic for escaping
local optima and further improving candidate solutions.

The FaO favors diversity of high quality solutions by
introducing new and better candidate solutions into the
population. It gives the opportunity for the meta-heuristic to
escape from local optima. However, experiments revealed that
it is hard for the GA to further improve solutions found by the
heuristic, even though it is able to improve solutions towards the
best found so far. This means that after some iterations, the FaO
was mainly responsible for further solution improvements.

There are two possible reasons for that: (i) the underlying
GA is not exploiting well the region, or (ii) better solutions are
further away from the identified local optimum, thus requiring
an exploration of the solution space. In the case of GA, one
possibility to deal with this issue is by adapting the crossover
and mutation to perform fewer changes in the individual as the
execution approaches the end. For this reason, further
investigation regarding different variants and combinations of

those components, especially those that incorporates heuristics
to perform fine adjustment on individuals, can lead to
improvements of the solution quality.

Depending on the difficulty for solving the sub-problems,
the FaO can have high computation cost, but just a small
proportion results in solution improvements, as depicted in Fig.
11. Therefore, it is necessary to devise a proper criteria for
triggering this heuristic and for changing window sizes, since
this plays an important role for balancing the trade-off between
solution quality and execution time.

Based on the comparison of the improvement over iterations
between configurations with and without the hierarchical
structure component, it is possible to deduce the following
statement:

The use of the hierarchical structure component collaborates
for a faster convergence towards a local optimum.

The reason for a faster convergence refers mainly to how
individuals are replaced in the population. The hierarchy based
on the solution quality is mainly used for enabling an easy and
fast selection of at least one good solution. After applying the
crossover and mutation, the new candidate solution is only
included into the population if it is fitter than the worse parent.
This strategy restricts the inclusion of diverse solutions, leading
to a faster convergence. However, when used in combination
with the FaO heuristic and the convergence criteria, it allows
earlier and more frequent calls to the FaO. This leads to
successful improvement of the best solution in a reduced number
of iterations. The conclusion is supported by the analysis of
improvement over iterations, boxplots, summed ranking and the
number of calls to FaO when the hierarchical structure is used.
Thus, the following statement can be deduced:

The joint use of the hierarchical structure component and the
fix and optimize heuristic leads to more successful improvement
of the best solution in a reduced number of iterations.

The multiple population component enables multiple
independent executions of the meta-heuristic, increasing the
chance of generating diverse solutions, due to the stochastic
nature of the search procedure. Thus, it collaborates to a better
exploration of the search space. With regard to the combination
of the multiple population component with the hierarchical
structure and the FaO, good solutions are found requiring less
computation time. On the one hand, solutions are worse in
comparison to those obtained by GA+FaO and GA+Struc+FaO,
although difference is small as can be seen in the boxplots. On
the other hand, the total time required for the
GA+Struc+Multi+FaO to find good solutions is on average 45%
(40%) of the total execution time of GA+FaO (GA+Struc+FaO).
Thus, the following statement can be deduced:

The combination of Struc+Multi+FaO enables a better
balancing between solution quality and execution time.

VI. CONCLUSION

The present paper depicts a first attempt towards a thorough
component analysis based procedure that enables the generation
of guidelines for an efficient and effective design of meta-
heuristics. This is necessary with regard to current supply chain

1037

requirements. Due to increasing speed of changes in the supply
chain, fast adaptations of the production plans are crucial. The
put forward guideline is thought of supporting the practitioner in
developing a good meta-heuristic. This is done initially for the
genetic algorithm. The approach was validated on the multi-
level capacitated lot sizing problem (for class B+ of Stadtler’s
dataset) using a genetic algorithm. A set of guidelines
concerning the instantiation and inclusion of components have
been identified for the usage of genetic algorithm in MLCLSP.
Even though the guidelines could be further improved, they
portray a starting point for further research. Nonetheless, with
this work a proof of concepts is attempted. Thus, the procedure
and the resulting guidelines do not aim a concluded work, but
rather present initial ideas for facilitating meta-heuristic design.
To the best of our knowledge, no such support is provided to
problems with similar characteristics, hence the deemed value
of this work.

Future research will target the advancement of the presented
component analysis based procedure. In order to adjust and
adapt the procedure, further testing and validation of the
approach is required. On the other hand, the enhancement and
extension of guidelines for production planning problems need
to be addressed. An elaborated catalog of guidelines for different
planning problems is intended. By analyzing additional core
component instantiations, further supplementary components,
different meta-heuristics as well as additional planning problems
more sophisticated guidelines can be acquired.

REFERENCES
[1] C.C. Bozarth, D. Warsing, B.B. Flynn and E.J. Flynn. “The impact of

supply chain complexity on manufacturing plant performance”, in Journal
of Operations Management, vol. 27, n.1, 2009, pp. 78-93.

[2] N. Costantino, M. Dotoli, M. Falagario, M.P. Fanti and A.M. Mangini.
“A model for supply management of agile manufacturing supply chains”,
in Advances in Optimization and Design of Supply Chains, vol. 135, n. 1,
2012, pp. 451-457.

[3] L. Buschkühl, et al. “Dynamic capacitated lot-sizing problems: a
classification and review of solution approaches”, OR Spectrum, vol. 32,
n. 2, 2010, pp. 231-261.

[4] R. Jans and Z. Degraeve. “Meta-heuristics for dynamic lot sizing: A
review and comparison of solution approaches”, European Journal of
Operational Research, vol. 177, n. 3, 2007, pp. 1855-1875.

[5] M. Salomon, R. Kuik, and L. N. Van Wassenhove. “Statistical search
methods for lotsizing problems”, Annals of Operations Research, vol. 41,
n. 4, 1993, pp. 453-468.

[6] K. Sörensen. “Metaheuristics—the metaphor exposed”, International
Transactions in Operational Research, vol. 22, n. 1, 2015, pp. 3-18.

[7] Grefenstette, J.J. “Optimization of Control Parameters for Genetic
Algorithms”, IEEE Trans. Systems, Man, and Cybernetics, vol. 16, n. 1,
1986, pp. 122-128.

[8] P. W. Poon and J. N. Carter. “Genetic algorithm crossover operators for
ordering applications”, Computers & Operations Research, vol. 22, n. 1,
1995, pp. 135-147.

[9] A. Hertz and M. Widmer. “Guidelines for the use of meta-heuristics in
combinatorial optimization”, European Journal of Operational Research,
v. 151, 2003, pp. 247–252.

[10] B. Xing and W.-J. Gao. “Innovative Computational Intelligence: A Rough
Guide to 134 Clever Algorithms”, Springer: Switzerland, 2014.

[11] J.-P. Watson, A. E. Howe, and L. D. Whitley. “Deconstructing Nowicki
and Smutnicki's i-TSAB tabu search algorithm for the job-shop
scheduling problem”, Computers & Operations Research, vol. 33, n. 9,
2006, pp. 2623-2644.

[12] A. Scheibenpflug, S. Wagner, E. Pitzer, B. Burlacu and M. Affenzeller.
“On the Analysis, Classification and Prediction of Metaheuristic
Algorithm Behaivor for Combinatorial Optimization Problems”,
Proceedings of the European Modeling and Simulation Symposium,
2012, pp. 368-372.

[13] H. Chen and C. Chu. “A Lagrangian relaxation approach for supply chain
planning with order/setup costs and capacity constraints”, Journal of
Systems Science and Systems Engineering, vol. 12, n. 1, 2003, pp. 98-
110.

[14] Q. Zhao, C. Xie, and Y. Xiao. “A variable neighborhood decomposition
search algorithm for multilevel capacitated lot-sizing problems”,
Electronic Notes in Discrete Mathematics, vol. 39, 2012, pp. 129-135.

[15] S. Helber. “Kapazitätsorientierte Losgrößenplanung in PPS-Systemen”.
M&P, Verlag für Wiss. u. Forschung, 1994.

[16] R. Kuik, et al. “Linear programming, simulated annealing and tabu search
heuristics for lotsizing in bottleneck assembly systems”, IIE Transactions,
vol. 25, n. 1, 1993, pp. 62-72.

[17] R. Berretta, P. M. França, and V. A. Armentano. “Metaheuristic
approaches for the multilevel resource-constrained lot-sizing problem
with setup and lead times”, Asia-Pacific Journal of Operational Research,
vol. 22, n. 2, 2005, pp. 261-286.

[18] G. Barbaroso�lu and L. Özdamar. “Analysis of solution space-dependent
performance of simulated annealing: the case of the multi-level
capacitated lot sizing problem”, Computers & Operations Research, vol.
27, n. 9, 2000, pp. 895-903.

[19] L. Özdamar and G. Barbarosoglu. “An integrated Lagrangean relaxation-
simulated annealing approach to the multi-level multi-item capacitated lot
sizing problem”, International Journal of production economics, vol. 68,
n. 3, 2000, pp. 319-331.

[20] J. Xie and J. Dong. “Heuristic genetic algorithms for general capacitated
lot-sizing problems”, Computers & Mathematics with applications, vol.
44, n. 1, 2002, pp. 263-276.

[21] C. F. M. Toledo, R. R. R. de Oliveira, and P. M. França. “A hybrid
heuristic approach to solve the multi level capacitated lot sizing problem”
Evolutionary Computation (CEC), 2011 IEEE Congress on, 2011.

[22] C. F. M. Toledo, R. R. R. de Oliveira, and P. M. França. “A hybrid multi-
population genetic algorithm applied to solve the multi-level capacitated
lot sizing problem with backlogging”, Computers & Operations Research,
v.40, n. 4, 2013, pp. 910-919.

[23] R. Berretta and L. F. Rodrigues. “A memetic algorithm for a multistage
capacitated lot-sizing problem”, International Journal of Production
Economics, vol. 87, n. 1, 2004, pp. 67-81.

[24] R. Pitakaso, et al. “Combining population-based and exact methods for
multi-level capacitated lot-sizing problems”, International Journal of
Production Research, vol. 44, n. 22, 2006, pp. 4755-4771.

[25] C. Almeder. “A hybrid optimization approach for multi-level capacitated
lot-sizing problems”, European Journal of Operational Research, vol. 200,
n. 2, 2010, pp. 599-606.

[26] C. Blum, and A. Roli. “Metaheuristics in combinatorial optimization:
Overview and conceptual comparison”, ACM Computing Surveys
(CSUR), vol. 35, n. 3, 2003, pp. 268-308.

[27] H. Stadtler and C. Sürie. “Description of MLCLSP test instances”,
Technische Universität Darmstadt, Tech. Rep (2000).

1038

