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Abstract—We study conditions for sustained growth of com-
plexity in an abstract model of parasitic coevolution. Previous
research has found that complexification is hard to achieve if
the evolution of the symbiont population is constrained by the
hosts but the evolution of the hosts is unconstrained, or, more
generally, if the task difficulty is much higher for the symbionts
than for the hosts. Here we study whether three bioinspired
methods known from previous research on achieving stability
in coevolution (balancing, niching, and reduced resistance) can
restore complexification in such situations. We find that reduced
resistance, and to a lesser degree niching, are successful if applied
together with truncation selection, but not if applied together with
fitness proportional selection.

I. INTRODUCTION

Evolutionary algorithms have been used successfully to

solve various optimization problems including for scheduling,

symbolic regression in astronomy, optimizing antenna designs

and shapes of car parts, finding electronic circuits that per-

form a given function, and game playing (e.g., [1], [2]). In

the field of evolutionary robotics, they are used to evolve

topologies and connection weights of neural networks that

in turn control robot behavior [3]. However, when evolution

is used to create robot behavior, the resulting complexity is

typically rather limited, especially if compared to the results of

more traditional engineering methods. It is therefore desirable

to better understand how evolutionary processes can lead to

the emergence of complex adaptations, and what kinds of

adaptations they can produce.

In theoretical biology (where these questions are also im-

portant), it is well understood that direct evolution towards

a fixed target cannot produce some kinds of complexity [4].

Coevolutionary processes, on the other hand, can overcome

some of these limitations [5]. Within the field of evolutionary

computation, it has been found that the coevolution of solution

candidates with solution quality tests can lead to better results

than direct evolution of solution candidates against a static

fitness function [6]. Obviously, coevolution can provide a

path of incremental learning for autonomous agents. However,

coevolutionary dynamics can also lead to undesired outcomes.

Well known problems are:

Disengagement: One population becomes vastly superior to

the other such that no gradient for learning is

available any more;

Overspecification: One population becomes very successful in

interactions with the particular individuals of the

other population, but lacks sufficient generality;

Strategy cycling: Populations cannot find a generally superior

strategy, but only strategies that are successful

against some types of interaction partners (cf. the

„rock /paper / scissors“ game), which leads to

the cyclic re-emergence of simple strategies that

are successful only against the currently present

interaction partners.

A number of techniques have been used to prevent or reduce

such problems:

Reduced virulence: Selecting for individuals in the superior

population that are less than optimal can prevent

disengagement [7];

Balancing: Reducing the speed of evolution (i.e., increasing

generation length) for one population can help the

other not to loose track [8];

Niching: If the resources that can be provided by the

interaction with one particular hosts are limited

and have to be shared by all symbionts, this can

enhance diversity in the symbiont population [9],

[10], which makes the population more adaptable

in the long run;

Spatial structure: Only allowing local interactions between

symbionts and hosts and/or for selection within

one population can also promote diversity [6],

[11];

Hall of fame coevolution: If individuals have to compete

against interaction partners from previous gener-

ations as well, this can prevent strategy cycling

[8].

So far, coevolution has been typically used either for solving

fixed problems like function approximation (e.g., [6]) or for

finding desired behaviors in evolutionary robotics (e.g., [12]),

and success has been defined mainly either subjectively by

inspection of evolved behavior, or as reaching the fixed goal.

While a certain amount of complexification will typically
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have to occur in coevolutionary robotics for the emergence

of an interesting strategy (e.g., [13]), this complexification is

typically neither the main focus, nor is it explicitly measured.

In fact, complex strategies do not necessarily correspond to

complex internal structures of agents. They can also arise

by interaction with a sufficiently complex environment [14].

However, natural agents typically have much more complex

internal structures (e.g., nervous systems) than have artificially

evolved agents. Furthermore, their behavioral complexity far

exceeds the complexity so far achieved in artificial evolution.

Besides, within a given environment, there is certainly a corre-

lation between the internal complexity and the complexity of

the behavior. It is therefore desirable to study more explicitly

which conditions can lead to coevolutionary complexification

of autonomous agents. The type of complexification that we

are interested in is not just an increase in the number of

components. We are interested in the number of components

that, taken together, solve a particular problem arising as a

consequence of the need to survive and reproduce, or in other

words, that can be seen as performing a particular function.

Abstract models of coevolution allow measurements of

complexity, and make identification of the factors leading to

complexity more easy. Previous research on coevolutionary

number games (e.g., [15]) may provide a starting point.

However, this research was targeted at other questions about

coevolutionary dynamics, and the used encodings (single num-

bers or vectors of a few component numbers) do not provide

the potential for complexification. Previous biological research

on “Gene for Gene” coevolution models and various related

extensions [16], [17] has focused on the dynamics of one

gene or a fixed number of genes with several (typically 2)

alleles each that can make a host resistant to infection, or a

pathogen virulent. In these models, the more powerful alleles

typically incur fitness costs, and the distributions of alleles

over time in the two populations are studied. These models are

not concerned with questions of complexification over time or

the difficulties of finding powerful alleles in the first place, and

“arms races” [18] arising in these models typically consist of

cycles where the frequencies of a finite number of different

strategies in the populations increase and decrease.

Further theoretical biology research on coevolution has been

done using the Webworld family of models [19]. In the basic

Webworld model, a species is characterized by a fixed size list

of features. It interacts with species that have other features

as defined by a randomly initialized feature interaction matrix.

The model consists of phases were species sizes are computed

iteratively by means of differential equations until the food

web becomes stable. In between these phases, new species

are created by randomly changing the feature lists of existing

species. This model has been extended such that the number of

features of a species can vary within bounds, and a growth in

complexity has been observed in the extended model, although

the reasons for that growth were not entirely clear [20].

Only very few models have been created to study com-

plexification with abstract individual based models so far.

The Foodchain model [21] models symmetric competitive

coevolution between individuals that are strings of letters with

a fixed length. Some letters can be used for attack, others

for defense, and the rest have no function. Matching is done

between sequences of attack and defense letters present in the

genome of two individuals to determine which one gains from

the interaction. Point mutations and duplications are used in

an evolutionary process that leads to complexification, i.e., a

growth of functional subsequences in the genomes. One of us

has published more general work on number sequence games

[22]. It was shown in this work that complexification can

occur in models of mutualism, parasitism, and commensalism

between two species. In some cases, the growth of complexity

was apparently unbounded. It has also been argued that these

models therefore fulfill a previous formal definition of open-

ended evolution [23]. Those few systems that were designed

to fulfill this definition before were either very complex,

making it hard to understand why they exhibited this open-

ended evolution, [24], or relied on diversity rather than com-

plexification to produce open-ended evolution [25]. In the

new model, the influence of different mutation and selection

methods, as well as that of relative task difficulties for the two

species, were also investigated. It turned out that significant

and sustained complexification only occurs in these models if

the task difficulty for the symbionts is not much more difficult

for the hosts. Of course, when working with more realistic

tasks (e.g., in evolutionary robotics), the task difficulty for

the various populations is unknown in advance. Therefore, it

is desirable to have a method of coevolution that can achieve

complexification over a wide range of task difficulty ratios. We

study here whether three of the above mentioned techniques

can contribute to this goal. We focus on balancing, niching,

and reduced virulence (the last method is called reduced

resistance here because unlike in the work where the method

was introduced, it is applied to the host population here, not

to the symbiont population). These methods are applied on

parasitic coevolution (the mutualistic case is not of interest

here because as it has been defined in [22], the task difficulty

is always the same for both populations). Furthermore, because

previous research has indicated that complexification in these

scenarios also depends on the used selection method (with

truncation selection typically leading to faster and more stable

complexification than fitness proportional selection), we con-

duct experiments using both truncation selection and fitness

proportional selection here.

II. METHODS

A. Number sequence games

There are two populations in the number sequence games

studied here. The genotype — and the phenotype — of a

member of either population is a sequence of numbers. These

numbers can, for example, represent enzymes that need to

be expressed in a particular temporal order, or behavioral

primitives that can be composed to reach a certain goal.

Typical parasitic scenarios include host defense enzymes, and

corresponding neutralizing parasite enzymes, or behavioral

primitives in a pursuit and evasion scenario.

1095



In every generation, each organism in one population is

tested against every organism in the other population. In the

basic parasitic model, symbionts gain a fitness bonus for every

host organism whose number sequence they completely match.

This means that there must be pairwise matches between

corresponding host and symbiont numbers. This pairwise

matching is performed until either only the host sequence

ends (the symbiont wins), only the symbiont sequence ends

(the host wins), both sequences end (the symbiont wins), or a

wrong number event occurs in the host sequence (the symbiont

wins). A wrong number event means that the defense produced

by the host is ineffective because it violates externally provided

constraints. To use such constraints in the parasitic model has

proved to be beneficial in previous research on the model

because otherwise the problem to be solved by the symbionts

(which have to exactly match the host numbers) is much

more difficult than the problem to be solved by the hosts

(which can choose any number), which normally leads to the

hosts escaping from the symbionts early in evolution. We will

report experiments below where we remove these constraints.

A match between two numbers is defined as equality here, but

other relations (like complement) would be equivalent as long

as they do not change the number of possible solutions.

Each fitness bonus has a value of 1.0. To arrive at the

final fitness of an organism, these bonuses are added, and

then a fitness contribution due to genome length fl(o) =
clp exp(−0.1 · [genome length]) is added, where clp is a

constant that determines the costs of adding and maintaining

further genes.

The externally imposed constraints on the host number

sequence are designed to ensure that only a fraction 1/np

of the newly added genes will be effective, so the space of

host solutions is constrained exactly as much as the space of

symbiont solutions (where also only one number will match

at a given position). In principle, a random number could

be drawn for each sequence position at various stages during

coevolution when the constraint information is needed for the

first time, but it is equivalent (and easier to implement) to

choose the whole constraint sequence once at the beginning

of evolution. Because this sequence is of potentially infinite

length, we take the following rule-base approach: The first

number in the sequence must be 1, and a number at position

n+1 must have the value v(n+1) = (v(n) + 1)%np, where

0..np−1 is the range of possible gene values and ’%’ denotes

the modulo operation. Thus, the only effective gene sequence

of length n < np takes the form [1, .., n]. Now the resulting

sequence is obviously one of high regularity and therefore

low algorithmic (Kolmogorov) complexity, but it should be

noted that neither the genetic system nor the fitness function

(apart from this constraint) use any notion of neighborhood of

numbers, and there is no way of predicting future constraints

based on previously seen constraints with the simple genetic

representation and mutation operators that we use here, so we

could equivalently use any other constraint sequence, including

a completely random one.

Simple fitness proportional selection (without any elite

mechanism) and truncation selection (where 10% of the pop-

ulation is used as parents) is used. All experiments use a well-

mixed population without any spatial structure.

B. Genetic representation and operators

Figure 1. Measuring irreducible functional unit size (IFUS) in symbionts.
In this example, the host population size is 3, and the symbiont sequence
matches all host sequences. IFUS is defined as the maximum of the number
of irreducible sites in a matching sequence, where irreducible means that there
is no intermediate reward provided by other matches.

As already mentioned, the genome is basically a sequence

of numbers. Three mutation operators are used on these se-

quences: add a number (with probability 0.2), delete a number

(with probability 0.1), and change a number (with probability

0.2). Values are always randomly drawn with uniform proba-

bilities over the whole range. The operations are only applied

at the end of the sequence. Previous research has shown that if

mutations are applied with equal probabilities over the whole

sequence length, complexification becomes slower and much

less stable, and typically needs very strong selection to be

maintained at all [22]. We have argued elsewhere that applying

mutations only to the most recently evolved elements can not

only be considered as a useful simple “extreme case “ model

of certain biological scenarios, but can also lead to sustained

complexification of solutions in evolutionary robotics [26].

All populations are seeded with a common ancestor that has

a random sequence of length 1. Recombination is not used in

the experiments reported here.

C. Measuring outcomes of coevolution

As in previous research [22], we calculate irreducible
functional unit size (IFUS) for organisms in the symbiont

population. This is done by iterating over all cases where an

organism from the symbiont population matches an organism

from the host population in a given generation (see Fig.

1). The sites in the symbiont genome that participated in

that match are marked. All sites that also participated in

shorter matches in the given generation are unmarked again.

IFUS is then defined as the maximum of the number of

marked sites over all matches. The highest such values are

recorded every generation. Because IFUS takes into account

only sites that participated in achieving a match, it does not

just measure sequence length, but complexity of function.

Because it ignores sites participating in other matches, it may

actually underestimate complexity. Nevertheless, as explained

in [22], it allows to study some interesting questions about the

capabilities of evolutionary processes, and we kept it here for
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comparability to the earlier research. A variant of the measure,

functional unit size (FUS), is calculated without unmarking

sites that participated in shorter matches. Its value, which is not

reported here, is typically higher by a small constant than that

of IFUS in coevolutionary simulations such as those reported

here.

D. Reduced resistance

Starting from the observation that pathogens that kill their

host often do less well in the long run, a method called

reduced virulence was introduced in [7], where symbionts

that only win a fraction λ of the contests that the best

adapted symbiont wins get optimal fitness. Here, we deal

with the problem of escaping hosts, so we modify the fitness

of hosts correspondingly: fadj = fbest

(
2 fraw

fbest

λ −
(

fraw
fbest

)2
λ2

)
.

This equation describes a parabola that has its maximum at

λ. The fitness adjustment could be viewed as modeling in a

very simple way the phenomenon that hosts that invest a lot

into defense can spend less energy for other functions, e.g.

reproduction, and are therefore disadvantaged as compared to

hosts that invest less in defense. By default, λ = 0.75 as in

previous work.

E. Balancing

In nature, hosts (e.g., mammals or birds) often have longer

generation times than symbionts (e.g., viruses or bacteria).

This provides biological motivation for reducing the speed of

evolution for the hosts in order to help the symbionts not to

loose track. Preliminary experiments where fixed generation

ratios between host and symbiont populations between 1:2 and

1:20 were used have not shown much promise. Therefore, we

here focus on a method similar to balancing as introduced

in [8]: A new generation of hosts is only created if, in

the previous generation, no host won over all symbionts.

Otherwise, only a new generation of the symbionts is created.

F. Niching

In nature, a single host has only a fixed amount of resources

that can be exploited by the symbionts. The well known

evolutionary method of niching, which has sometimes been

applied to coevolution as well [9], [10], models this by

dividing the bonus obtainable from winning over a given

host equally among those symbionts in the same niche — in

this case, this is just those symbionts that won against that

particular host. This simple niching method does not have

any parameters, but we can easily generalize it by stating

that ffinal =
forig

(niche count)x . Then x = 1 is the standard case

and x = 0 corresponds to not using niching at all. If we set

0 < x < 1, this corresponds to a situation in which several

symbionts deplete host resources subadditively, whereas for

x > 1, they have synergistic (superadditive) effects on host

resources. In principle, it is also possible to set x < 0, although
one might wonder to what kind of biological scenario this

corresponds. What comes to mind are situations where the

host’s immune system can be overpowered more easily if more

parasites are present, and therefore the gain for individual

parasites is greater. Scenarios of roughly this kind have been

reported in the context of investigating quorum sensing in

bacteria [27].

III. EXPERIMENTS AND RESULTS

Figure 2. Complexification when constraints are present and fitness pro-
portional selection is used. Black: default; blue: niching; green: reduced
resistance; red: balancing; purple: balancing + niching. The central line
indicates the mean of 20 runs, whereas the surrounding ribbon indicates the
uncertainty of the mean (standard error).

A first set of experiment examines complexification when

the host population is constrained and fitness proportional

selection is used (Fig. 2; as for all following results, 20 runs

with different random seeds have been performed per config-

uration). All configurations achieve sustained linear growth of

complexity in this case. Compared to plain selection, niching

increases the final complexity significantly when applied on

it own or together with balancing, whereas balancing on its

own, as well as reduced resistance, significantly decrease the

final complexity.
When the host population is constrained and truncation

selection is used (Fig. 3), all configurations achieve sustained

linear growth of complexity, which is even faster than when

using fitness proportional selection. Compared to plain se-

lection, niching alone does not change anything. Balancing

with or without niching leads to a significant decrease in final

complexity, and reduced resistance even more so.
If the host population is not constrained, it becomes much

more difficult for the symbionts to win over the hosts. As a

result, much less complexity evolves. For fitness proportional

selection (Fig. 4), complexity converges at a low level for plain

selection, niching and reduced resistance. However, balancing

applied alone or with niching leads to a moderate growth of

complexity.
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Figure 3. Complexification when constraints are present and truncation
selection is used. Black (hidden behind blue): default; blue: niching; green:
reduced resistance; red (hidden behind purple): balancing; purple: balancing
+ niching. The central line indicates the mean of 20 runs, whereas the
surrounding ribbon indicates the uncertainty of the mean (standard error).

If the host population is not constrained and truncation

selection is used (Fig. 5), a moderate growth of complexity is

achieved with plain selection. Balancing leads to convergence

(if applied with niching, the level is higher than if applied

without niching). Niching significantly increases the final

complexity. Reduced resistance leads to a much more dramatic

increase of final complexity, reaching about 2
3 of the final

complexity in the constrained hosts case.

Taking a closer look at the reduced resistance method

when applied with truncation selection in the unconstrained

hosts case (Fig. 6) and in the constrained hosts case (Fig.

7), we find that significant complexification is achieved in

a relatively wide parameter range, although the optima are

at different parameter values, and that the parameter ranges

where significant complexification is achieved are similar for

very different task difficulty ratios.

Standard niching proves superior in terms of complexifi-

cation when compared to “generalized niching” with other

niching coefficients, as Fig. 8 reveals. Truncation selection

was used with these experiments Because very strong selection

pressure was found to be necessary for some of the experi-

ments reported in [22], we also examined complexification

when standard niching is used together with truncation se-

lection with different selection strengths. As a result, it was

found (see Fig. 9) that using a 5% selection threshold did not

lead to better results than the 10% threshold that is used in all

other experiments here, whereas using a 20% threshold lead

to much worse results.

One might expect that niching increases the diversity in the

Figure 4. Complexification when constraints are not present and fitness
selection is used. Black (hidden behind green): default; blue: niching; green:
reduced resistance; red: balancing; purple: balancing + niching. The central
line indicates the mean of 20 runs, whereas the surrounding ribbon indicates
the uncertainty of the mean (standard error).

population in the experiments reported here. Snapshots were

taken at generation 200 for niching and no niching config-

urations using fitness proportional and truncation selection.

It was measured for all generations back to the first how

many of the individuals in that generation still had offspring

in the final generation, in other words, the number of lineages

that survived to generation 200 (Fig. 10). This shows that

niching does not make a difference if the host population is

constrained. If the host population is unconstrained, a higher

lineage diversity is present transiently approximately between

20 and 60 generations back when niching is not used. When

niching is used, there is no higher diversity than in the

constrained hosts case.

IV. DISCUSSION

The goal of finding a method that leads to stable coevo-

lutionary complexification even in the case of unequal task

difficulties has been achieved. Reduced resistance achieves

this if applied together with truncation selection. The results

indicate that this method is relatively robust with respect

to different task difficulty ratios (from 1:1 to 1:10) and

resistance reduction factors. Niching together with truncation

selection also achieves sustained complexification, although

much slower. However, much remains unclear about why the

examined stabilization techniques interact with the selection

methods the way they do. For the simplest scenarios discussed

here, it is possible that using analytical models could lead to

further insights regarding that question.
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Figure 5. Complexification when constraints are not present and truncation
selection is used. Black: default; blue: niching; green: reduced resistance; red:
balancing; purple: balancing + niching. The central line indicates the mean
of 20 runs, whereas the surrounding ribbon indicates the uncertainty of the
mean (standard error).

While we have only looked at two extreme points in

terms of task difficulty ratios here, previous research suggests

that results for intermediate task difficulty ratios will also

be intermediate between the results for the extreme cases

presented here [22] in terms of both the final complexity

achieved and the presence of linear growth of complexity.

It is also desirable to maintain a high diversity of solutions

in the population both for practical (further adaptability)

and theoretical (modeling niching and speciation) reasons.

Standard niching does not achieve this goal with the stud-

ied task. In the future, further research on the influence of

modified versions of niching on population diversity will be

conducted. In this regard, one might expect that introducing

spatial structure into the populations, either on its own or in

combination with the methods studied here, will lead to much

higher diversity.

The achieved rate of complexification can be compared to

theories on the rate of evolution [28], [29], [30]. In the origi-

nal configuration (constrained sequences, truncation selection,

none of the methods for enhancing coevolutionary stability

used), which is also one of the fastest complexifying, we have

an IFUS of 641 after 1000 generations on average. Because

each site can be one of 10 different numbers, the average

increase of information content (algorithmic complexity) is

ld10 · 641
1000 ≈ 2.1 bit / generation (strictly speaking, it is

slightly lower because the last few elements of the sequence

are not converged in the population). Following Worden [29],

for a selection strength of 10 (i.e., 1
10 of the population is

selected as parents and each has 10 offspring) we would expect

Figure 6. Complexity (IFUS) reached after 1000 generations without con-
straints when using reduced resistance with different coefficients.

Figure 7. Complexity (IFUS) reached after 1000 generations with constraints
when using reduced resistance with different coefficients.

a rate of less than ld10 ≈ 3.3 bit / generation. (Notice that

the model assumes a fixed genome length. However, because

we are applying mutations only at the end of the sequence per

default, the part of the genome that is under active evolution

is of constant size here, so we expect the model to be valid for

our case.) Furthermore, this theory predicts that the rate grows
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Figure 8. The influence of niching coefficients on complexification. Black:
1.0; blue: 0.5; green: 2.0; red: -0.5; purple: -1.0; orange: -2.0.

Figure 9. The influence on different selection thresholds on complexification
when niching is used together with truncation selection. Black: 10%; blue:
20%; green: 5%.

logarithmically with selection strength, but is not correlated to

population size. As can be seen in figure 11, the rate grows less

than logarithmically at higher selection strengths, and there is

a weak correlation between the rate and population size for the

examined range of parameters. As discussed in [29], there can

be various factors in any but the simplest scenarios that prevent

the theoretical speed limit from being reached. Nevertheless,

Figure 10. The influence of niching on lineage diversity. Black (hidden behind
blue): constraints / no niching; blue: constraints / niching; green: no constraints
/ no niching; red: no constraints / niching.

Figure 11. Information gain per generation (black) as compared to Worden’s
predicted speed limit for evolution (blue). Left: For different population sizes;
Right: For different selection strengths.

the results indicate that Worden’s theory may be useful to

get a rough estimate of possible rates of evolution in this

scenario and others, which may also allow investigating how

various factors related to evolutionary operators and encodings

influence the actual rates of evolution in future experiments.

The functional sequences in the genome are essentially

equivalent to random sequences (see remarks in section II-C),

therefore we basically measure the algorithmic or Kolmogorov

complexity of features involved in matches [31]. Of course,

another fundamental question around the issue of complexifi-

cation is whether the complexity concerned with the structural

regularities can increase [32]. This questions is not addressed

by our simulations. We regard the growth of algorithmic

complexity of the genotype and phenotype as a necessary

(but not sufficient) condition for the (co-)evolution of complex

behaviors.
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Obviously, sustained linear growth of functional complexity

is a desirable goal for evolutionary robotics. Some previous

research indicates that the results achieved here can indeed be

transferred to evolutionary robotics provided that the represen-

tations and evolutionary operators for the controllers (in this

case, neural networks) are adjusted accordingly [26].
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