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Abstract—We investigate a novel adaptive system based on
evolution, individual learning, and social learning in a swarm of
physical Thymio II robots. The system is based on distinguishing
inheritable and learnable features in the robots and defining
appropriate operators for both categories. In this study we
choose to make the sensory layout of the robots inheritable,
thus evolvable, and the robot controllers learnable. We run tests
with a basic system that employs only evolution and individual
learning and compare this with an extended system where robots
can disseminate their learned controllers. Results show that
social learning increases the learning speed and leads to better
controllers.

I. INTRODUCTION

The field of Evolutionary Robotics (ER) is concerned with

designing and optimizing robots by using evolutionary com-

puting techniques [1], [2], [3], [4], [5]. In principle, evolution-

ary algorithms can be applied to develop the robot controller,

the robot morphology, or both, but the huge majority of

work in ER is concerned with evolving controllers only. The

usual approach is based on simulations and follows the off-

line approach. That is, the evolutionary algorithm (EA) is

employed during the design stage and the evolved solution

(i.e., the fittest controller found by the EA) does not change

after deployment during the operational stage of the robot.

This approach has two drawbacks:

• The reality gap, that is, the effect that solutions developed

in simulations do not work well on the real hardware [6].

• The lack of adaptivity, that is, the fact the controller can

not adjust to changing or unforeseen circumstances.

In this paper we go beyond the usual ER approach in several

aspects. First, we run evolution on real hardware, in a group of

Thymio II robots [7], thus eliminating the reality gap. Second,

we follow the on-line approach, which means that evolution

takes place during the operational stage of the robots adapting

their features on the fly. Third, we are not only evolving

controllers, but morphological features as well.

The key innovation behind the system we investigate here

is the ‘adaptation engine’ that integrates evolution, individual

learning, and social learning [8], [9]. The distinction between

evolution on the one hand and lifetime learning on the other

hand is based on distinguishing two types of adaptable robot

features: inheritable features (genome) and learnable features

(memome). Inheritable features do not change during the

lifetime of an individual, only from generation to generation

by the evolutionary operators mutation and crossover. In

contrast, learnable features do change during lifetime by the

learning operators. Furthermore we distinguish two types

of lifetime learning. Individual learning takes place within a

single individual that changes some of its learnable features

based on its own experience. Social learning requires more

individuals as it amounts to changing one’s learnable features

based on somebody else’s experience.

The main goal of this paper is to investigate an integrated

three-tier adaptation engine in a swarm of physical robots. To

this end we choose to make the sensory layout of the robots

inheritable and the robot controllers learnable. This means

that genomes encode morphological properties; robots with

a different genome have a different set of active sensors. The

task of lifetime learning is to obtain appropriate controllers

that exploit the available sensory information and generate

adequate behavior in the given environment. Here we use

neural networks as controllers and an obstacle avoidance task.

Our specific research questions are related to the effects of

social learning under different conditions. In a swarm where

each robot has the same sensory layout, we expect that social

learning increases the speed of learning and possibly results

in better controllers. When the robots have different sensory

layouts this is not so obvious because the learned controllers

are, in principle, specific to the available sensory information.

Our experiments will seek answers to the following questions:

1) What is the effect of social learning on the quality and

speed of learning if the robots in the swarm have identical

sensory layout (no evolution)?

2) What is the effect of social learning on the quality and

speed of learning in a swarm where the sensory layout is

evolving?

3) What is the effect of social learning on the evolved

sensory layouts?

II. RELATED WORK

Forced by space limitations we restrict our review of related

work to studies regarding on-line evolution in swarms of

physical robots. The pioneering works in this area are those

of Watson et al. and Simoes et al. published in the same

year. Watson et al. introduced “embodied evolution” in a

swarm of six physical robots [10]. The robots evolved their

controllers for a phototaxis task in an on-line fashion by

broadcasting values from their genome at a rate proportional to

their fitness. Simoes et al. evolved both morphological features
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and the controllers in the same genome for collision-free

behavior [11]. The main difference with the work presented

in [10] is the guarantee that the fittest robot will survive to

the next generation, implemented in a centralised way. Since

then only three more papers were published showing on-line

evolution in a group of physical robots. The author of [12]

wanted to speed up embodied evolution in a population of

two robots, by adding the fitness of the controller to the

broadcasted genome. They further distinguish their work by

having multiple tasks: phototaxis, obstacle avoidance, and

robot seeking. The essential point in [13] is that that the

progress of evolution directly depends on the number of robots

and the frequency of encounters. That is why they propose and

island model for an obstacle avoidance task for a swarm of six

robots. Studies [12] and [13] show an increasing fitness value

for the learned task over time where the last one also shows

the positive impact of communication between the islands.

Last but not least, a recent paper investigates a very different

evolutionary system that does not have an objective function

designed by the user. The evolutionary algorithm is driven by

environmental selection, robots with inferior controllers had

fewer offspring than those with a good strategy [14].

All these papers investigate a single-tier adaptive system,

where evolution is the only adaptive force. Our work presented

here is different because we have a three-tier adaptive system

with evolution in the genome space and individual and social

learning in the memome space. This is not a new concept in

simulation [8], [15], [16], [17], [18] but to our best knowledge

it has not been implemented in real hardware before.

III. SYSTEM DESCRIPTION

A. Robot

The Thymio II robot includes 7 Infra-Red (IR) proximity

sensors able detect to obstacles of which are 5 in the front

and two in the back (values between 0 and around 4500,

where a higher value corresponds to a near obstacle). The

robot can move through two differential wheels, meaning that

two different speeds (range between -500 and 500) can

be set for each wheel. For the purpose of our research, we

extend the standard setup with a more powerful logic board,

wireless communication, and a high capacity battery. We use

a Raspberry Pi B+ (credit card-sized single-board computer

developed in the UK by the Raspberry Pi Foundation) that

interacts with the Thymio sensors and actuators. A WiFi

dongle (Edimax 150Mbps Wireless 802.11b/g/n nano USB

WiFi Adapter model EW-7811Un) attached to the Raspberry

Pi ensures communication between the robots. The power

is given by a Verbatim Dual USB 12000 mAh battery that

allows for a total experimental time of 10 hours. The extended

Thymio is shown in Figure 1.

B. Environment

The robots operate in an arena of two meters by two and

a half meters with inner and outer walls that act as obstacles

to avoid, cf. Figure 2. Next to this arena a WiFi router is

placed, facilitating the exchange of wireless TCP messages

Figure 1: Thymio II robot, developed by The École Polytech-

nique Fédérale de Lausanne (EPFL) and École Cantonal d’Arts

de Lausanne (ÉCAL), with Raspberry Pi B+, WiFi dongle, and

external battery.

Figure 2: The environment used for the experiments.

between the robots. When a Raspberry Pi is powered on, the

algorithm starts and listens for a TCP command in order to

begin the experiment. This command is sent from a computer

to all the robots at the same time whereafter the computer

plays no active role in the experiment, it is merely collecting

the data.

C. Task

The task to learn is obstacle avoidance. The obstacles in

the arena are represented by the inner and outer walls and

the robots have to learn how avoid them and each other. The

robots’ performance over an evaluation period of T time steps

measured by the usual formula:

f =

T∑

t=0

strans × (1− srot)× (1− vsens),
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where:

• strans is the translational speed (not normalized), calcu-

lated as the sum of the speeds assigned to the left and

right motor;

• srot is the rotational speed, calculated as the absolute

difference between the speed values assigned to the two

motors and normalized between 0 and 1;

• vsens is the value of the proximity sensor closest to an

obstacle normalized between 0 and 1.

Using vsens in f may suggest that only the active sensors

in an individual’s genome are included in this part. This is not

the case because it can result in undesired behaviors getting

high fitness values. Suppose that all front sensors are excluded

from the genome and a robot is driving with both wheels at

full speed against a wall, the fitness function will result in the

highest possible value. In this case strans has a value of 500,

srot of 0 and vsens only includes the back sensors that don’t

see an obstacle and therefore having a value of 0.

D. Inheritable robot features

The inheritable part of the robot makeup –represented by

the genome– does not change by learning. In this study we

define the genome as the active proximity sensors of a robot.

An active sensor means that the robot can use the value of this

proximity sensor. If a sensor is not active then its values are

not available to the controller. The Thymio II robot is equipped

with 7 IR proximity sensors resulting in a genome array g of

length 7, where gi = 1 when sensor i is active and gi = 0 if

it is not active (i ∈ {1, ..., 7}).
E. Learnable robot features

The controller of an individual is a feed forward neural

network (NN) with the input nodes corresponding to the active

sensors of the robot, one bias node, and two output nodes that

represent the motor speed values. Each input node and the

bias node is directly connected to each output node, resulting

in a neural network with a maximum of 16 weights. This

is implemented as an array where the weights 1 through 8

correspond to the left motor (weight 8 belongs to the bias

node) and weights 9 through 16 to the right motor (weight

16 belongs to the bias node). The motor speeds are calculated

every timestep the following way:

mleft = mmax × tanh
∑

i∈{1,...,7} where gi=1,i=8

wi × si,

and

mright = mmax × tanh
∑

i∈{1,...,7} where gi=1,i=8

wi+8 × si,

where:

• mmax is the maximum speed of the motor;

• wj is weight j of the neural network;

• si is the value of the proximity sensor i normalized

between -1 and 1;

• tanh is a hyperbolic tangent activation function.

Figure 3: Relation between genomes and memomes. A genome

that specifies the active sensors also defines the structure of

the NN controller. The memome then consists of all weights

for the given NN.

In this system we postulate that the weights of the NN

controller are the learnable robot features. Hence, the memome

is a vector of maximal 16 values. Note that the structure of the

NN is an inheritable property as it is fully determined by the

actual set of active sensors. The relation between the genome

and the memome is shown in Figure 3.

F. Adaptive mechanisms

To prevent confusion in the following we need to define

a specific terminology for robotic systems with evolution,

learning, and social learning as studied here. We use the

term robot to designate the physical device, in our case a

Thymio II. An individual is a unit of selection from the

evolutionary perspective. In the current system an individual

is a given sensory layout of the robots we use. Individuals

are represented by genomes as explained in Section III-D.

Consequently, the same physical robot will be a different

individual after each evolutionary step that creates a new

genome for it. A given robot and a genome determine the

appropriate controllers. In this paper the structure of the NN

controller is specified by the genome, whereas the weights are

not. These weights form the learnable features that are changed

by applying the learning operators. Hence, the same robot and

the same individual will have a new controller (defined by the

newly learned weights) after every learning step. This is shown

in Figure 4.

The general idea behind the three-fold adaptation mecha-

nism is as follows. Each individual has a maximum number of

epochs. We define one epoch of an individual by one controller

evaluation as explained in III-C. After a controller evaluation

we make a choice between performing a learning step (individ-

ual learning or social learning) or reevaluation. Reevaluation

is necessary because of the noisy fitness function [19]. The

fitness value obtained by reevaluation is used to create a new

fitness value for the current controller in combination with the

old one with a 20-80 weight distribution (20% for the new,

80% for the old fitness value). If we choose for performing a
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Figure 4: A physical robot is used by multiple individuals

sequentially. For the same individual, different controllers are

tested. When the maximum number of epochs are reached, the

individual is replaced by its offspring and the system starts to

learn a new type of controller that fits the new sensory layout.

We use 6 physical robots and N = 8 generations and k = 100
controller evaluations in the evolutionary experiments.

learning step, then with a 70% probability individual learning

is performed and with 30% we apply a social learning step.

The lifetime of the individual is defined as the maximum

number of epochs. When this maximum is reached a new

genome, hence a new individual, is created by evolutionary

operators.

Evolution Genomes are broadcasted after every memome

evaluation together with their fitness value.1 Individuals collect

these genomes together with the corresponding fitness value

in their genome storage with limited capacity. Only unique

genomes are stored here. When the genome is already in stor-

age, the fitness value will be replaced by the last obtained fit-

ness value. When an individual expires (reached the maximum

number of epochs) it picks a new genome through tournament

selection from the genome storage. Uniform crossover and

mutation are performed on the genome of the tournament

winner and the current genome of the robot. When a new

genome is established, the genome storage is cleaned and

a new memome is created where the weights of the neural

network are uniform random initialized.

Individual Learning The method for individual learning can

be any algorithm that can optimize neural networks efficiently.

In our system, it is a (1+1) Evolutionary Strategy based on

[20]. The fitness function for this ES is the f defined in

section III-C. The algorithm works on the weights of the

neural network that are mutated with a Gaussian noise N(0, σ)
whose σ value is doubled when the mutated memome is

not better than the current memome. Before a memome is

evaluated a recovery period is introduced. During this period,

the individual can move, but the fitness is not being measured,

so that the individual is able to recover from a difficult starting

position. When a altered memome has a higher fitness than

the current, the weights of the neural network are replaced

resulting in a new current memome.

Social Learning Memomes are broadcasted after every

evaluation, provided that a minimum fitness threshold is

exceeded. We have implemented a no, medium and a high
value for this, in particular, 0%, 30% or 75% of the theoretical

1Because of using WiFi here all robots will receive this broadcast. Using
Bluetooth and a large arena recipients would be limited to those robots that
are within communication range.

Figure 5: Overview of the three-fold adaptive engine. After

every controller evaluation, genomes and memomes are broad-

casted and stored in the corresponding storage locations. New

memomes are created through social learning and individual

learning. When the individual/genome reaches the maximum

number of controller evaluations (epochs), a new genome is

created using the current genome and a genome selected from

the storage.

maximum of the fitness function2. The place where memomes

from other robots are collected is called the memome storage.

A memome is taken from the storage in a Last In First Out
(LIFO) order and combined with the current robots memome

to create an altered memome. To this end, the weights of

the current memome are copied into the altered memome.

Thereafter the altered weights, now equal to the current

weights, are overridden by those of the collected memome if

these weights are applicable to the current genome (i.e. to the

corresponding sensory layout). After evaluation of the altered

memome, it is either discarded when the fitness is lower

than the current memome or promoted to the current memome.

This system is illustrated in Figure 5 that shows the

genomes, the memomes, the evolutionary operators and learn-

ing operators with respect to one robot.

2The maximum is calculated by assuming a robot moving in a perfectly
straight line with no obstacles in sight for the full evaluation period. Let
us note that the practically obtainable fitness values are around 90% of this
maximum.
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IV. EXPERIMENTAL SETUP

We use two different setups3 for answering the research

questions listed in the Introduction:

1) The first setup is without evolution where six robots4 with

all sensors active undergo a lifetime learning process for

a time of 200 epochs.

2) The second setup is an evolutionary experiment of eight

generations where the six individuals have 100 epochs

before being replaced by an offspring.

The learning only experiment takes one hour and the

evolutionary experiment takes four hours. Although the

external battery can ensure a longer experiment time, the

robot is not suited for long experiments as the controller

board gets overheated and leads to breaking robots5

When an experiment is completed, the robots start at the

position they stopped during the previous experiment, in

order to increase variability between the runs and to exclude

human bias for the starting position of the robots. Human

intervention has been proven necessary when (1) a robot gets

stuck in the smallest part of the arena (2) the robot’s wires

get stuck into each other and (3) when the lego component

falls off.

For each setup, we compare individual learning only

and individual and social learning together. Furthermore,

we vary the threshold value that regulates the quality

pressure in the social learning mechanism; we experiment

with three variants: no threshold, medium threshold or a

high threshold. For every setup and threshold value, we do

10 repetitions with different random seeds. The list of all

relevant system parameters and the values used is given below.

System parameters
Max. evaluations 200,800
Maximum number of evaluations in a run.

Max. lifetime 100,200
Maximum number of controller evaluations

(epochs).

Evaluation duration 10.25
The duration of one evaluation measured in

seconds (recovery time of 1.5 sec and actual

evaluation of 8.75 sec).

Reevaluation rate 0.2
Chance that the current memome is reevalu-

ated.

Social learning rate 0.3
Chance that an altered memome is created by

social learning.

3The code for implementation is available on https://github.com/ci-group/
Thymio swarm.

4We choose this number because we did not have more robots at the time
and we needed extra ones in case they broke.

5During the experiments several robots broke. These results will be ex-
cluded from the graphs unless mentioned otherwise.

Evolution
Inactive chance 0.3
Chance for each sensor to be inactive initial-

ization.

Tournament size 2
Size of the tournament that is held among the

collected genomes.

Mutation rate 0.05
Change to flip a bit in a genome.

Genome storage size 5
Maximum number of uniquely collected

genomes.

Learning
Weight range 4
Value of NN weights are between [-4, 4].

Sigma initial 1
Initial sigma value for mutating weights.

Sigma maximum 4
Maximum sigma value.

Sigma minimum 0.01
Minimal sigma value.

Memome storage size 20
Maximum number of memomes to store.

Fitness
Reevaluation weight 0.8
Weight of current memome fitness in reeval-

uation.

Maximum fitness 105000
Theoretical maximum fitness value.

Memome broadcast threshold 0,30,75%
Percentage of maximum fitness to exceed

before sending memome.

V. EXPERIMENTAL RESULTS

The experimental data for the first research question was

collected under the first setup without evolution described in

Section IV . Figure 6 shows the results. From the increase in

fitness values6 we can conclude that the individuals are able

to learn the task. Without social learning, individuals reach an

average of around 65% of the maximum possible fitness value

and with social learning this percentage is 75-80%.

Figure 7 shows a re-plot of the data including 90% con-

fidence intervals for individual learning alone and social

learning with a threshold of 75%. We see non-overlapping

confidence intervals, meaning that the impact of social learning

is significant with the P value much less than 0.05 [21].

Similar results are obtained when comparing individual

learning alone and social learning with no threshold. This is

good news, indicating that the social learning method works

even in cases where there is not enough information about

optimal fitness values to establish a reasonable threshold.

6The fitness measure is the same in experiments without evolution.
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Figure 6: Lifetime learning without evolution in a group of

6 robots with identical sensory layouts. Time is measured by

the number of evaluations (x-axis), fitness by the formula in

Section III (y-axis) divided by the maximum fitness.

Figure 7: Lifetime learning without evolution in a group of 6

robots with identical sensory layouts. Curves show the same

data as in Figure 6 for two of the four methods: individual

learning alone and social learning with a threshold of 75%.

The 90% confidence intervals are included over 10 repetitions

using a t-distribution with 9 degrees of freedom.

To answer the second research question we conducted the

evolutionary experiments under the second setup described

in Section IV. Figure 8 shows the outcomes for four cases:

evolution and individual learning without social learning and

evolution and individual learning combined with the three

variants of the social learning method. These plots clearly

show that social learning improves performance even if the

sensory layouts, hence the number of input nodes in the NN

controllers, vary over the members of the population. This

result is consistent with the ones obtained in simulations using

swarms of e-puck robots [9].

To get a better picture showing the impact of social learning

we re-plot some of the data from Figure 8. In Figure 9 we

exhibit the fitness values at the end of every generation for

two algorithm variants: the one with evolution and individual

learning alone and the one with evolution and individual

learning with social learning using the 75% threshold. These

graphs confirm the conclusions based on Figure 8.

The answer to the third research question can be obtained

from Figure 10. The top row shows the total number of active

sensors at the end of each generation. These plots show that

total number of active sensors decreases over time for all

algorithm variants. This matches our intuition that expects that

the ”useless” sensors will be unlearned over time.

The second row in Figure 10 shows the level of agreement
between the individuals of a given population. The level of

agreement is the total number of sensors that have the same

status (active or inactive) in all individuals. For example,

when the level of agreement in a certain generation is 7 this

means that for all individuals the sensory layout is identical,

regardless of which sensors are active or inactive.

The level of agreement can give information about the

consensus regarding the best genome in the population, i.e.,

in the group of six Thymio robots. The faster they have a

consensus, the more similar the genome and thus the neural

network structure. A similar neural network structure results

in more valuable information in the social learning step.

The second row of graphs in Figure 10 shows7 that the level

of agreement is growing more rapidly with social learning

than with individual learning alone. Oddly enough, social

learning with the 75% threshold value breaks this pattern,

and at this moment we have no explanation for this. For the

other threshold values, a significant increase can be obtained,

at least for the first six generations. This means that social

learning does influence evolution in the genome space. This is

explainable when we think of the role of social learning. Social

learning gives individuals the option to explore a different

behavior space from the individual hill climber. This results in

more information about the capabilities of a certain genome.

Because the new genome is picked through a tournament

and therefore based on these capabilities, evolution in the

genome space will converge quicker to the best genomes in

the population.

Convergence of the genome has the advantage of a more

similar memome structure obtained through social learning.

This leads to more valuable information in the case of a

high threshold value and, therefore, higher fitness values.

For this reason, we hoped to see an increase in the fitness

values obtained during the generations in Figure 9. This is

not the case, but we can see that when the level of agreement

is decreasing for the high threshold, the fitness values are

decreasing as well.

7Excluding data when a robot broke produces similar results. For the
consistency in the confidence interval sizes we decided to include all runs.
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Figure 8: Evolution, individual learning, and social learning in a group of 6 robots. Time is measured by the number of

evaluations (x-axis), fitness by the formula in Section III (y-axis) divided by the maximum fitness. After 100 evaluations, an

evolutionary step takes place resulting in new individuals.

Figure 9: Average population fitness at the end of a generation.

For social learning, the high threshold of 75% is used. The

90% confidence intervals are included over 10 repetitions

using a t-distribution with 9 degrees of freedom

This level of agreement seems to decrease because of the fast

consensus on the genome layout and the mutation probability

of 5%. It would be interesting to decrease the mutation

probability according to the level of agreement to see whether

the level of agreement stays higher and the fitness value too.

VI. CONCLUSIONS AND FURTHER WORK

In this paper, we presented and investigated a three-fold

adaptive mechanism based on evolution, individual, and social

learning to implement on the fly adaptation in a swarm

of physical Thymio II robots. The conceptual framework is

generic, based on separating inheritable controller features

(genome) from the learnable controller features (memome)

and specifying adequate evolutionary and learning operators

for the adaptive processes.

A special feature in our implementation is that the genome

encodes morphological properties of the robots, albeit a simple

version, defining the set of active sensors. Hereby the genome

(the inheritable material) partly determines the memome (the

learnable material) that corresponds to the weights of the NN

that controls the robot.

The experiments show a significant benefit of social learn-

ing: it makes the population learn faster and the quality of

learned controllers higher compared to using only individual

learning. This effect is demonstrated under two different

setups: for robots with identical genomes and for robots with

evolving genomes. Furthermore, we have seen an indication

that social learning has a guiding effect on the genome evolu-

tion by showing a significant effect in the level of agreement

in the population, i.e. the number of sensors that have the

same state for all individuals. For this reason, we think that

social learning, combined with individual learning, results in

better exploration of the memome possibilities. The memome

fitness, that now better represents the memome quality, results

in increasing selection pressure on the best genomes.

Due to restrictions on the total time for executing an ex-

periment (overheating) only eight generations are investigated.

Longer runs may be possible by pausing experiments regularly

to cool down the robots where the robots operate in an aircon-

ditioned environment. There are still many interesting ques-

tions to investigate including (1) variable lifetimes, resulting

in overlapping generations where the younger individuals can

learn from the older ones (2) increasing the task difficulty, or

having multiple tasks and (3) changing the genome/memome

setup to explore the generality of the results.
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Figure 10: Top row: total number of active sensors over time including 90% confidence interval using a t-distribution with 59

degrees of freedom and a least-squares regression fit. These results are conducted over 60 observations. Second row: level of

agreement, number of sensors all active or all deactivate in a generation, over time. These results are conducted over 10 runs

including 90% a confidence interval using a t-distribution with 9 degrees of freedom and a least-squares regression fit.
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