
A Multi-Agent System for Autonomous Adaptive
Control of a Flapping-Wing Micro Air Vehicle

Michal Podhradsky
Dept. of Elec. & Comp. Engr.

Portland State University

Portland, OR 97207

Garrison Greenwood
Dept. of Elec. & Comp. Engr.

Portland State University

Portland, OR 97207

John Gallagher
Dept. of Comp. Sci. & Engr.

Wright State University

Dayton, OH 45435

Eric Matson
Dept. of Comp. & Info. Tech.

Purdue University

West Laffaette, IN 47907

Abstract—Biomimetic flapping wing vehicles have attracted
recent interest because of their numerous potential military
and civilian applications. In this paper we describe the design
of a multi-agent adaptive controller for such a vehicle. This
controller is responsible for estimating the vehicle pose (position
and orientation) and then generating four parameters needed
for split-cycle control of wing movements to correct pose errors.
These parameters are produced via a subsumption architecture
rule base. The control strategy is fault tolerant. Using an online
learning process an agent continuously monitors the vehicle’s
behavior and initiates diagnostics if the behavior has degraded.
This agent can then autonomously adapt the rule base if
necessary. Each rule base is constructed using a combination
of extrinsic and intrinsic evolution. Details on the vehicle, the
multi-agent system architecture, agent task scheduling, rule base
design, and vehicle control are provided.

I. INTRODUCTION

Biomimetic flapping-wing vehicles have been the focus of

much recent research due to their potential for both civilian

and military application. In either potential application area,

adaptive, fault-tolerant, control is paramount. This paper de-

scribes a multi-agent system for adaptive control of a model

biomimetic flapping-wing vehicle. The vehicle employed in

this research is a hardware analogue of a minimally-actuated

flapping-wing vehicle introduced by Wood [1], [2] with core

control laws introduced and subsequently refined by Doman

et al. [3], [4]. The analogue vehicle [5]–[7] operates similarly

to the minimally actuated vehicles considered by Wood and

Doman et al. in that all propulsion and control are provided

by two minimally actuated wings, each of which possess a

single active and a single passive degree of freedom. It differs

in that the analogue vehicle’s active degrees of freedom are

driven by a DC motor through a four-bar linkage instead of

a piezoelectric transducer and in that the analogue vehicle

is mounted vertically on a circular puck and supported from

below by either an air or fluid cushion. These changes allow us

to experiment with the control of translation and roll without

need to address the practical difficulties of balancing generated

lift and vehicle weight.

Previous work employed variants of the controllers dis-

cussed in [3], [4] augmented with adaptive wing beat oscilla-

tors [8]–[10] that provided adaptation at the inner-most layer of

vehicle control (wing flapping patterns). The goal of that work

was to provide adaptation not by changing control laws that

related desired forces and torques to stereotyped wing motions,

but rather, to change the wing stereotyped motions to adapt

generated forces to the needs of control laws designed for

undamaged wings. In other words, the salient adaptation was

that damaged wings learned to move in ways that mimicked

the force and torque generation of undamaged wings.

In contrast to that work, this paper presents a design for

a multi-agent system (MAS) where control laws are directly

adapted at a higher level of abstraction in the control law

hierarchy. In this system, agents are responsible for collecting

and estimating vehicle pose, recording waypoint locations

for trajectory following, generating inputs needed by the

split-cycle oscillator, monitoring vehicle behavior and, when

necessary, conducting diagnostics and adapting the control

rule base. The initial set of control laws are designed using

a combination of extrinsic and intrinsic evolution [11]. The

ultimate vision is that both forms of adaptation co-exist in

the vehicle so that the benefits of each approach are equally

available.

The paper is organized as follows. A basic overview of

our flapping wing vehicle is described in the next section.

Section III describes the multi-agent architecture while Sec-

tion IV gives implementation details. The online learning

algorithms and rulebase adaption methods are described in

Section V. Part of the design requires use simulation tools,

which are discussed in Section VI. Finally, our next steps for

full implementation on the hardware are given in Section VII.

II. VEHICLE AND ENVIRONMENT DESCRIPTION

A. Vehicle Configuration

A conceptual vehicle closely related to those described by

Wood and Doman et. al. is presented in [8]. The physical

analogue descendant from it is described in [5]–[7]. Both

vehicles operate in a qualitatively similar manner with two

minimally actuated wings providing all propulsion and control

forces. They differ only in scale and in that the physical

vehicle is supported from below by a fluid or air cushion.

The physical vehicle, with its externally provided lift support,

approximates a passively upright-stable version of the vehicle

in [8] operating near its hover wing flapping frequency. Both

vehicle types (hereafter referred to as ”the vehicle”) have two

wings mounted in the Xb–Yb body plane (see Figure 1). These978-1-4799-7560-0/15/$31 c©2015 IEEE

2015 IEEE Symposium Series on Computational Intelligence

978-1-4799-7560-0/15 $31.00 © 2015 IEEE

DOI 10.1109/SSCI.2015.154

1073

Fig. 1. Orthographic view of flapping wing vehicle [8]. Both wing spars
are restricted to rotational motion about their joints with the body and in the
Yb–Zb plane. The range of those rotations is [−1 . . . 1] radians, α is between
π/6 and π/2 radians. Note that the dimensions are for orientation purposes
only, and differ on the actual vehicle.

wings are actively actuated within the range of ±φ. As the

spars rotate, dynamic air pressure lifts the triangular wing

planforms (membranes) up to an angle of α radians under

a base vector embedded in the Yb–Zb plane. Individual wing

flaps produce independent lift and drag forces at each of the

two wing roots (points of attachment of the wings to the body).

These can be resolved into body frame forces and torques and

cause changes in the whole vehicle’s position and pose in three

space.

B. Cycle Averaged / Split Cycle Control

In cycle averaged control, one bases vehicle control on

estimates of what forces a wing would produce, on average,

over a single wing beat. For example, a cycle averaged altitude

controller might compute the error between current and desired

altitude, use a error feedback control law to compute a desired

force to apply to the body, and finally use a model of

the vehicle?s wings to compute the parameters of a single

wing beat that, when adopted by both wings, produces the

desired force (on average) during the whole wing beat. Cycle-

averaged control wraps a feedback control law around whole

wing beats as atomic constructs rather than around finer-

scaled micro-motions of wings. The desired wing motions are

?communicate? to the wings once per wing beat as a small

number of shape parameters that define how the wing will

move during that wing beat.

Split-cycle control is a special case of cycle-averaged control

in which wing beats are composed of two half-cosine waves,

one each to govern the wing?s upstroke (front to back) and

downstroke (back to front). The shape parameters communi-

cated to each wing are a flapping frequency (ω) and an up-

stroke/downstroke transition parameter (δ). Advancing the up-

stroke (and consequently impeding the downstroke) produces a

forward force while keeping the wing beat frequency constant.

Formally, φU = cos((ω− δ)t) and φD = cos((ω+σ)t) where

σ is dependent on δ. From [4] we know that δ ∈ [−∞ . . . ω /2]
although certain value ranges are particularly important. If

δ = 0 the upstroke is symmetrical to the downstroke and

a regular wingbeat occurs. However, if δ > 0 the upstroke

is impeded and the downstroke is advanced, as shown in

Figure 2. As a result, a force is generated in direction of

the downstroke. Conversely if δ < 0 then the downstroke is

impeded and the upstroke is advanced, as shown in Figure 3

, resulting in a force in the direction of the upstroke. These

lateral forces act on the vehicle?s body via a moment arm

producing an angular momentum. Put simply, by applying the

split cycle the vehicle can turn. (See [4] for a derivation and

proof of split-cycle operation.)

A conventional application of split-cycle control to this

vehicle might entail an “outer loop” of multiple body axis con-

trollers (e.g., one that computes altitude error and determines

a flapping frequency for the wings, one that computes a roll

axis angle error and computes antagonistic δ shifts to produce

a roll moment, etc.), and an allocator that harmonizes all of the

flapping frequency and δ shift commands made by the various

axis controllers for presentation to an “inner loop” controller

that would ensure the wings follow the correct cycle averaged

trajectories. Control would then consist of an outer loop that,

based on vehicle state, provides ωs and δs that should produce

forces required to effectively correct position and pose errors

and an inner loop that, receiving those δs and ωs, would ensure

the wings moved as required.

Our previously described attempts at controller adaptation

have occurred in the inner loop. This paper presents an ar-

chitecture to enable co-adaptation in the outer loop. Although

in theory a full 6DOF control can be achieved using split

cycle with only minor modification (see [4] for details), our

current work will be constrained to 3DOF movement in two

dimensions, primarily because the weight of the mechanical

components makes takeoff impractical for our mechanical

analog. Nonetheless, the developed control and fault recovery

algorithms are expected to remain valid in three dimensions

and can be tested in simulation or in subsequent free-flying

vehicles.

C. Experimental Setup and Environment

All experiments are to be conducted in a large (5′ × 5′)
water tank. The vehicle currently can move on a two di-

mensional plane and rotate around its Xb axis. The vehicle

is equipped with a pair of Lithium Polymer batteries, a

power distribution board and a main computer, as shown in

Figure 4. All hardware is mounted on a carbon-fiber platform,

attached to a floating Styrofoam puck. The water surface acts

as a mechanical low-pass filter, slowing down the vehicle

movement and dampening disturbances. A camera is placed

above the water tank, such as its field-of-view encompasses the

entire water tank. The camera locates and records the vehicle

position. The vehicle has color markers for this purpose. The

1074

Fig. 2. Split-cycle results for δ > 0

Fig. 3. Split-cycle results for δ < 0

Fig. 4. Assembled vehicle—note wings in the middle, LiPo batteries on
sides, the power distribution board in the back and the control board in front.

Fig. 5. Vehicle during an experiment in the water tank (top-view). Note the
color markers used for machine vision pose estimation.

Fig. 6. Vehicle during an experiment in the water tank (close-up view). Note
the color markers used for machine vision pose estimation.

experiment setup as seen from camera is shown in Figure 5.

Figure 6 shows a close-up view of the vehicle, including

the color markers. The video stream from the camera is

processed on a regular laptop computer, using the OpenCV
library for computer vision. The processed video is recorded

for reference, and the estimated pose is sent to the onboard

MAS via a WiFi link.

III. MULTI-AGENT ARCHITECTURE

In this section we describe the multi agent control archi-

tecture and the various agents involved in the vehicle control.

The vehicle is assumed to be moving in an enclosed, wind-

free environment with no obstacles (other than boundaries). It

is required to follow a set of predefined trajectories specified

by a sequence of waypoints.

Practically, this is achieved by equipping the vehicle with

a floating support and placing it in a large water tank. The

boundaries of the perimeter are the walls of the water tank.

An overhanging camera is used to estimate the pose (position

and orientation) of the vehicle. A software simulation of the

vehicle is also available. The simulator is further described in

Section VI.

1075

A. Agent Description

The MAS consists of five agents. A collection agent receives

pose information x, y,ψ from the camera (or simulator), and

runs smoothing and averaging algorithms to compute the

estimated pose x′, y′, ψ′. A monitor agent observes vehicle

behavior and requests vehicle diagnostics if the behavior

has deteriorated too much. The strategy agent keeps a list

of desired waypoints, and provides them upon request to a

controller agent. The controller agent determines the split-

cycle oscillator control inputs (a δ and ω for each wing)

based on the vehicle pose. Finally, a diagnostic agent runs

vehicle diagnostics and determines if a fault occurred and

ultimately decides whether the controller agent’s rulebase has

to be adapted. The MAS diagram is shown in Figure 7. Each

agent is further described below.

1) Collection Agent:

Precepts: x, y,ψ
Outputs: x′, y′, ψ′

Tasks: Collects high-speed data x, y,ψ from either

simulator or the camera, and computes smoothing

and averaging of the data. Outputs estimated pose

data x′, y′, ψ′ at a lower rate. There are several filter-

ing options under consideration, e.g. an exponential

moving average filter.

2) Monitor Agent:

Precepts: x′, y′, ψ′, active rule from rulebase

Outputs: issue diagnostics command

Tasks: Receives estimated position data from the col-

lection agent, and movement being executed from

the controller agent. Monitors performance of the

vehicle, and in case of insufficient results, directs

diagnostics agent to run diagnostics.

3) Strategy Agent:

Precepts: none

Outputs: Wj

Tasks: Stores list of waypoints. Sends next waypoint

Wj upon request.

4) Controller Agent:

Precepts: x′, y′, ψ′,Wj

Outputs: δL, δR, ωL, ωR

Functions: Consists of one or more agents. Responsible for

determining control inputs δL, δR, ωL, ωR based on

the vehicle pose x′, y′, ψ′ and the desired position

Wj . When the vehicle reaches a waypoint, requests

new waypoint coordinates from the strategy agent.

Runs maneuvers for diagnostics testing.

5) Diagnostic Agent:

Precepts: x′, y′, ψ′,Wj

Outputs: computes likelihood of fault

Functions: Initiates diagnostics testing. Computes likeli-

hood of failure. Determines if behavior must be

adapted to compensate for faults.

B. Agent Scheduling

The scheduler is responsible for specifying when individual

agents execute their assigned tasks. In this application schedul-

ing is event oriented rather than time oriented. Our scheduler is

loosely based on the scheduler used in the RePast agent-based

toolkit [12].

The scheduling process can be abstractly thought of as a

sequence of hooks on a wall (see Fig 8). An agent is ”hung”

on a hook if it is supposed to execute some task at some

future time. However, time is relative, not absolute—i.e., hooks

are not associated with some specific time nor does hook

spacing reflect time intervals; hooks merely establish a partial

ordering of agent tasks. For example, if agents x, y, and z
are hung on hooks 3, 4 and 7 respectively, this simply says

agent x performs some task before agent y which performs

some task before agent z. Hooks therefore just order agent

behaviors with respect to each other. Only one agent can be

hung on a particular hook because agents do not execute tasks

concurrently. We say an agent is stepped if it is directed to

perform some action or task.

The entire scheduling process is event driven. A first-in-

first-out (FIFO) buffer is used as an event queue. As agents

perform perform assigned tasks—i.e., they are stepped by the

scheduler—they may post events in the FIFO, which might

cause other agents to be stepped at a later time. Events have

a header and a body. The header tells which agent posted

the event, the event type and possibly a timestamp. The body

contains attributes unique to the event.

The scheduler unloads the buffer, analyses the events, and

processes events by stepping a specific agent. Events are pulled

from the FIFO as quickly as possible but stepping agents is

deferred while the FIFO is not empty. All the scheduler does

at this time is decide upon which hook to hang the event.

Some shuffling of agents already hung on hooks may occur

depending on the priority of the event. When the FIFO is

empty the scheduler starts pulling agents off of hooks in a

“first-hung-first-pulled” order and steps them. A stepped agent

may be provided information from the body of the event that

prompted it being stepped.

A simple example will help fix ideas. Suppose the controller

agent has just output new δ and ω values. This agent would

post a “new δ/ω output” event in the event queue. The body of

this event would identify which rule in the rulebase fired so the

commanded vehicle movement is recorded. When offloaded

from the FIFO the scheduler would hang a monitor agent tag

on a hook along with the rule ID extracted from the event body.

Once the FIFO is empty the scheduler pulls the monitor agent

tag off of the hook and steps the monitor agent to commence

observing the vehicle movement. The monitor agent would be

informed at that time which rule fired.

IV. AGENT IMPLEMENTATION

This section describes each of the aforementioned agents in

more depth, including the implementation details.

1076

ωL, ωR

δL, δR

x, y,ψ

Wj x′, y′, ψ′

x′, y′, ψ′

Fig. 7. Diagram of Agent-based control architecture. Detailed information about each agent is provided in Section III-A. More info about the simulator can
be found in Section VI. Note that the arrows between the agents do not reflect inter-agent messages—the communication is done by event processing, as
described in Section III-B

Fig. 8. An example showing agents hanging on hooks waiting to be stepped
by the scheduler. The left-to-right order reflects the relative ordering of the
agent stepping.

A. Controller Agents

These agents compute the δL and δR values needed to move

the vehicle between waypoints. The vehicle will typically have

to adjust its course as it moves along a trajectory. However,

that does not mean new δ values are needed at the beginning

of each wing beat.

There are 4 control inputs to the vehicle available (specif-

ically δL, δR, ωL, ωR), but only two actuators (the left and

right wing) thus the control inputs are not independent. This

situation can be described as under-actuated vehicle, which

means we cannot control the position and course indepen-

dently, and that poses a greater challenge for the controller

agents. For example, if the vehicle is moving forward and is

heading slightly left off the desired course, it can’t turn right

without affecting the forward motion.

An arbitrary position and orientation can be achieved by a

combination of linear motion (forward/backward movement)

and rotation of the robot. Forward motion is done by increasing

both δL and δR, while rotation is achieved by increasing δL
and decreasing δR and vice versa. Note that although backward

movement is possible, it is not used in this case. Required

movements are summarized in Table I.
The vehicle is required to make two distinct turns—”hard”

turn—a rotation of 90 deg and is used for evasive maneuvers;

and ”partial” turn, used for slight course corrections. Each

turn requires different values of δL, δR, but the direction of

change in δ is the same for both turns. The values of δ will be

stored in a look-up table. Note that increasing ωL or ωR (while

keeping the same relative value of δ) creates stronger moments

and forces, which might be necessary for faster movement,

especially rotation. Suitable values for ωL and ωR have yet to

be determined.
The vehicle must make specific movements to follow a

trajectory and a rulebase determines which movements will

be needed. These rules are organized in a subsumption archi-
tecture [13]. Under this architecture all control rules have an

IF-THEN syntax. The rulebase consists of the rules shown in

Table II. Each movement indicated in a rule’s consequent has

an associated set of δ and ω values, which are extracted via a

table lookup.
A subsumption architecture consists of a series of layers

where lower layer rules produce simple, critical behavior

such as avoiding obstacles while higher levels produce more

sophisticated behavior needed for trajectory following. Higher

level behavior subsumes lower level behavior. A subsumption

architecture is ideal for navigation control in dynamic physical

environments. It permits reactive behavior without resorting to

prior path planning because there is no world model required.
Layer 1 has the highest priority. If the vehicle reaches

the borders of the perimeter (in this case walls of the water

tank), it will turn right to avoid the obstacle. The second

highest priority detects whether the vehicle reached the desired

waypoint Wj
1. At that time the controller agent acquires the

coordinates of the next waypoint on the trajectory Wj+1 from

the strategy agent.

1The vehicle reaches waypoint Wj if it is within distance ε of that waypoint.

1077

Movement Control Input

Move Forward δL ↑ & δR ↑ (identical)

Left Turn δL ↓ & δR ↑ (opposite)

Right Turn δL ↑ & δR ↓ (opposite)

Idle δL = δR = 0

Increase velocity ω ↑
Decrease velocity ω ↓

TABLE I
REQUIRED VEHICLE MOVEMENTS. ↑, ↓ INDICATE DIRECTION OF CHANGE,

NOT ITS MAGNITUDE. SEE SECTION IV-A FOR MORE DETAILS.

Layer Behavior

6 if true then Idle

5 if heading left then Partial right turn

4 if heading right then Partial left turn

3 if heading at waypoint then Move forward

2 if at waypoint Wj then Get new waypoint Wj+1

1 if outside perimeter then Hard right turn

TABLE II
SCHEME OF CONTROLLER AGENT SUBSUMPTION ARCHITECTURE, LAYER

1 HAS THE HIGHEST PRIORITY.

A new waypoint should be requested in a timely manner to

prevent vehicle from unnecessary course corrections and large

control actions. The third layer ensures that if the vehicle is

pointing at the waypoint, it will move towards the waypoint.

If it is not pointing in the right direction, layers 4 and 5 will

turn the vehicle until it is pointing right at the waypoint, so

the third layer (i.e. “move forward”) takes control. Finally, if

there is nothing better to do, the vehicle idles at its current

location until it gets new commands.

B. Monitor Agent

This agent is responsible for monitoring the vehicle’s perfor-

mance. During normal vehicle operation the controller agent

posts an event every time a new δ and/or ω value is sent to the

split-cycle oscillator. That event identifies the specific rule that

fired so the monitor agent knows the expected movement (e.g.,

hard right turn) and, when stepped by the scheduler, begins

tracking the movement. If the vehicle’s movement doesn’t

match the expected movement, the monitor agent will post

a “poor performance” event in the event queue. No event is

posted if the behavior is okay. The scheduler will process this

poor performance event by stepping the diagnostic agent to

run diagnostics.

C. Diagnostic Agents

This agent assesses the vehicle’s reliability. The vehicle

has no specific fault detection and isolation capability. It is

worth noting that under such circumstances there is, from a

Fig. 9. Calculation of likelihood of getting the expected pose from a pose
density function centered at the sample mean of the n rotation estimate data
samples Ψ̂n

behavioral standpoint, no real difference between a vehicle

mechanical failure or a sensor failure since both produce the

same outcome—an inability to follow a desired trajectory.

Nevertheless, rather simple diagnostic routines can identify

degrading behavior even if the exact cause is not knowable.

Diagnostics could be performed at regular intervals. For

example, every say 5 minutes of flight time the vehicle could

temporarily idle and then quickly run the diagnostics. How-

ever, a more practical approach is to exploit the online learning

performed by the monitor agent. The monitor agent will trigger

the diagnostics if and only if a degraded performance is

observed.

Faults are detected using a Bayesian type of behavior

monitor where likelihood functions give a qualitative measure

of maneuver capability. The idea behind diagnostics is simple:

command the vehicle to perform some maneuver and see if

can do it within a prescribed time frame. A rotation through

some angle—e.g. π/2 radians—is a simple and non-trivial

maneuver since it requires δL �= δR. The precise δ values

are stored in a table as described previously. Note that a

complete diagnostic would required the vehicle to rotate in

both directions. Pose samples Ψ̂n = (ψ̂1, ψ̂2, . . . , ψ̂n) can

be recorded by diagnostic agents over some time window

and the associated sample mean and sample variance are

easily computed. This information is sufficient to construct

a Gaussian pose density function

f(ψ̂) =
1

σψ

√
2π

exp

(
− (ψ̂ − ψ)2

2σ2
ψ

)
(1)

where ψ is the sample mean and σ2
ψ is the sample variance.

The control agent outputs a specific δL and a δR, which

are expected to produce some change in pose. Thus the

control agent has some expected pose movement E[ψ] in mind.

A diagnostic agent uses the pose density function f(ψ̂) to

compute the likelihood of E[ψ] given the pose data samples

Ψ̂n. This concept is illustrated in Figure 9.

1078

A high likelihood suggests the vehicle mechanical hard-

ware and sensor hardware are operating normally while a

low likelihood indicates something is wrong. Dividing the

likelihood function value by the sample mean (or equivalently

just ignoring the 1/(σψ

√
2π) coefficient in Eq. 1) makes

L(E[ψ]|Ψ̂) ∈ [0, 1]. Then ’high’ and ’low’ likelihoods are

defined by a threshold parameter λ on the unit interval. That is,

L(·) < λ indicates a low likelihood the vehicle can maneuver

properly and some corrective action is required

The only possible recovery mechanism is to adapt the

vehicle’s behavior by modifying the rules in the rulebase. The

next section describes how this adaption is done.

V. AGENT ONLINE LEARNING

There are two times when online learning is required.

Learning is used to identify appropriate δ and ω values needed

for control of the vehicle. This section discusses the details

about the learning process.

A. Initial Learning

Every vehicle is slightly different due to inherent non-

linearities such as slip between linkages. Thus the same δ
and ω values cannot be used for every vehicle; they must

be learned. First the vehicle learns values needed to execute

the basic movements in Table I. These values are then linked

to rule consequents from Table II. The δ and ω values

will be determined during this initial learning phase using a

combination of extrinsic and intrinsic evolution [11].

The needed parameters will be evolved using a (1, 10)-ES.

The genotype is

{δL, δR, ωL, ωR ; σ1, σ2, σ3, σ4}
where the first 4 parameters are object parameters and the

second 4 parameters are strategy parameters used to control the

mutation step size. Most likely a linear reduction schedule will

be sufficient for adapting the strategy parameters. The vehicle

will be placed in its operational environment (a water tank) and

object parameter values will be intrinsically evolved for each

movement. (Initial object parameter values will be evolved

extrinsically using an in-house developed simulator.) Intrinsic

evolution will be run with on-board computing resources.

The monitor agent observes the behavior of each evolved

object parameter set and terminates the evolutionary algorithm

for a specific rule when acceptable behavior is achieved. The

goal here is not to achieve optimal movements but rather

smooth and repeatable correct movements. Thus fitness will

be computed from the average behavior over a small number

of trials. After learning is completed, the evolved values will

be stored in a library (i.e. a look-up table). Once all rules are

evolved the vehicle is ready for trajectory following.

B. In-Flight Learning

Rules learned during the initial learning phase perform well

during a normal flight, but in the presence of faults it will

be necessary to adapt them. This online learning phase is

performed continuously. Each time a rule fires the monitor

agent is informed so it knows what maneuver was commanded.

The monitor agent observes the x′, y′, ψ′ pose parameters and

determines if the performance is within limits or is degrading.

Thus the monitor agent continuously learns about how the

vehicle is performing. If the observed behavior deviates too

much from the expected behavior then diagnostics are run. If

the diagnostics confirm the behavior has degraded below some

threshold then the rulebase is adapted. Adaption, described

below, entails modifying rules’ consequents in order to restore

vehicle’s functionality.

C. Rule-base Adaptation

Given size and weight restrictions, which don’t allow us

to use conventional fault recovery methods such as redundant

hardware, it is not possible to recover from every possible

fault. We therefore restrict the adaption to cover only a small

subset of predefined faults. The recovery mechanism relies on

adapting new consequents for rules from Table II, so that the

desired motion (i.e. Partial left turn) is still achievable. These

new δ and ω values will be intrinsically evolved just like the

initial online learning was done. The question is how do we

intrinsically evolve new parameters for specific faults?

We will borrow concepts used in conventional failure modes
& effects testing (FMET). In this type of testing a set of

predefined faults is inserted into the system under test one

at a time and their effect is observed. This testing is always

conducted in a laboratory environment where the effects are

closely monitored and controlled to prevent damage to the

system. In this particular research effort “faults” such as using

different wing sizes or a stuck linkage will be intentionally put

into the vehicle and an evolutionary algorithm will then evolve

new parameter values. As before, this evolutionary algorithm

will run using onboard hardware resources. The evolved values

will be added to the rulebase library.

Under normal operation a single set of δL, δR, ωL and ωR

values is sufficient to perform the maneuvers shown in Table I.

However, under faults most likely a sequence of δ and ω
values will be required, with a new set generated every few

hundred wingbeats (because of the slow vehicle dynamics).

This sequence of values can be intrinsically evolved too. In

this case the genotype described earlier must be expanded to

handle multiple δ and ω values for each maneuver.

Of course prior to initiating fault recovery operations fault
detection & isolation (FDI) must be done. This process

detects if a fault exists and tries to isolate it to a specific

subsystem or component. Since the ability to recover from

faults on the vehicle is severely limited, isolation is unneces-

sary. Fortunately detection is rather straightforward. As stated

above, the monitor agent is continuously learning about the

vehicle capabilities; it can therefore detect poor performance

by comparing observed behavior against expected behavior.

If the behavior is poor it would post an event in the event

queue. The scheduler would then step the diagnostic agent to

start diagnostics. Diagnostics should be able to confirm both

degraded performance and identify which of the pre-defined

faults is present.

1079

The abstract sequence of commands used during FDI is as

follows:

1) Monitor Agent (MA) detects unsatisfactory performance

and posts an event in event queue

2) Diagnostics Agent (DA) is scheduled to perform diag-

nostics

3) DA posts a diagnostic event. Controller Agent (CA)

stops waypoint following and enters diagnostics mode

4) CA starts the test manuever

5) MA monitors test progress and passes results to DA

6) DA computes the likelihood of a fault

7) If DA detects no problem, it posts a normal operation

event. CA resumes waypoint following

8) If DA detects a problem, it posts a faulty operation event.

CA extracts new rulebase from library.

Essentially we will build a library of rules for both the

fault-free and the faulty vehicle. Once FDI is finished fault

recovery begins. Recovery only requires replacing the current

controller agent’s rulebase with the appropriate pre-stored

rulebase associated with the identified fault from the library.

Thus fault recovery can be done very quickly.

VI. SIMULATION

A simulator of the vehicle is used for extrinsic evolution

during initial learning (see Section V-A for details). The

simulator contains a simplified model of the vehicle with

3DOF. A simplified model assumes no external disturbances,

such as wind. Also assumes a perfect control over wing

position (i.e. no slip in the linkages). It assumes a perfectly

balanced vehicle, moving on a frictionless plane.

The simulator calculates cycle averaged lift and drag forces,

meaning the produced lift and drag forces are averaged over

one full wingbeat. The produced forces are then propagated to

the body model, creating moments and change in orientation

and position of the vehicle. Cycle averaged forces are a good

approximation, because the low level controller cannot change

the δ and ω parameters more often than at the beginning of

the wing beat.

As mentioned previously, the simulator is not intended

to perfectly model the vehicle, but to provide a reasonably

accurate initial values for the learning algorithms and their

verification.

The core of the simulator is a Java library containing

vehicle dynamics, and performing all necessary lift and drag

calculations. The library was developed in the research group

of one of the authors of this paper. The agents are implemented

using the MASON toolkit [14], which will also be used as a

visualization front end. Initially the MASON toolkit will be

used to verify the MAS architecture—e.g. to make sure that

the correct rules from the rulebase are firing in right order,

and to check the correctness of the scheduler by moving the

vehicle along predefined test trajectories.

VII. FINAL REMARKS

The design of the MAS controller is complete and incorpo-

rating it into the vehicle hardware will be straightforward. The

most difficult aspect of testing will probably be the diagnostic

agent checkout because autonomous fault detection is not a

trivial task. As stated previously we will inject faults into the

vehicle and then adapt the MAS behavior by replacing its

rulebase. This replacement rulebase will mostly be a sequence

of δ and ω values. At this time we do not know how long that

sequence should be nor how often to apply elements of that

sequence to the split-cycle oscillator. Intrinsic evolution should

provide those answers.

ACKNOWLEDGMENT

This material is based upon work supported by the National

Science Foundation under Grant Numbers CNS-1239196,

CNS-1239171, and CNS-1239229.

REFERENCES

[1] R. J. Wood, “The first takeoff of a biologically inspired at-scale robotic
insect,” Robotics, IEEE Transactions on, vol. 24, no. 2, pp. 341–347,
2008.

[2] Z. Teoh, S. Fuller, P. Chirarattananon, N. Prez-Arancibia, J. Greenberg,
and R. Wood, “A hovering flapping-wing microrobot with altitude
control and passive upright stability,” in Intelligent Robots and Systems
(IROS), 2012 IEEE/RSJ International Conference on, Oct 2012, pp.
3209–3216.

[3] D. Doman, M. Oppenheimer, and D. Sigthorsson, “Dynamics and control
of a minimally actuated biomimetic vehicle: Part I - aerodynamic
model,” AIAA Guidance Navigation Control Conference, 2009.

[4] ——, “Dynamics and control of a minimally actuated biomimetic vehi-
cle: Part II - control,” AIAA Guidance Navigation Control Conference,
2009.

[5] B. M. Perseghetti, J. A. Roll, and J. C. Gallagher, “Design constraints of
a minimally actuated four bar linkage flapping-wing micro air vehicle,”
in Robot Intelligence Technology and Applications 2. Springer, 2014,
pp. 545–555.

[6] S. K. Boddhu, H. V. Botha, B. M. Perseghetti, and J. C. Gallagher,
“Improved control system for analyzing and validating motion con-
trollers for flapping wing vehicles,” in Robot Intelligence Technology
and Applications 2. Springer, 2014, pp. 557–567.

[7] H. V. Botha, S. K. Boddhu, H. B. McCurdy, J. C. Gallagher, E. T.
Matson, and Y. Kim, “A research platform for flapping wing micro air
vehicle control study,” in Robot Intelligence Technology and Applica-
tions 3. Springer, 2015, pp. 135–150.

[8] J. Gallagher, D. Doman, and M. Oppenheimer, “The technology of the
gaps: An evolvable hardware synthesized oscillator for the control of
a flapping-wing micro air vehicle,” Evolutionary Computation, IEEE
Transactions on, vol. 16, no. 6, pp. 753–768, Dec 2012.

[9] J. C. Gallagher and M. W. Oppenheimer, “An improved evolvable
oscillator and basis function set for control of an insect-scale flapping-
wing micro air vehicle,” Journal of Computer Science and Technology,
vol. 27, no. 5, pp. 966–978, 2012.

[10] J. C. Gallagher, L. R. Humphrey, and E. Matson, “Maintaining model
consistency during in-flight adaptation in a flapping-wing micro air
vehicle,” in Robot Intelligence Technology and Applications 2. Springer,
2014, pp. 517–530.

[11] G. Greenwood and A. M. Tyrrell, Introduction to Evolvable Hardware:
A Practical Guide for Designing Self-Adaptive Systems. Wiley-IEEE
Press, 2006.

[12] M. North, N. Collier, and J. Vos, “Experiences creating three
implementations of the REPAST agent modeling toolkit,” ACM
Trans. Model. Comput. Simul., vol. 16, no. 1, pp. 1–25, 2006.

[13] R. Brooks, “A robust layered control system for a mobile robot,”
Robotics and Automation, IEEE Journal of, vol. 2, no. 1, pp. 14–23,
Mar 1986.

[14] L. Sean, C. Cioffi-Revilla, L. Panait, K. Sullivan, and G. Ballan, “MA-
SON: A multi-agent simulation environment,” Simulation: Transactions
of the society for Modeling and Simulation International, vol. 7, no. 82,
pp. 517–527, 2005.

1080

