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Abstract—Current trends in evolutionary robotics (ER) in-
volve training a neuro-controller using one of the various popu-
lation based algorithms. The most popular technique is to learn
the optimal weights for the neural network. There is only a limited
research into techniques that can be used to fully encode a neural
network (NN) and therefore evolve the architecture, weights and
thresholds as well as learning rates. The research presented in this
paper investigates how the chromosomes of the gene expression
programming (GEP) algorithm can be used to evolve robotic
neural controllers. The designed neuro-controllers are utilised in
a robotic wall following problem. The ensuing results show that
the GEP neural network (GEPNN) is a promising tool for use in
evolutionary robotics.

I. INTRODUCTION

The state of the art in evolutionary robotics (ER) involve
the evolution of a full neural network or parts of a neural
network using an evolutionary algorithm. This study is referred
to as neuro-evolution or evolutionary neural networks (ENNs)
[39]. The use of artificial neural networks(ANNs) in tandem
with evolutionary algorithms (EAs) is normally justified by the
following: ANNs are able to relate the input to the required
outputs; in that case they can be used in predictions using
historical data. They have also shown to be able to generalize
between samples, in the way humans do [27], they also show
‘graceful degradation’ which means that removing one or more
units results in reduced performance, not complete failure.
They have also shown to be tolerant to noise in the data.

EAs are used to either evolve the architecture of the ANN,
or to evolve weights, learning parameters or both. EAs are
very suitable in learning the correct weights since they deal
with a population of networks and no detailed specification
of the network response is required [27], [38], [39]. When
using EA for weights and learning parameters, the weights
are directly encoded to the genotype either as a string of real
values or string of binary values [27], [38], [39]. The main aim
of evolving ANN weights is to find near optimal weights that
can be used with a fixed ANN architecture to solve a given
problem. In robotic neuro-evolution, genetic algorithms (GAs)
have been used extensively to evolve suitable weights. Various
work using GA to evolve weights include [9] [25] [23], [24]
[37] [33].

The architecture of an ANN is made up by the weight
connections and the transfer functions of each node in the

network. Thus, a good network architecture is crucial to the
success of solving a problem [39]. A key issue in evolving
neural network architectures is to make a decision on how
the architecture shall be encoded into an EA chromosome.
Some work where the ANN architectures have been evolved
for ER problems include [3], [2]. Other examples where neural
network architectures have been evolved include [4], [5], [12],
[13], [16], [27], [34], [35].

The evolution of connection weights and network architec-
tures deal with the components of the ANN. The evolution of
the learning rate or weight updating rule on the other hand,
has to deal with the training of the neural network and hence
to generate the dynamic behaviour displayed by the ANN
[39]. EAs are suited to evolve learning rules or the learning
parameters as they can discover unique parameters that lead
to robust adaptability of ANN [31]. Examples of the evolution
of learning rates in the ER domain can be found in [11], [30]
[10], [36]. A comprehensive review can be found in [39].

The capability of the Gene Expression Programming (GEP)
algorithm to evolve a neural network’s architecture, weights
and thresholds for such problems as XOR and 6-multiplexer
problem has been investigated in [7]. However, whereas GEP
algorithm has been used in ER domain, its capability to
evolve robotic neural controllers has not been investigated.
Consequently, the main objective of the work reported in this
paper is to investigate the capabilities of GEP to evolve robotic
neuro-controllers. The evolved controllers are used in a wall
following robotic problem. The mechanism is referred to as
GEP Neural Networks (GEPNN). The obtained results are
compared to those of a multiple output GEP algorithm.

The rest of the paper is structured as follows: an introduc-
tion of GEP and multiple gene GEP is presented in section
II. A description of how GEP can be used to evolve neural
networks is presented in Section III. The experiment set up
including the robot environments and algorithms implementa-
tions is presented in Section IV. In Section V, the results of the
experiments are presented and a discussion follows. Section VI
provides a conclusion for the paper.

II. GENE EXPRESSION PROGRAMMING

Gene Expression Programming (GEP) is a population
based evolutionary algorithm similar to genetic algorithms
(GA) and genetic programming (GP). The algorithm is a
variant of GP as it is used to evolve computer programs as well
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as having the ramified tree structures commonly associated
with GP. However, GEP genes are formed using fixed-length
linear strings (similar to GA chromosomes) which are later
expressed to variable length tree-like structures (similar to GP
encoding). The fixed-length strings are the genotypes while the
tree-structures, also referred to as expression trees (ETs), are
the phenotypes.

Similar to GP, the GEP genes are formed using functions
and terminals. The functions could include logical and con-
ditional operators or any other user specified functions. The
terminals, on the other hand, are the input variables to the
GEP system. They could include mathematical symbols e.g.
x, y or robotic end effectors (e.g. sensor encodings, motor
settings etc).

The structure of a GEP gene is made up of a head and tail
section. The head section is made up of functions and terminals
while the tail section contains only terminals. To construct the
GEP gene, the length of the head section, the function set and
terminal set have to be provided. The fixed-length of the gene
is given by

GEPl = h+ t

where

t = h(n− 1)

(1)

the constant, h, is the length of the head section, t is the length
of the tail section while n is the maximum arity in the function
set.

In order to solve a problem, a population of GEP chro-
mosomes1 under-go variation using seven genetic operators.
These operators are grouped into three, i.e., recombination,
transposition and mutation. The recombination operators are;
one point recombination, two point recombination and gene
recombination. One point and two point recombination are
identical to similar operators in GAs. The gene recombination
operator is only used if the GEP chromosome is composed of
more than one gene. The transposition operators select genetic
materials within a gene and move it within the same gene.
The insertion sequence (IS) transposition operator selects a
transposon (alleles within the gene) and inserts it only at the
head section (except the root position). The root insertion
sequence (RIS) transposition operator is similar to the IS
except that the first element of the transposon must belong
to the function set. Once the RIS transposon is selected, it
is then placed at the root of the gene. In both the IS and
RIS operations, the tail section remains unchanged. Where the
GEP chromosome is made up of more than one gene, the gene
transposition involves selecting an entire gene (apart from the
first gene) as a transposon and shifting it to the beginning
of the chromosome. The mutation operator is similar to the
GA mutation implementation. An in-depth discussion of the
genetic operators can be found on [17], [6].

In order to determine how well the GEP chromosome
estimates the solution of the given problem, the chromosome
has to be decoded. The decoding process, referred to as

1GEP algorithm makes a clear distinction between a chromosome and a
gene. A chromosome in GEP can be formed using more than one gene. Please
see ensuing section for clarification.

translation in GEP terminology, is carried out using a breadth-
first parsing scheme. The resulting expression is known as an
open reading frame (ORF) and is expressed as a parse tree
referred to as expression tree (ET). The ET is the derived
solution and is subjected to function fitness evaluations.

GEP chromosomes composed of single genes have been
shown to perform well on various problems. This problems in-
clude sequence induction problems [8], [28], robotic problems
[17], rules identification [40] etc. The next section discusses
how the multiple gene GEP chromosomes are constructed.

A. Multigenic Gene Expression Programming

One of the main characteristics of GEP is that its chromo-
somes can be formed with more than one gene. This is unlike
GA and the standard GP, where there is no difference between
a gene and a chromosome. In GEP, the difference is clear, i.e.
similar to systems biology a chromosome can be composed of
more than one gene. A GEP chromosome composed of more
than one gene is referred to as multigenic GEP chromosome
(mgGEP) while a chromosome with only one gene is referred
to as unigenic GEP (ugGEP) chromosome.

In order to construct mgGEP chromosomes, the number
of genes as well as the length of the head is chosen a prior.
During the translation stage, each of the genes forms a sub-
ET and the sub-ETs interact with each other to solve the given
problem.

Genes in a mgGEP chromosome, can be combined using
a special function, known as a linker, to form longer con-
catenated sequences. Alternatively, the genes may individually
be utilised to solve a part of the problem. The evolved
controllers (or partial controllers) are independent entities that
work together to accomplish the set objectives. To make a clear
distinction with these two mgGEP strategies, the concatenated
GEP chromosomes, i.e, those using a linking function, are
referred to as mgGEP chromosomes while the multiple output
chromosomes are referred to as moGEP chromosomes. How-
ever, it is important to note that the main difference between
these two multiple GEP algorithms is that the former utilises
a linking function to combine the genes leading to only one
output, while the latter leads to more than one output.

The capabilities of mgGEP chromosomes to evolve robotic
behaviours has been shown on [19], [22]. In addition, mod-
ifications of the mgGEP algorithm to form varied length
chromosomes has been shown by [1], [21]. Recently, moGEP
chromosomes have been shown to be effective in evolving
robotic controllers [20].

For a detailed discussion on GEP, please see [8], [22]. The
next section discusses how the GEP genes can be used to
encode a neural network.

III. DESIGNING NEURO-CONTROLLERS USING GEP

ANNs consist of a set of processing elements, also known
as neurons or nodes, which are interconnected. It can be
described as a directed graph in which each node i performs
a transfer function fi of the form:
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yi = fi(
n∑

i=j

wi,jxj − θi) (2)

where yi is the output of the node i, xj is the jth input to the
node, and wi,j is the connection weight between nodes i and
j. θi is the threshold (or bias) of the node. Usually, fi is non-
linear, such as Heaviside, Sigmoid, or Gaussian function, n is
the number of nodes. See [14], [26], [29], [32], [39].

To fully encode a neural network with the GEP chromo-
some, two new sections are added to the end of the gene [7].
These sections are the place holders for weights and thresholds.
Using this mechanism, the GEP structure enables the algorithm
to evolve the architecture of the neural network while the
weights and threshold sections supplies the capability to learn
the optimal weights and thresholds of the neural network.

In order to encode the weights, the length of the weight
section is given by

Ws = h ∗ n (3)

while the length of the threshold section is equivalent to the
length of the head, i.e. each function is associated with a
threshold value. The weight section is added after the tail
section while the threshold section is at the end of the gene.
To make the GEPNN more elegant the weights and thresholds
are placed into an array and the indexes of the array used in
the gene representation. The weight array is generated within a
particular range, for instance, the values could be [−2, 2]. The
array length is also a user variable, for instance the array length
could be 10 etc. Since the weights/thresholds are normally
real numbers, the values could be held within the same array.
When a weight/threshold is required during computation, then
the value associated with the index is retrieved. This makes
the GEPNN less cluttered and easier for a human reader.
Nevertheless, implementation of the best way to represent this
values can be left to the designer.

In order to fully comprehend how the GEP chromosome
encodes a neural network (NN), consider a gene with h = 3,
a function D whose arity, n = 2 and two terminals a, b. Using
the provided information, the length of the weight section can
be calculated as Ws = 3 ∗ 2 = 6 and the length of threshold
is 3, i.e. same as length of head section. Supposing we pick
random weights and thresholds from the range [0, 1], then the
weights/threshold array could be

{0.25, 0.425, 0.235, 0.32,−0.253, 0.82, 0.625, 0.123, 0.335}

Using the given information a possible GEPNN encoding can
be represented as

DDDbaba012387456

Figure 1 shows the ET expression of the ensuing GEPNN
representation.

Once the GEP genome has been expressed, the ET rep-
resenting the GEPNN can be derived. The weight values and
threshold values can be added to the connection edges and

Fig. 1. A representation of a GEPNN expression tree.

Fig. 2. An impression of a GEP expression tree with weights and bias added.

each function has a bias value associated with it, the resulting
ET is shown on Figure 2.

The derived GEPNN is equivalent to a two-input neural
network with one hidden layer as shown by Figure 3.

Fig. 3. GEP expression tree as a neural network

This representation shows that the GEP gene can be used
to construct an ANN architecture containing the weights and
threshold values. The next section discusses how the genetic
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operators are applied to the weight and threshold sections.

A. Genetic operators

In order to evolve the GEPNN, Ferreira [7] introduced
specialised genetic operators to work on the weights and
threshold sections. These extra specialised operators are

• Domain specific transposition: This operator works
like the standard insertion sequence transposition oper-
ator. However, its operations is restricted to the neural
network domains, i.e. weights and thresholds.

• Intragenic two point recombination: Similar to the
transposition operator mentioned above, this recombi-
national operator selects materials only from the neu-
ral network domains. However, the view taken from
this paper is that since this is a crossover operator,
then there is no need for restriction as long as the
GEP genes have fixed lengths.

• Direct mutation of weights and thresholds: This in-
volves creating new weight values from the selected
range and replacing the value selected for mutation.
Mutation of weights and thresholds can be accom-
plished by having an array containing the weights
(as proposed in Ferreira [7]) and then selecting a
value from the array and mutating it. Alternatively,
if one chooses not to create an array from where
to select weight values, then weight mutation can be
accomplished by randomly selecting weight/threshold
value from the neural network domain and mutating
it with a random value from the defined range.

B. GEPNN in machine learning

The initial paper introducing the concept of designing
neural network using GEP, used the GEPNN to solve the XOR
and 6-Multiplexer problems [7]. The GEPNN was shown to
perform satisfactorily in finding the required solutions. Since
the original paper, this technique has been used sparingly and
only for classification problems. At the time of writing, the
authors are not aware of any other existing approach to design
robotic neuro-controllers using GEPNN.

The motivation behind this work is that GEP algorithm has
shown great promise in the evolution of robotic controllers
[19], [20], [22]. As such the use of GEPNN in robotic neuro-
evolution is a great step to showcase the power of GEP in the
design of controllers. The presented work utilises GEPNN in a
wall following robotic problem and compares the results with
a controller evolved using the GEP tree structures.

The next section presents the experimental set up.

IV. EXPERIMENTAL SET UP

The robotic wall following problem was used to investigate
the capability of GEP to evolve robotic neuro-controllers. In
this problem, a robot tries to follow a wall and earns an
objective fitness for visiting a new position next to the wall.

This section describes the experimental setup.

(a) Environment 1

(b) Environment 2

Fig. 4. Robot environments

A. Robot and environment implementation

For all described experiments, the simbad simulator2 [15]
was used to simulate the robot and its environment. To perform
the required experiments, two types of environments were used
as shown by Figure 4.

Table I shows the success predicates; maximum fitness
achievable for each of the environments.

TABLE I. SUCCESS PREDICATE

Environment Optimal result

Environment 1 72
Environment 2 76

In all experiments, the simulated robot used eight infra-red
sensors placed 0.25 radians apart along the perimeter of the
top of the robot. Table II shows how the sensors were placed.

The robot sensors returned a value between 0.0m and
1.5m. For the reported work, a sensor value equivalent to 0.0m
meant that the robot was close to the wall. Conversely, a value
of 1.5m meant that the robot was a minimum of 1.5m away
from the obstacle. The robot movement was achieved using a
simulated pair of wheels (left and right). In order to control the
robot, simbad’s differential drive kinematic model was used.

2http://simbad.sourceforge.net/
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TABLE II. TERMINAL SET AND SENSOR POSITIONS

Sensor Terminal Representations Sensor positions
Front Sensor F 0
Back Sensor B π
Left Sensor L π

2

Right Sensor R 3π
2

Front Right Sensor FR 7π
4

Back Right Sensor BR 5π
4

Front Left Sensor FL 1π
4

Back Left Sensor BL 3π
4

In this kinematic model, the left and right wheel velocities are
controlled independent of each other. The difference of the left
and right wheel velocity produce an angular/rotational velocity
while an equal output gives a linear velocity.

B. Algorithm parameters

The implemented GEP algorithm variants used the follow-
ing attributes to describe the terminal and function sets.

1) Function set: For the GEPNN controllers, three sum-
mation functions were used. Similar to the standard ANN, the
summation functions/units, sum the product of weight and the
input value (robot sensor readings), i.e

∑n
i=j wi,jxj , please

refer to Equation 2. The summation functions were:

• D (double): This function had an arity = 2 and
therefore summed two values.

• T (Triple): This had an arity = 3 and summed three
input values.

• Q (quadruple): This had an arity = 4 and hence
summed four input values.

2) Terminal set: Table II shows the terminal representation
used in the experiment. The value of the terminal was the
sensor reading of corresponding robot sensors. No constants
were used for the described experiments.

C. Activation functions for the GEPNN

The GEPNN was initially investigated using the following
activation functions. These activation functions used the output
of the algorithm summation functions, i.e. D, T, Q in their
computation.

1) Linear function: The linear function is defined as

f(s− θ) = (s− θ) (4)

where s is the weighted sum of the GEPNN input signals
and θ is the bias. The output of this function is linear and is
influenced by the weighted sum of the input signals and the
bias value.

2) Ramp function: The ramp function was defined as

f(s− θ) =

{
λ if (s− θ) ≥ ε;
−λ if (s− θ) ≤ −ε;
(s− θ) otherwise.

(5)

where λ is a scalar output value while ε is a threshold used to
determine the function’s output. In the experiments described
here, λ was set to 2 while ε was set to 1.5. These values
were not tuned for the problem. However, the maximum sensor
reading, i.e. 1.5, was taken into consideration. The output of
the activation function was thus in the range (−2, 2).

3) Logistic Function: The logistic function was defined as

f(s− θ) =
1

1 + e(s−θ)
(6)

where the constant, e, is the Euler’s number. The output of
this function was in the range (0, 1)

4) Hyperbolic tangent: The approximated hyperbolic tan-
gent

f(s− θ) =
2

1 + e−1(s−θ)
− 1 (7)

was used. The output of this activation function is in the range
(−1, 1)

5) Evolving the GEPNN: Two genes each encoding a
neural network were evolved. Each GEPNN gene gives an
output for each of the robot wheels. This means that each robot
wheel is controlled independently by an evolved GEPNN gene.
Note that there was no linking function provided for the genes
and that every GEPNN gene had an independent contribution
to the overall robot behaviour. The fitness achieved was for the
collective performance of the entire GEPNN chromosome (i.e.
the two genes). In this case the robot was required to evolve
a strategy to control its velocity and navigate around the wall
perimeter.

The task of coordinating the wheel speeds is non-trivial
since if one gene does not evolve a good solution or if it
always returns a zero, the robot will continue rotating in the
same place. The robot also has to achieve maximum speed
when far from obstacles and while moving in a straight line.
In addition, the robot has to decelerate when going around
corners, as well as evolving the mechanism to start turning
when protrusions are encountered.

6) Comparing the GEPNN with moGEP algorithm: For
the purpose of comparison, the moGEP algorithm was used to
evolve a controller for the wall following problem. For this
experiment, the moGEP algorithm was used to evolve two
sub-ETs. The output of each sub-ET is the sensor reading
of that particular terminal symbol as shown in Table II. For
instance, if the returned output is F with a Front sensor
reading of 1.5m, then this is translated as 1.5m/s. Similar
to the GEPNN controllers, the output of each of the genes
was utilised to provide motor activity in m/s. All sensor
readings are therefore utilised to provide a translation velocity
for each of the two robot wheels. The output of the first sub-ET
controlled the velocity of the left wheel while the output of the
second sub-ET controlled the right wheel. The difference of the
two outputs in terms of sensor readings produced an angular
velocity while an equal output gave a linear velocity. The robot,
thus, had to establish a link between linear and angular velocity
in order to accomplish the wall following behaviour.

As can be deduced, the moGEP architecture is therefore
similar to the GEPNN structure. As such, both these techniques
utilised the differential drive kinematic model to control the
robot movements, i.e, the left and right wheel velocities were
controlled independent of each other during the course of the
simulation.

The main difference with these two models is that each
moGEP gene uses the output of the GEP ramified tree, whereas
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the GEPNN genes encode a neural network. Previous study
[20] has shown that moGEP is a sufficient method to evolve
robotic behaviours.

7) Genetic operators and algorithm parameter values:
All the GEP operators were used in the experiment with the
probabilities set as per Table III

TABLE III. PARAMETER SETTINGS

Parameters GEPNN moGEP
Maximum generations 500 500
Population size 100 100
Head size 4 4
No. of genes 2 2
Functions(D,Q,T) 3 −
Functions(IFLTE) − 1
Weights/Threshold range (−2, 2) −
Weights array size 100 −
Terminals(see Table II) 8 8
Mutation probability ← 2/chromosome size →
1-Point Recombination Probability 0.7 0.7
2-Point Recombination Probability 0.2 0.2
Weights/Threshold IS transposition 0.1 −
IS Transposition probability 0.1 0.1
RIS Transposition probability 0.1 0.1
Gene transposition probability 0.1 0.1
Gene recombination probability 0.1 0.1

The values of genetic operators probabilities, shown on
Table III, are derived from work carried out by the authors in
[18].

The implemented algorithms were generational and used
replication to pass the best organism in the previous generation.
Roulette wheel selection was used to select parent organisms.
The algorithms were evaluated over 20 randomly seeded runs.
Each controller in the population was allowed to control the
robot for 50 virtual seconds. The rest of the parameters were
set as defined in Table III.

8) Fitness function: The fitness was calculated as the
summation of all new coordinates that a robot visits less
any collisions. The robot was also penalised for remaining
stationary. The following fitness function was used.

fitness = (

m∑
i=1

pi(xi, yi))− C −Wp (8)

where the location (xi, yi) is a cell adjacent to the wall. The fit-
ness point, pi(xi, yi) = 1 whenever (xi, yi) has not previously
been visited and 0 otherwise. The collision penalty C, was
set to 5 and the wandering penalty, Wp, was set to 103. The
collision penalty was incurred when the intended movement
would have led to the robot moving into an occupied cell
(i.e. wall) whereas a wandering penalty was incurred when
the robot visited any empty cells that were not adjacent to the
wall. The total number of cells next to the wall, m, is adjusted
before a run depending on which room type being used in
the experiment. See Table I for the maximum number of cells
next to the wall and the maximum fitness achieved in each
environment.

3No tuning was carried out to determine optimal values for collision and/or
wandering penalties.

V. RESULTS AND DISCUSSION

This section provides the results of the experiments de-
scribed above. The main aim is to investigate the capability of
the GEPNN to evolve controllers for a wall following robot.
A comparison of the GEPNN performance is made using the
moGEP algorithm.

Figure 5 shows the results of the GEPNN (with all the
different activation functions) and the performance of the
moGEP controllers. Table IV, shows the performance in terms
of the percentage success rate. The success rate is defined as
number of successful runs (where the maximum fitness was
achieved) over the total number of runs, i.e. the 20 independent
runs.

TABLE IV. %SUCCESS RATES

GEPNN- GEPNN- GEPNN- GEPNN- moGEP
Hyperbolic Linear Logistic Ramp

Env 1 0.0 20.0 0.0 50.0 0.0

Env 2 0.0 35.0 0.0 45.0 0.0

The performance results, Figure 5 shows that overall, the
GEPNN with Ramp activation function performed better than
all the other strategies in both problems. These results also
show that the GEPNN with linear activation outperformed the
moGEP algorithm in both problem cases. The GEPNN using
logistic and hyperbolic functions had the lowest performances
over the course of the algorithm run. The performance with
various activation functions, notwithstanding here, these results
show that GEPNN is a viable mechanism to evolve robotic
neural controllers. The results shows that GEPNN (Ramp
activation function) as more viable technique as it was more
likely to achieve best fitness over the course of the run. The
success rates, Table IV also show that GEPNN-Ramp had the
best performance over the two problems.

The good performance of the GEPNN-Ramp can be at-
tributed by the λ values associated with the Ramp function.
Equation 5 shows that the values of this function is scaled
in the range [−2, 2]. This means that the robot could move
at a speed of 2.0m/s when not near obstacles as well as
reduce speed when near obstacles. The ramp function is a
combination of the step and linear function. Since, the ramp
has lower and higher boundaries, the robot’s wheel velocity
is more defined and hence the robot is able to navigate the
environment more easily. For the linear function, the output
is not defined, the wheel velocity can thus be as high as
the GEPNN output. This means that whereas the robot is
able to move very fast, it becomes difficult while trying to
navigate through the protrusions hence the lower performance
and success rate. For the logistic activation function, the values
are scaled in the range [0, 1] while the values of the hyperbolic
function are scaled within [−1, 1]. This lower scaling means
that it was likely that the robot moved at a slower speed and
may not have covered similar distance as the robot using a
GEPNN-Ramp controller.

A. Scaling the output of the activation functions

The previous section should that the performance of the
GEPNN with various activation functions, could have been
affected by the scaled values for the activation functions.
In this section, all the activation functions are scaled to the
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(a) Best Fitness in Environment 1 (b) Average Fitness Environment 1

(c) Best Fitness in Environment 2 (d) Average Fitness Environment 2

Fig. 5. Mean Fitness values over the iterations in the robot environments under investigation.

same range in order to allow a fair comparison. The min-
max normalisation was used for the scaling. The min-max was
defined as

v̀ =
v − (vmin)

(vmax − vmin)
∗ (v̀max − v̀min) + 1 (9)

where v̀ is the new output after normalisation, v is the value
obtained from the activation function, vmax and vmin are the
respective maximum and minimum values that the activation
function can yield, and v̀max and v̀min is the new respective
maximum and minimum values, i.e. the range.

The normalisation formula requires the use of expected
minimum and maximum values. Since the linear activation
function does not use minimum and maximum values, the
linear function was not further used in the experiments. Figure
6 shows the average best fitness and mean fitness over the
simulation runs, using the scaled activation function values.

Results shown on Figure 6 suggest that scaling was critical
to the performance of the GEPNN-Hyperbolic and GEPNN-
Logistic. Since the output of the activation functions affect
the wheel velocities, it is important to scale the output to the

desired maximum and minimum speed in order to achieve
optimal performance. As the results show, scaling led to
a significant improvement of the performances of both the
GEPNN-Hyperbolic and GEPNN-Logistic. For the GEPNN-
Ramp, the values were already scaled within the range [−2, 2]
so the min-max scaling did not overly influence the results.

To further investigate whether scaling the output of the
activation functions used for the GEPNN is required, a new set
of experiments were carried out. In these new experiments, the
set of functions of the GEPNN were implemented with each
containing different activation functions. For instance, the sum-
mation function D, four functions were created, D − Ramp,
D − Hyperbolic, D − Linear, D − Logistic etc. This
was carried out for all three summation functions. In total,
there were 12 functions used for the GEPNN construction.
The GEPNN was evolved with no scaling of the activations
functions and the results were compared with a GEPNN-
with scaling of the 12 functions and also with GEPNN-Ramp
(scaled). Figure 7 shows the results when the GEPNN was run
on Environment 1 and 2. Figure 8 shows the ranking of the
algorithms using the Friedman’s test.

Results shown on Figure 7 suggest that combining all
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(a) Best Fitness in Environment 2 with scaled output (b) Average Fitness Environment 2 with scaled output

Fig. 6. Fitness values over the iterations in Environment 2 with min-max scaling of the activation function outputs

(a) GEPNN comparison Best Fitness in Environment 1 (b) GEPNN comparison Average Fitness in Environment 1

(c) GEPNN comparison Best Fitness in Environment 2 (d) GEPNN comparison Average Fitness in Environment 2

Fig. 7. GEPNN fitness values comparison with scaled activation functions output over the number of iterations

activation functions (and not scaling the outputs) performed
equally with the GEPNN where all activation functions were

used and output scaled. The two GEPNN strategies that
used all activation functions outperformed GEPNN-with scaled
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(a) Ranking and statistical using best fitness
(b) Ranking and statistical significance using average fitness

Fig. 8. Algorithm ranking and statistical significance testing using Friedman’s test

Ramp in Environment 1, but performed equally in Environment
2. The algorithm ranking, Figure 8, shows that the GEPNN
strategies using all activation functions were ranked first.
However the Friedman’s test also show that there was no
statistical significance between the three strategies (The bold
line below the ranks, Figure 8, means that there was no
statistical significance in these results).

These results are significant in the context that they show
that while designing robotic neuro-controllers, scaling of the
output of activation functions is not required so long as all
possible activation functions are included in the GEP function
sets.

VI. CONCLUSION

This paper investigates how the GEP algorithm can be
modified to evolve robotic neuro-controllers. Whereas the idea
of designing neural networks is not new, this is the first work to
investigate the capabilities of GEP neural nets to evolve robotic
neural controllers. The paper discussed GEP as an algorithm
and then reviewed the mechanism for evolving neural networks
using the algorithm. Further, experiments are conducted using
various activation functions. The GEPNN is used to evolve
robotic neuro-controllers for two robotic environments. The
ensuing results and discussion show that GEPNN is a viable
technique for use in robotic neuro-evolution.

The current state of the art in ER involves the use of a
neural network for robotic control. There is, therefore, a need
to investigate more mechanism that can be used to design both
the architecture of the neural network as well as learn the
optima weights and threshold values and learning rates. Results
obtained from this research, though of a preliminary nature,
show that GEPNN is a promising algorithm for consideration
in the ER domain.

The future focus of this work is to use GEPNN in more
complex robotic problems and compare its performance with
that of a neural network trained using particle swarm opti-
misation (PSO) and GAs. There is also a need to investigate
what deep learning in artificial neural network would mean for
a GEPNN and whether the use of multigenic GEP can entail
deep learning.
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