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Abstract—Mathematical and computational modelling is now
firmly established as an important tool in life sciences. However,
it is not yet established as a source of biological knowledge
on an equal footing with experimentation. Here we argue that
there are now substantial opportunities for a new theoretical
biology that not only benefits from experimental research but also
influences this research. We argue that such a new theoretical
biology would need to find the appropriate level of abstraction
and combine aspects of Artificial Life and theoretical biophysics.
We also provide an outline of a research agenda that could lead
to experimentally testable insights into biological systems.

I. INTRODUCTION

Mathematical and computational modelling is now firmly

established as an important tool in the life sciences. Bioinfor-

matics, for example, is an almost exclusively computational

endeavour, but at the same time indispensable for modern life-

science research. Similarly, systems biology relies heavily on

computational support for data storage and analysis and model

inference. Moreover, even for conventional experimental biol-

ogy it is now becoming ever more common to accompany

experimental data with a theoretical model to explain the

results.

Despite this advance of formal methods in biology, bio-

logical knowledge generation is still heavily dominated by

experimental methods. Computational and mathematical mod-

elling is more often than not seen as an add-on or as a service

rather than as a fundamental part of knowledge generation.

Theoretical biology does not have the same relationship to

and importance for experimental biology as theoretical physics

does for experimental physics. A symptom of this is that the

“Journal of Theoretical Biology” is rarely read or referred to

by experimentalists.

One reason for this is clearly of historical nature. Until very

recently, biology has been an almost exclusively experimental

science. Consequently, biologists tend not to have a strong

background in mathematics, unlike, for example, experimental

physicists who do understand theoretical results. It is therefore

difficult in biology to establish a true dialogue between ex-

perimentalists and theoreticians. Moreover, predictions arising

from theoretical biology are not as good as they are in

theoretical physics; often it is not even clear how to test

them experimentally. There are also many important areas of

biology that are perhaps forever beyond theoretical prediction.

For example, it will likely never be possible to predict the

DNA sequence of E. coli from first principles. Understanding

the diversity of life requires experimental methods.

Many details of biological systems are accidental and not

amenable to an explanation from a theory, yet there are also

many general features of biological systems that reflect very

specific optimisation strategies and, as such, can be explained

theoretically. Within evolutionary biology and game theory

there is a rich mathematical tradition explaining behavioural

strategies [1]. Beyond that, in the context of the structure of

the living system, there probably are overall design principles

that unify the diversity of life. These principles will not be

sufficient to predict details of living systems, but they can

provide an evolutionary rationale for observed specifics. In

turn this rationale can be used to separate the accidental from

the fundamental.

There have been a number of attempts to uncover deep

insights into the design principles of biological systems based

on first principles. Some approaches rely on very abstract

models of biological organisation. Take, as an example, Robert

Rosen’s (M,R) systems which are a highly idealised organisa-

tional model of living systems [2]. Another related approach is

autopoiesis [3], [4]. The core idea of both of these theoretical

attempts was that life is fundamentally about organisation

rather than about a particular material (i.e., carbon-based

biochemistry). Inspired by the same idea, there were then

various attempts to capture essential organisational aspects of

life using artificial chemistries [5]–[9].

Another research direction that was promising as a basis

for a theoretical biology is complexity theory, especially the

idea of the universality classes [10], [11]. Applied to biology

this led to the discovery of scaling laws in biological systems

[12]. More recently, network biology provided interesting new

insights, especially the discovery of over-represented local

connection patterns in biological networks such as genetic

regulatory networks, termed network motifs. It has been pos-

sible to assign a function to those motifs [13] and hence to

understand some of the underlying principles of biological

systems. All the above mentioned research directions were

taken note of in various research communities, but remained

marginal within empirical biology. This is regrettable because

formal science has very much to contribute to empirical

biology and the need for theoretical understanding is arguably

increasing. Development in biotechnology is accelerating and

promises new and more data coming forward. This is often
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taken as an indication that novel methods in data science

are needed to interpret this data, which is true. However,

more importantly, this creates the possibility of generating

hypotheses about design principles of biological systems and

to test specific conjectures in data first, without the need to

spend much time and effort in the lab on an untested theory.

One promising area is quantitative design principles of

biological networks; for example, gene regulatory networks.

Regarding the topological properties of these networks signif-

icant progress has already been made (c.f., network motifs).

However, fairly little research exists to try to understand the

numerical values of networks, i.e., the numbers on the arrows

in the network diagrams. It is understandable why. These

numbers often relate to kinetic constants, reaction rates and

the speed of biochemical processes. These quantities are hard

to measure and, when they are measured, the measurements

have a very large associated error. Modellers tend to regard

them as a nuisance and rarely consider them than as a genuine

source of general knowledge. They need to be known to model

the system, but they have no value in and of themselves.

Taking genetic regulatory networks as an example. Any

given network topology has a very large number of possible

parameterisations. Many of those will be equivalent in the

sense that they would lead to essentially the same behaviour,

but they may also encode different strategies. One of the

features that genetic networks encode is when and under

what conditions a resource is produced by the cell. As such,

the regulatory network is encoding the “economic plan” of

the cell. If we start to understand the principles of how

cells function then we could be in a position to predict

kinetic parameters, or at least equivalence classes of kinetic

parameters. This, in turn, could then be tested in experiment.

We think that understanding these quantitative properties of

networks can provide deep insights into the design principles

of biological systems. Kinetic parameters have evolved and,

as such, should be assumed to be optimised to a particular

set of adaptive pressures. Given this, they contain important

information about the ecological role of the organism and its

overall life strategy. Moreover, given the accelerating rate of

data generation, it is only a matter of time before kinetic

rate constants will be available on a large scale and can be

analysed.

In this article we will use the example of resource alloca-

tion in cells to illustrate the potential value of quantitative

network descriptions. Specifically, we consider how, in a

series of simple models of cells, resource allocation impacts

on growth. In all of these models we assume that there is

the choice between either allocating nutrient to maintenance

of the uptake/metabolic machinery or directly channelling it

into growth/reproduction. We show that, while the numerical

specifics differ depending on how one chooses the model,

the overall results indicate the same principle in all cases:

There is an optimal allocation of resource to growth relative

to maintenance. The models presented here are somewhat ab-

stract, although they do represent some of the essential features

of real regulatory networks. Nevertheless, the presentation

here serves to highlight how such models could be used to

generate general predictions that can be tested experimentally

in specific organisms.

The models presented here will focus on the trade-off

between the need to grow and reproduce and the requirement

of the cells to produce the machinery that enables this growth.

For a cell it is not useful to have nutrient available when this

nutrient cannot be efficiently converted into usable energy and

growth. However, an efficient metabolic machinery is not very

useful if it entails high maintenance costs or has extensive

space requirements. If all nutrient is used for metabolism, the

cell will never grow or reproduce. At the same time, if all

nutrient is channeled into growth, then none is left to acquire

the necessary nutrient, and the cell will die. This suggests that

somewhere there is an optimal allocation of resources that

maximises growth. Given a particular network, this allocation

strategy is determined by the parameterisation of the network.

In biological systems the question of resource allocation

appears frequently. A well known example is translation. The

decoding of the mRNA in cells is performed by ribosomes.

These are molecular machines that are large and very ex-

pensive to make. Calculations of the energy requirements in

Baker’s yeast [14, see SI] have shown that ribosome synthesis

takes up a considerable part of the overall energy budget of

the cell. Moreover, translation has been shown to be limited

by ribosome availability. Presumably the same is true for most

other unicellular organisms.

Once one takes into account the cost of the machinery,

this then leads to interesting dynamics. If the cell stepped up

protein production, say, in order to be able to take up more

nutrient from the environment or to metabolise faster, then this

would require extra ribosomes, and lead to altogether higher

cost. If all energy is used in order to produce non-ribosomal

protein, then there would be no machinery to actually produce

the proteins. If on the other hand everything is used for

ribosomes, then it would be impossible for the cell to take

up and metabolise nutrient. This suggests again that there

is an optimum allocation of nutrient to ribosomal genes that

optimises the speed of protein synthesis. Formally, this trade-

off is very similar to the reproduction-metabolism trade-off we

explore here.

II. MATHEMATICAL MODEL

In order to understand this trade-off in more detail, we

devised a minimal mathematical model of growth processes.

This model is a simple representation of nutrient uptake in a

single-celled organism, such as a bacterium. We consider a

process whereby some external nutrient N is taken up using

porins P . We denote the internalised nutrient by E. The

internalised nutrient is then channeled either towards more

porin, with a rate constant of k3, or towards growth, with

a rate constant of k2. This model can be summarised by the

following differential equations

Ė = k1NP − (k2 + k3)E

Ṗ = k3E − k4P (1)
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Fig. 1. Simulation of the equation system 6 for different values of the porin breakdown rate k4. It shows the final value of the biomass (i.e., for t → ∞).

To simplify the analysis without affecting generality, we set

k1 = k4 = 1 and we assume that k3 = 1 − k2. We can

then solve the system of equations analytically for the initial

conditions E(0) = 1, E(0) = 0 and obtain:

P (t) =
1

2

(
e(a−1)t + e−(a+1)t

)

E(t) =
a

2(k2 − 1)

(
e(a−1)t + e−(a+1)t

)
(2)

here a is given by

a =
√
N −Nk2

The value of a is real as long as k2 ≥ 1. P (t) will grow

exponentially in time as long as k2 < N−1
N

. With this

analytical solution in hand, we can then compute the flux of

the system toward biomass:

Fbm = k2 · E(t) (3)

When written out, the k2 terms of the flux can be seen to

combine to
k2√
k2 − 1

Hence, in the limit k2 → 0 the flux goes to zero. In the

opposite limit of k2 → 1 the flux approaches:

lim
k2→1

Fbm =
nt

et
(4)

This function tends to zero rapidly in time. Hence, in both

limits the flux to biomass vanishes. If, on the other hand we

set k2 = 0.5, then we obtain

E(t)|k2=
1

2

=

√
2n

4

(
e

t
2 (−2+

√
2n) − e−

t
2
(2+

√
2n)

)
(5)

For large t the second term in the parenthesis goes to zero,

but the first term grows exponentially. Hence, altogether, there

is positive flux to biomass for k = 1/2 and hence there is a

value 0 < k∗2 < 1 that leads to maximum flux. This means

that k∗2 is an optimal parameterisation with respect to biomass

production.

III. A NUMERICAL EXAMPLE

We can expand the model somewhat to include depletion

of the nutrient with a rate of k0. We then arrive at the

differential equation model containing equations 1 plus a

depletion equation that represents that external nutrient is used

up

Ṅ = k1NP (6)

This system is not solved as easily as the previous system and

we revert to numerical solutions instead.

Numerical solutions of the system (see fig 1) confirm that

there is an optimal allocation of nutrient with respect to total

biomass production as long as k4 > 0. As the degradation

value k4 increases the maximum becomes shallower and the

total amount of biomass that can be produced becomes lower.

IV. MODEL OF NUTRIENT GROWTH

The above two models are very abstract and only outline the

behaviour of a real system. The question is now whether or not

the same sort of behaviour holds for more complex models.

In order to understand this we extended the model further by

adding expression of the porin. In order to produce a porin

two things need to happen. Firstly, the operon for the porin

needs to be activated. Secondly, in order to be able to express

a protein, the simulated cell requires energy. This energy must

in turn be produced from nutrient that is taken up.
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Substrate Product Reaction rate

N E kN
N

N+KN
P bm

E E0 kEE

p+ E0 p+ P

(
leak + kP

EH

EH+KH
P

E0

)
bm

{P,E} ∅ d{P,E}

E0 bm k2 bm
E0

E0+Kg

TABLE I
THE NETWORK TOPOLOGY FORMULATED AS A SYSTEM OF CHEMICAL

EQUATIONS.

In this particular case the activation function of the nutrient

is modelled on the operon-derepression motif that is a common

feature of bacterial uptake systems. The idea is that the operon

with the permease and metabolic genes is repressed under

normal circumstances. Once nutrient enters the cell it will

interact with the repressor and release it from the binding site.

This then enables the expression of the porin.

The model is summarised in table I. For clarity of presenta-

tion we do not present the full system of differential equations,

however, the table contains all terms that are contained in the

model. The uptake of external nutrient N is described in the

first row and depends on the amount of N via a saturating

function and depends linearly on the number of porins and

the biomass. This latter dependence is necessary in order to

simulate exponential growth. Once nutrient is taken up into

the cell, it is then converted into internal energy E0 (second

row). Expression of the porin P from gene p is activated by

the presence of the nutrient E via a Hill function with Hill

exponent H = 2 but it also requires internal energy E0 to

proceed. Note that in addition to the regulated term, P is also

expressed with a certain leak rate independent of the presence

of N . This leak rate is important in order to induce the system

when N first appears. Expression of P is also proportional to

bm. The fourth line describes breakdown of porins and the

internal nutrient. Note that the value d for both is set equal to

the growth rate; hence breakdown is linked to dilution in an

exponentially growing population. Finally, the last row in table

I describes how internal energy E0 is converted into biomass.

The conversion rate is a saturating function of E0 and depends

linearly on the growth rate constant k2. This constant regulates

the amount of nutrient that is converted into growth.

Similar to the differential equation model we stipulated that

at the beginning of the simulation there are 1000 units of

nutrient, which are then consumed by the cell and converted

into biomass or porins. The model contains a number of pa-

rameters and the behaviour of the model is crucially dependent

on how these parameters are chosen. A manual exploration of

the parameter space would be difficult and time consuming.

We therefore used a genetic algorithm to evolve parameter

sets that maximise the production of biomass. Fitness was

the biomass produced after all nutrient was used up. We

evolved the system for 5000 generations. Each repetition of

the GA resulted in numerically somewhat different solutions

(i.e., parameter sets), but each time these solutions were very

efficient, in the sense that they converted almost all nutrient
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Fig. 2. The biomass produced as a function of the growth parameter k2 in
the model from table I. The left-hand (red) line uses parameters that have
evolved to maximise growth yield. The right-hand (green) line has evolved
to maximise growth rate. The maximum of the green line is extremely sharp
and it drops from ≈ 900 to ≈ 100 within 0.001 units of k2.

that was on offer into biomass with very little energy being

used for porin production. This is clear from figure 2 which

shows that at the maximum the evolved solutions achieved a

fitness of almost 1000. An ideally efficient solution converts

1 unit of external nutrient into 1 unit of growth.

In addition to evolving parameter sets for yield, we also

evolved sets that optimise growth rate. This was achieved by

an iterative extension to the GA as follows: First we evolved

a set of parameters optimised for yield, as described above.

Next, we fixed this solution and re-ran the GA. In this second

iteration the evolving solutions had to directly compete for

nutrient with the fixed solution that had evolved previously. In

this second iteration we found that the evolving solution came

to dominate the fixed solution. Subsequently, we repeated this

procedure, with the evolving solution of the second iteration

now being fixed in the third iteration and so on. We did this

altogether 8 times. We found that later solutions tended to

outcompete previous solutions, in the sense that they achieved

a higher share of the nutrients or even prevented growth of

the previous solution altogether. The amount of improvement

over previous solutions decreased with each iteration.

Analysis of the solutions that co-evolved in this way showed

that the co-evolutionary strategy to outcompete the fixed

solution was to take up nutrient faster, thus preventing the

fixed solution from growing. We found that, after a certain

number of iterations, evolving solutions failed to outcompete

the fixed solution. This is to be expected because parameter

values were restricted (arbitrarily) to vary within the range

[0, 15]; consequently, there was an upper limit on the speed

with which nutrient could be taken up.

In order to understand how the biomass production depends

on the amount of nutrient used for growth, we chose two

evolved solutions. One solution optimised for yield and one

optimised for growth rate. Figure 2 compares the results. The

maximum biomass attainable in the solutions here is 1000. In-

terestingly, as the parameter k2 was varied, the yield-optimised
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solution was either close to the maximum — converting all

nutrient to biomass — or, for very large or very small k2, it

showed barely any growth at all. The transition between those

two regimes is very sudden. Fitness change within the regime

is negligible. Hence, substantial fitness change is limited to

the transition between regimes.

The picture is even more extreme for the growth-rate opti-

mised solution. While the yield-optimised solution had a broad

range of parameter values for which biomass production was

essentially constant and optimal, the yield-optimised solution

has a sharply focussed maximum. It has a gentle slope leading

to the maximum from low values of k2, but drops almost

instantaneously from the maximum to very poor solutions of

about 100 biomass. The rate-optimised solution did not evolve

to the maximum biomass production. Optimal k2 is around 28
which is outside the allowed range of the parameter.

Note that for values of k2 the growth-rate optimised solution

produced less biomass than the yield-optimised solution. How-

ever, also note that in direct competition the rate-optimised

solution would outcompete the yield-optimised one.

V. STOCHASTIC MODEL

The final model we present is identical to the model in

table I, but was simulated using stochastic simulation methods.

Rather than using differential equations, it was simulated using

a Gillespie-style algorithm [15]. Unlike differential equation

models, stochastic simulations admit only discrete units of

particles. In particular, the minimum amount of a particle that

can exist is 1. An implication of this is that models of the

type we consider here can suffer “deadlock states.” If the

cell has no nutrient left and it has no porins available to

take up nutrient, then it will die. Even though there may be

a large amount of nutrient in the environment, without the

pre-requisite resources, the cell is not able to utilise those.

The equivalent of such a deadlock state in the differential

equation model would be the steady state characterised by

E(t) = P (t) = 0. However, this state is unstable and small

fluctuations away from it will lead to jump starting the cell

processes. In particular, this entails that a differential equation

model will never get into a deadlock state from a running state

for as long as there is nutrient available. Stochastic models,

on the other hand, can fluctuate into a deadlock state.

Stochastic simulation algorithms, such as the Gillespie al-

gorithm, execute one reaction at a time, deducting and adding

molecules to the pool as stipulated by the reaction. The main

task of the algorithm is to choose (i) the next reaction to

execute and (ii) the time since the previous reaction. This

choice is made probabilistically based on the reaction kinetics

and the number of particles of each chemical species in the

system. An exact algorithm, such as the Gillespie algorithm,

behaves like the equivalent differential equation model in

the limit of very large particle numbers. For small numbers

of particles the behaviour may be very different from the

differential equation model and be dominated by noise.

The deterministic model described above did not have a

concept of cell division. While, technically, it is possible to

implement dividing cells in differential equations, the resulting

model would be extremely complicated and hard to maintain.

Hence, in the deterministic model the biomass captures both

the actual biomass and cell number (while not strictly differ-

entiating between them). Stochastic models are much more

suitable to implement cell division. Here we stipulated that

a cell, once it has acquired more than a threshold amount of

biomass, can divide. In the case of division, porins and internal

energy in the dividing cell are randomly divided between

mother and daughter cell.

The differences between the stochastic and deterministic

models entail that parameter values are not compatible. In par-

ticular, a solution that is perfectly viable leading to substantial

growth in the deterministic model may be prone to deadlock

in the stochastic case, or simply perform much worse than

the deterministic simulation would suggest. Hence, in order

to explore the parameter space of the stochastic models, we

evolved new solutions.

The fact that stochastic models support division allows us

to implement implicit fitness evolution. Rather than specifying

a fitness function (which was the biomass generated in the

previous case), it is now possible to let solutions compete

among each other (c.f. [16]). The idea of the approach is to

start the simulation with a number of random solutions that

are competing for the same resource, growing and dividing.

Upon each division individuals may be mutated, i.e., a random

parameter of the solution will be adjusted by a small amount;

parameters are constrained to remain in the interval [0, 15]. In

this case it is not necessary to revert to iterative evolutionary

rounds. Instead, the heterogeneity in the population provided

sufficient adaptive pressure to obtain competitive solutions.

In figure 3 we have taken one such solution and simulated it

in the absence of competition for many different values of the

parameter k2. Again, there is clearly an optimal resource allo-

cation that maximises yield. Note that the amount of biomass

produced on any one run depends on the random seed, but the

amount of variation from this factor is not equal across the

parameter space. For low values of k2 the variation between

simulations was small. Interestingly, around the optimal value

the system becomes unstable. Even in the vicinity of the

optimal value there were a few runs that resulted in deadlock,

i.e., very low fitness. This is indicated by the data points close

to the x-axis. The variability of the simulation increases as k2
increases and for k2 > 500 there is an area where the level

of biomass produced is highly variable between runs. Such

variations are expected in stochastic variables. However, the

salient point for our purpose here is that there is a resource

allocation that leads to optimal growth.

VI. METHODS

We used Maple 16 software to numerically solve the

differential equation models. The artificial evolution of the

deterministic model was implemented as a Perl script that

creates and modifies Maple files. The stochastic models were

implemented using an in-house implementation of the Gibson-

Bruck algorithm [17]. This implementation also contained
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Fig. 3. The amount of biomass produced depending on resource allocation in a stochastic model.

the evolutionary model. The software will be described in a

forthcoming publication [manuscript in preparation].

The genetic algorithm used a fitness-proportional selection

scheme with mutation and crossover (both with a rate of 0.2
per generation). We also employed elitism conserving the best

solution from each generation and a mutated version of the

best solution. We found that solutions are not sensitive to

variations of these parameters.

The implicit evolution used a random initial population of

50 solutions. These divided as the population grew. During

each division event a solution suffered a mutation with a rate

of 0.2. When nutrient ran out the simulation was stopped and

the population was pruned to 50 by randomly removing cells.

The system was then re-started, pruned and so forth, altogether

5000 times. The population was also spatially structured. This

means that 32 evolution runs were performed in parallel. At

each round there was a small probability for solutions to

migrate from one population to another one. Hence, the 32

simulations were weakly interacting. The evolution was halted

after 5000 rounds and the fittest solution from all populations

was selected as the final solution.

VII. DISCUSSION

The series of models presented here suggests that there is an

optimal allocation of resources in a cell. The particular shape

of the optimality curve depends on the model but the overall

phenomenon is stable for a wide range of model assumptions,

although all the models presented here remain very strong

idealisations relative to real cells. At the same time, we

argue that the stability of the phenomenon and the plausibility

argument given above lends credibility to the conjecture that

real cells have a similar optimal allocation strategy.

Our results above only outline a potential research program,

highlighting a research question that can be addressed in

general models, while at the same time deriving results that

are relevant for a wider range of biological systems. In this

particular case the research challenge is to understand what the

optimal allocation strategy depends on in real cells. Unlike

the fairly constrained model here, reals cells have a large

number of evolutionarily “moving parts.” The size of a cell,

for example, is under selection pressure. The larger the cell

the more space it has available for uptake, but at the same

time the more nutrient it needs to consume before it divides.

If we want to understand optimal allocation strategies in real

cells, then we likely need to take into account the cell size at

division as a relevant parameter. The question is whether or

not there still exists a single optimum or whether the problem

then transforms into a trade-off relationship without a single

optimum.

A further refinement of the model we presented here would

be to take into account the effects of varying environments.

Cells that are adaptable to different conditions need to carry

the metabolic cost of maintaining complex regulatory net-

works [18]. At least in the realm of single-celled organisms,

regulation provides the flexibility to exploit a wide variety

of environments. Most of all, it allows the cell to maintain

a presence in unstable environments. However, in each of

the possible environments the cell is worse off than more

specialised cells that do not have to carry the burden of

complex regulation.

This is an instance of the “generalist-specialist” trade-off

in evolutionary biology [19], but playing out at the level of

biochemistry. As such this well known evolutionary dilemma

can be directly linked to the metabolic cost of maintaining
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complex regulatory networks. This cost, on the other hand,

is connected to the theory of stochastic computers, i.e.,

Bennett’s “Brownian computers” [20]. Biochemical systems

are instances of such Brownian computers. One of the key

properties of these systems is that a certain computational

speed requires a minimal energetic investment, thus linking

energy usage of regulation to speed of regulation in cells [21].

Research questions of the type outlined above have been

addressed before [22]. Yet, typically the investigation and

the results have remained isolated within specific disciplinary

traditions. In particular, physicists are often interested in

fundamental limitations of living systems. And indeed, work

coming out of physics has led to important insights into the

underlying principles of living systems. Yet, these disciplinary

approaches that are common at the moment must be pushed

out further and be connected to the daily work of experimental

biologists. Doing this requires a novel approach.

Combining formal methods from theoretical physics with a

more abstract approach similar to early research on artificial

chemistries may be useful here. The key idea of the research on

design principles was that the key to understanding life is the

organisational structure of living systems, not the specifics of

individual instances of life. This insight is still a valuable one,

as long as it is combined with a reasonable representation of

the constraints that real living systems are subject to. A limited

abstraction process could then liberate the modeller from the

specifics that life science research has produced today. At the

same time, it would potentially lead to valuable new insights

that can then be validated using this new data (first) and lead

to prediction of experimental outcomes (later on).

VIII. CONCLUSION

Here we have presented some results of models of nutrient

allocation in organisms using a number of different models

with differing assumptions. All the models predict that there

is an optimal allocation of nutrient, although precisely where

this optimum is and the shape of the optimality curve depends

on the specifics of the model assumption.

We have discussed these results as a possible approach for

a more integrated approach of formal modelling in biology.

Formal modelling is, at present not a primary source of biolog-

ical knowledge generation, but often of secondary importance.

However, we think that biology with an upgraded input from

theory would lead to important new insights that are currently

not possible.
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