
A Comparative Study for Efficient Synchronization
of Parallel ACO on Multi-core Processors

in Solving QAPs

Shigeyoshi Tsutsui
Management Information

Hannan University

Matsubara, Osaka 580-8402, Japan

Email: tsutsui@hannan-u.ac.jp

Noriyuki Fujimoto
Graduate School of Science

Osaka Prefecture University

Sakai, Osaka 599-8531, Japan

Email: fujimoto@mi.s.osakafu-u.ac.jp

Abstract—This paper describes three types of parallel syn-
chronization models of ant colony optimization (ACO) on multi-
core processors in solving quadratic assignment problems (QAPs).
These three models include (1) Synchronous Parallel (SP), (2)
Asynchronous Parallel (AP), and (3) Distributed Asynchronous
Parallel (DAP). Parallel executions are studied up to 16-core.
Among three models, the DAP shows the most promising results
over various sizes of QAP instances. It also shows a good
scalability up to 16-core.

I. INTRODUCTION

Recently, microprocessor vendors supply processors which
have multiple cores of 8, 16, or more, and PCs which use
such processors are available at a reasonable cost. They are
normally configured with symmetric multi-processing (SMP)
architecture.

Since the main memory is shared among processors in
SMP, parallel processing can be performed efficiently with
less communication overhead among processors. Programming
for parallel processing in SMP can be performed using multi-
thread programming such as OpenMP and is much easier
compared to other options such as GPGPUs [1].

In a previous paper, we proposed a variant of the ACO (ant
colony optimization) algorithm called the cunning Ant System
(cAS) [2] and evaluated it using TSP. The results showed that
the cAS could be one of the most promising ACO algorithms.
In this paper, we describe the parallelization of cAS on a
multi-core processor for fast solving QAP (Quadratic Assign
Problem), a typical NP-hard problem in permutation domains.

Many parallel ACO algorithms have been studied [3]. Brief
summaries can be found in [4] and [5]. The most commonly
used approach to parallelization is to use an island model
where multiple colonies exchange information (i.e., solutions,
pheromone matrix values, or parameters) synchronously or
asynchronously [6], [4], [5].

In many of the above-mentioned studies, attention is mainly
focused on the parallelization using multiple colonies. In con-
trast to these studies, in this study parallelization is performed
at the agent (or individual) level in one colony aiming at
speedup of the ACO algorithm on a computing platform with

a multi-core processor. With this scheme, we studied parallel
ACO to solve TSP with up to 4-core in [7].

In this paper, we study three types of parallel synchro-
nization models with a new improved synchronization parallel
model for cAS. They are (1) Synchronous Parallel (SP), (2)
Asynchronous Parallel (AP), and Distributed Asynchronous
Parallel (DAP) to solve QAP instances in QAPLIB [8]. We
studied parallel executions up to 16-core. Among three models,
the DAP showed the most promising results over various sizes
of QAP instances. It also showed a good scalability up to 16-
core.

In the remainder of this paper, Section II gives a brief
review of cAS and how we apply it to solving QAPs. Then, in
Section III, three types of parallel synchronization models are
described. In Section IV, experimental results are presented.
Finally, Section V concludes the paper.

II. A BRIEF OVERVIEW OF cAS AND ITS APPLICATION

TO SOLVING QAPS

A. A Brief Introduction of cAS

cAS introduced two important schemes. One is a scheme
to use partial solutions, which we call cunning. In constructing
a new solution, cAS uses pre-existing partial solutions. With
this scheme, we may prevent premature stagnation by reducing
strong positive feedback to the pheromone trail density. The
other is to use the colony model, dividing a colony into units,
which has a stronger exploitation feature, while maintaining a
certain degree of diversity among units.

cAS uses an agent called the cunning ant (c-ant). It con-
structs a solution by borrowing a part of an existing solution
(we call it a donor ant (d-ant)). The remainder of the solution
is constructed based on τ ij(t) probabilistically as usual.

Let ls represent the number of nodes of a partial solution in
permutation representation that are constructed based on τij(t)
(i.e., lc, the number of nodes of partial solutions from its d-ant,
is n− ls, where n is the problem size). Then cAS introduces
the control parameter γ which can define E(ls) (the average
of ls) by E(ls) = n×γ. Using γ values in [0.2, 0.5] is a good
choice in cAS.

2015 IEEE Symposium Series on Computational Intelligence

978-1-4799-7560-0/15 $31.00 © 2015 IEEE

DOI 10.1109/SSCI.2015.160

1118

The colony model of cAS is shown in Fig. 1. It consists
of m units. Each unit consists of only one ant∗k,t (k =
1, 2, · · · ,m). At iteration t in unit k, a new c-antk,t+1 is
generated using the existing ant in the unit (i.e., ant∗k,t) as the
d-antk,t. Then, the newly generated c-antk,t+1 and d-antk,t are
compared, and the better one becomes the next ant∗k,t+1 of the
unit. Thus, in this colony model, ant∗k,t, the best individual of
unit k, is always reserved. Pheromone density τ ij(t) is then
updated with ant∗k,t (k = 1, 2, · · · ,m) and τ ij(t+1) is obtained
as:

τij(t+ 1) = ρ · τij(t) +
∑m

k=1
Δ∗τkij(t), (1)

Δ∗τkij(t) = 1/f∗k,t : if (i, j) ∈ ant∗k,t, 0 : otherwise, (2)

where the parameter ρ (0≤ ρ < 1) models the trail evaporation,
Δ∗τkij(t) is the amount of pheromone by ant∗k,t, and f∗k,t is the
fitness of ant∗k,t.

Values of τij(t + 1) are set to be within [τmin, τmax] as
in MAX-MIN ant system (MMAS) [9]. Here, τmax and τmin

for cAS is defined as

τmax(t) =
m

1− ρ
· 1

f best−so−far
, (3)

τmin(t) =
τmax

2n
, (4)

Fig. 1. Colony model of cAS

B. cAS on QAP

1) Quadratic Assignment Problem (QAP): The QAP is a
problem which assigns a set of facilities to a set of locations
and can be stated as a task to find permutations φ which
minimize

f(φ) =

n∑

i=1

n∑

j=1

aijbφ(i)φ(j), (5)

where A = (aij) and B = (bij) are two n× n matrices and φ
is a permutation of {1, 2, . . . , n}. Matrix A is a flow matrix
between facilities i and j, and B is the distance between
locations i and j. Thus, the goal of the QAP is to place the
facilities in locations in such a way that the sum of the products
between flows and distances are minimized.

2) c-ant and d-ant in QAP: The c-ant in QAP acts in a
slightly different manner from c-ant in TSP. In TSP, τ ij(t)
are defined on each edge between city i and j. In QAP,
the pheromone trails τ ij(t) correspond to the desirability of
assigning a location i to a facility j. Fig. 2 shows how the
c-ant acts in QAP. In this example, the c-ant uses part of the
node values at positions 0, 2, and 4 of the d-ant, where these
positions are determined randomly. The c-ant constructs the
remainder of the node values for positions 1 and 3 according
to the following probability:

pij =
τij(t)∑
k∈F (i) τik

, (6)

where F (i) is the set of facilities that are yet to be assigned
to locations.

In cAS for TSP, the number of nodes to be sampled, ls, is
determined probabilistically, so that E(ls) = n×γ [2]. In cAS
for QAP in this study, we simply determine ls as ls = n× γ.
Then we copy the number of nodes, lc = n − ls, from d-ant
at its random positions and sample ls number of remaining
nodes according to Eq. (6) with random sequence.

Fig. 2. c-ant and d-ant in QAP

In this study, we apply 2-OPT local search (LS) to newly
generated solutions by cAS. 2-OPT local search explores its
neighborhood N(φ) and accepts a solution according to a
given pivoting rule. Here we use the best improvement pivoting
rule. The process is repeated until an ITmax number of
iterations is reached or no improvement solutions are found
as shown in Fig. 3.

Sequential algorithm cAS with 2-OPT can be summarized
as shown in Fig. 4.

III. SYNCHRONIZATION MODELS FOR PARALLEL ACO
ON A MULTI-CORE PROCESSOR

In this study, parallelization is performed at the agent level,
i.e., operations for each agent are performed in parallel in one

1119

Fig. 3. 2-OPT local search (LS).

Fig. 4. Algorithm description of sequential cAS with 2-OPT local search
(LS)

colony. A set of operations for an agent is assigned to a thread
in OpenMP. Usually, since the number of agents (m) may be
larger than or equal to the number of cores of the platform,
we generate ncore threads, where ncore is the number of cores
to be used. These threads execute operations for m agents of
the cAS.

Fig. 5 shows the parallel cAS on a multi-core processor.
The Agent Pool maintains agents of cAS. The Agent Assig-
nor assigns agents to ncore number of threads, CasThread1,
CasThread2, · · · , and CasThreadncore

. In the parallel execu-
tion, an important factor is how to synchronize among ncore

threads in their parallel runs for efficient execution of cAS.
We implement three types of synchronization parallel models

and run them up to ncore = 16, much bigger than previous
study [2].

Fig. 5. Algorithm description of sequential cAS with 2-OPT local search
(LS)

A. Synchronous Parallel cAS (SP-cAS)

In the synchronous parallel cAS (SP-cAS), all agents are
processed in each thread, independently as shown in Fig.
6. However, in the SP-cAS, pheromone density updating is
performed after all ant∗k,t (k = 1, 2, · · · ,m) are generated in
each iteration, the same way as is done in the sequential cAS
in Fig. 4. Thus, we call this parallel model synchronous.

Fig. 6. Synchronous parallel cAS (SP-cAS)

B. Asynchronous Parallel cAS (AP-cAS)

As described in previous section, In SP-cAS the pheromone
density updating is performed after all ant∗k,t (k =
1, 2, · · · ,m) are generated in each iteration. This may cause
some idling time in the iteration in Fig 6 when some threads

1120

have no tasks to perform while the others have. AP-cAS is
intended to remove this idling time. To attain this feature, all
steps of cAS are performed asynchronously as shown in Fig. 7.
As seen in this figure, each agent has its own iteration counter.

Fig. 7. Asynchronous parallel cAS (AP-cAS)

Fig. 8 shows an example how each agent is assigned to
each of ncore. The Agent Assignor has an array of flags, here
m = 10 and ncore = 4 are assumed. At each start of run, all of
the entries of flags are set to T (true) indicating that all agents
are yet to be processed, as shown in Fig. 8 (0). next agent
indicates the next agent to be processed, and its initial value
is set to 1.

Fig. 8 (1) shows a situation in which the four CasThreads
are processing one iteration for each agent 1, 2, 3, and 4.
next agent is set to 5. Entries of flags at 1, 2, 3, and 4 have
value F (false) indicating these agents are being processed. Fig.
8 (2) shows the situation where processing of one iteration for
agent 2 has been completed and agent 5, previous indicated by
next agent is being processed and next agent has been newly
set to 6. Fig. 8 (3) shows the situation where processing of
one iteration for agent 1 has been completed and one iteration
for agent 6, which was previously indicated by next agent, is
now being processed and next agent is set to 7.

Fig. 8 (4) shows the situation where the four CasThreads
are processing one iteration for each agent 7, 8, 9, and 10. The
next agent is 1. Fig. 8 (5) shows the situation where processing
of one iteration for agent 8 is done and agent 1, which was
previously indicated by next agent is being processed and
next agent is newly set to 2. Note that at this moment agent 1
is being processed for the next iteration. Fig. 8 (6) shows the
situation where processing of one iteration for agent 7 has been
completed and one iteration for agent 2, which was indicated
by next agent, is being processed and next agent is newly
set to 3. Fig. 8 (7) shows the situation where one iteration
for each agent 10, 2, 3, and 4 is being processed. Fig. 8 (8)
shows the situation where one iteration of processing for agent

Fig. 8. An example of agents assignment to threads in AP-cAS

10 has been completed and one iteration for agent 5, which
was previously indicated by next agent, is being processed and
next agent is now set to 6.

In this way, in the AP-cAS, Agent Assignor assigns agents
to each CasThread repeatedly without any synchronization
among agents. As described here, when each agent is assigned
to a CasThread by Agent Assignor, only one iteration is per-
formed. Here, one problem arises in the updating pheromone
density, defined by Eq. (1). Strictly following Eq. (1), up-
date procedure requires all agent members ant∗k,t for k =
1, 2, · · · ,m at the same time. But this situation is impossible
in asynchronous parallel execution. To perform the pheromone
update asynchronously, we modified the pheromone density
updating for asynchronous parallel execution as follows:

τij(t+ 1) = m
√
ρ · τij(t) + Δ∗τkij(t), (7)

where Δ∗τkij(t) is defined by Eq. (2). Although the pheromone
density updating by Eq. (7) is not strictly equivalent to Eq. (1),
we can say that it emulates the pheromone updating process
of Eq. (1) in an asynchronous processing mode. Note here that
the pheromone density updating and accessing to generate new
solutions must be treated as a critical section as indicated by
Exclusive access in Fig. 7.

C. Distributed Asynchronous Parallel cAS (DAP-cAS)

Usually an asynchronous run can be expected to be effi-
cient. However, there may be worry that AP-cAS has critical
sections in accessing to the pheromone density τij(t). This
may consume the efficiency of the asynchronous parallel run
of AP-cAS. The distributed asynchronous parallel cAS (DAP-
cAS) in this section is devised to solve this problem.

1121

In DAP-cAS, we have pheromone density matix τij in each

of ncore threads as τ
(1)
ij (t), τ

(2)
ij (t), · · · , τ (ncore)

ij (t) as shown

in Fig. 9. Each τhij(t) (h = 1, 2, · · · , ncore) is size of n×n as
usual.

Fig. 9. Distributed asynchronous parallel cAS (DAP-cAS)

Agent assignment is performed in the same manner as AS-
cAS. When an agent ant∗k,t (k = 1, 2, · · · ,m) is assigned
to a CasThreadh (h = 1, 2, · · · , ncore), only one iteration
is performed as in AS-cAS. Pheromone update is applied to

pheromone density τ
(h)
ij (t) by agent ant∗k,t according to the

following equation.

τ
(h)
ij (t+ 1) = ρ · τ (h)ij (t) + Δ∗τkij(t), (8)

where Δ∗τkij(t) is defined by Eq. (2).

Note here the pair (k, h) is not fixed in the run, i.e.,
the pair (k, h) may change every iteration according to agent
assignment by the Agent Assignor. It means that a new solution
will be generated based on the pheromone density modified by
other agents. In this sense, DAS-cAS can be expected to have
a similar behavior as an island model of genetic algorithms
with high immigration rate [10].

IV. EXPERIMENTS

A. Experimental Conditions

In this study, we used a PC which has 2.6GHz Xeon E5-
2650 v2 (8-core) × 2 with Windows 8.1 Pro. The total number
of cores is 16. The code is written in C++. For C++ program
compilation, Microsoft Visual Studio Professional 2013 with
optimization option /O2 was used.

The instances on which we tested our algorithm were taken
from the QAPLIB benchmark library at [8]. We used the

following 6 instances which were classified as “real-life like
instances” [9] with the problem size ranging from 35 to 100,
i.e., tai35b, tai40b, tai50b, tai60b, tai80b, and tai100b. Note
here that the number in each instance name shows the problem
size n of the instance. 25 runs were performed for each run. We
measured the performance by the average time to find known
optimal solutions Tavg over 25 runs. In each experiment, the
algorithms found optimal solutions 25 times. Table I shows
the control parameter values used in the experiment.

TABLE I. CONTROL PARAMETER VALUES

B. Results and Their Analysis

Fig. 10 shows speedup values (Speedup = (Tavg of
sequential cAS) / (Tavg of parallel models of cAS)) of
three syncronization models, SP-cAS, AP-cAS, and DAP-cAS
described in Section III. The number of cores (ncore) was
changed from 2 to 16 with step 2. From this figure, DAP-
cAS outperforms the other two models on all test instances.
It also shows a good scalability on all size of problems. On
tai80b and tai100b, it shows superliner scalability (exact values
are shown in Table IV-B). SP-cAS shows a stable scalability
constantly for all instances.

AS-cAS shows a poor scalability with increases in the
number of cores on instances of small problem size (tai35b
- tai50b). However, we can observe that AS-cAS has the
scalability on larger size instances, i.e., on tai60b, tai80b, and
tai100b. On tai100b, it shows better performance than SP-cAS,
though the difference is not significant from statistical tests
(see Table IV-B).

We conducted a two-sided t-test of Tavg for two pairs
of (SP-cAS, AP-cAS) and (SP-cAS, DAP-cAS) to show the
statistical significance of the obtained Speedup for ncore of 2,
4, 8, and 16 and showed the results by the p-values in Table
IV-B. We showed p-values which are smaller than 0.05 by
boldface. Except tai40b with ncore = 2 and 4, this test shows
a clear advantage of DAP-cAS over SP-cAS as shown in Fig.
10.

Now, let us discuss two questions which arise from the
results in Fig. 10 and Table IV-B. One question is why DAP-
cAS works much better than SP-cAS and another question is
why the values of Speedup of AP-cAS are so poor compared
to SP-cAS.

Let Iave be the average of total iterations by m agents
to find optimal solutions over 25 runs on an instance. Fig.
11 shows Iave for ncore = 2, 4, 8, and 16. Here, values are
normalized by setting Iave of SP-cAS to 1.0.

Observing this figure, DAP-cAS has the smallest values
among three parallel models for all cases except for two; tai40b
with ncore = 4 and tai50b with ncore = 16 (for these two
cases, AP-cAS has the smallest values). Especially, on large

1122

 0

 5

 10

 15

 20

 25

 30

 35

 0 2 4 6 8 10 12 14 16

S
p

e
e

d
u

p

of cores (ncore)

tai35b

SP
AP

DAP

 0

 5

 10

 15

 20

 25

 30

 35

 0 2 4 6 8 10 12 14 16

S
p

e
e

d
u

p

of cores (ncore)

tai40b

SP
AP

DAP

 0

 5

 10

 15

 20

 25

 30

 35

 0 2 4 6 8 10 12 14 16

S
p

e
e

d
u

p

of cores (ncore)

tai50b

SP
AP

DAP

 0

 5

 10

 15

 20

 25

 30

 35

 0 2 4 6 8 10 12 14 16

S
p

e
e

d
u

p

of cores (ncore)

tai60b

SP
AP

DAP

 0

 5

 10

 15

 20

 25

 30

 35

 0 2 4 6 8 10 12 14 16

S
p

e
e

d
u

p

of cores (ncore)

tai80b

SP
AP

DAP

 0

 5

 10

 15

 20

 25

 30

 35

 0 2 4 6 8 10 12 14 16

S
p

e
e

d
u

p

of cores (ncore)

tai100b

SP
AP

DAP

Fig. 10. Speedup of three synchronization models for different number of cores.

1123

TABLE II. Tavg VALUES OF THREE SYNCHRONIZATION MODELS FOR ncore OF 2, 4, 8, AND 16. RESULTS OF THE TWO-SIDED t-TEST OF Tavg FOR

TWO PAIRS OF (SP-cAS, AP-CAS) AND (SP-cAS, DAP-cAS) WERE SHOWN BY THE p-VALUES.

size problems (tai80b, tai100b), Iave values of DAP-cAS are
much smaller than the other two models.

As for SP-cAS and AP-cAS, we can see their Iave values
are almost the same and thus the synchronous or asynchronous
model does not effect Iave values much.

Now consider why Iave values of DAP-cAS are smaller
than other models. As described in Section III-C, an agent k

of DAP-cAS (k = 1, 2, · · · ,m) accesses τ
(h)
ij (t) in threads

CasThreadh (h = 1, 2, · · · , ncore). The pair (k, h) changes
iteration by iteration. This may cause a degree of diversity

among τ
(h)
ij (t) (h = 1, 2, · · · , ncore). As a result, this model

could a good convergence property resulting in small Iave
values.

Next observe the computational efficiency of execution of
each model. To achieve this, we can see the run time to execute
one iteration by calculating Tave/Iage for each parallel model.
Fig. 12 shows Tave/Iage for ncore = 2, 4, 8, and 16. Here
again we normalized the values so that Tave/Iage of SP-cAS
are 1.0.

Observing this figure, values of AP-cAS are large values
compared to the other two models for all instances except
for tai100b. We can also observe that the values of AS-cAS
increase as ncore becomes large. As shown in Fig. 7 in Section

Fig. 11. The average total iterations by m agents to find known optimal
solutions over 25 runs. The values are normalized by setting values for SP-
cAS is 1.0.

1124

III-B, each agent in AP-cAS accesses a single pheromone
density matrix τij simultaneously with asynchronous mode.
But these accesses must be performed as the critical sections.

As a result, waiting time occurs during these accesses.
This waiting time increases in relation to increases of ncore.
On instances of small size, this waiting time occupies a large
part of the processing time. Thus the performance of AP-cAS
is poor especially on small size instances or cases of large
ncore. On tai100b, waiting time does not occupy as much
processing time compared to the processing times of ACO, and
AP-cAS runs efficiently in asynchronous mode as we expected
in Section III-B.

Fig. 12. Run time to execute one iteration by Tave/Iage. The values are
normalized by setting values for SP-cAS is 1.0.

V. CONCLUSION

Microprocessor vendors supply processors which have
multiple cores of 8, 16, or more, and PCs which use such
processors are available at a reasonable cost. In this paper,
we studied parallel synchronization models for the ACO algo-
rithms on a multi-core processor to solve QAPs. As for ACO
algorithm, we used cAS which we previously proposed. As
for parallel synchronization models, we studied three models,
i.e., (1) Synchronous Parallel (SP), (2) Asynchronous Parallel
(AP), and (3) Distributed Asynchronous Parallel (DAP).

Among them, DAP shows the most promising results
over various sizes of QAP instances. It also showed a good
scalability up to 16-core. As a natural progression from this
study, we need further study using machines with more cores
such as Intel R© Xeon R© PhiTMcoprocessors.

ACKNOWLEDGMENT

This research is partially supported by the Ministry of Edu-
cation, Culture, Sports, Science and Technology of Japan under
Grant-in-Aid for Scientific Research number 1381211400.

REFERENCES

[1] S. Tsutsui and N. Fujimoto, “ACO with tabu search on a GPU for
solving QAPs using move-cost adjusted thread assignment,” in Genetic
and Evolutionary Computation Conference. ACM, 2011, pp. 1547–
1554.

[2] S. Tsutsui, “cAS: Ant colony optimization with cunning ants,” Parallel
Problem Solving from Nature, pp. 162–171, 2006.

[3] M. Pedemonte, S. Nesmachnow, and H. Cancela, “A survey on parallel
ant colony optimization,” Appl. Soft Comput., vol. 11, no. 8, pp. 5181–
5197, 2011.

[4] Q. Lv, X. Xia, and P. Qian, “A parallel aco approach based on one
pheromone matrix,” Proc. of the 5th Int. Workshop on Ant Colony
Optimization and Swarm Intelligence (ANTS 2006), pp. 332–339, 2006.

[5] M. Manfrin, M. Birattari, T. Stützle, and M. Dorigo, “Parallel ant colony
optimization for the traveling salesman problems,” Proc. of the 5th Int.
Workshop on Ant Colony Optimization and Swarm Intelligence (ANTS
2006), pp. 224–234, 2006.

[6] S. Benkner, K. Doerner, R. Hartl, G. Kiechle, and M. Lucka, “Com-
munication strategies for parallel cooperative ant colony optimization
on clusters and grids,” Complimentary Proc. of PARA’04 Workshop on
State-of-the-art in Scientific Com-puting, pp. 3–12, 2005.

[7] S. Tsutsui and N. Fujimoto, “Parallel ant colony optimization algorithm
on a multi-core processor,” in ANTS Conference. Springer, 2010, pp.
488–495.

[8] R. E. Burkard, E. Çela, S. E. Karisch, and F. Rendl,
“QAPLIB - a quadratic assignment problem library,” 2009,
www.seas.upenn.edu/qaplib.

[9] T. Stützle and H. Hoos, “Max-Min Ant System,” Future Generation
Computer Systems, vol. 16, no. 9, pp. 889–914, 2000.

[10] E. Cantú-Paz, Efficient and Accurate Parallel Genetic Algorithms.
Kuwer Academic Publishers, 2000.

1125

