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Abstract—This work introduces a novel framework for a
network interpretation of agent interaction in ant-inspired al-
gorithms. A complex network interpretation of population dy-
namics is a recent trend in the research of population-based
metaheuristic algorithms. Complex network models of nature-
inspired methods enable the use of a wide variety of analytical
methods from the areas of graph theory and network science
in the field of computational intelligence. Agent interaction is in
this approach represented by an evolving complex network with
vertices corresponding to individual agents and arcs with chang-
ing weights quantifying their interaction. This paper presents
a generic framework for such network interpretation of ant
interaction as well as its initial implementation for a sample
problem, the travelling salesman problem. Initial computational
experiments illustrate the proposed concepts and demonstrate the
usefulness of network-based analysis of ant-inspired methods.

I. INTRODUCTION

It is well-known that ant-inspired algorithms operate on

a network (graph) model of an underlying problem. The

graph represents all possible problem solutions and, in fact,

embodies a solution space that needs to be explored. In

this space, various ant colony optimization (ACO) algorithms

implement different flavours of a distributed cooperative path-

finding process based on an indirect communication between

agents (ants) via the deposition and evaporation of artificial

pheromones. Multiple problem solutions are in such algo-

rithms incrementally constructed using a sequential decision

process [8].

Various graph properties of the solution space can be used

to characterize different aspects of the problem and to obtain

valuable suggestions regarding algorithm parameters. For ex-

ample, in the MAX −MIN ant system for the traveling

salesman problem (TSP), the number of ants often depends

on the number of vertices [28] and the lower and upper bound

of the amount of pheromone can in the same algorithm, used

for a water distribution design problem, depend on the average

vertex degree [30].

The interpretation of the dynamic behaviour of evolutionary

algorithms as a complex network of interactions between

candidate solutions (population members) and the analysis of

static and dynamic properties of such network is a recent

research trend [6], [7], [31]. The investigation of the relations

between attributes of such networks and the properties of the

modelled algorithms opens a number of research questions and

provides a new class of instruments for a more efficient control

of nature-inspired metaheuristic methods [31]. Such studies

were already presented for several variants of the differential

evolution algorithm applied e.g. to the flowshop scheduling

problem [6] and the permutative flowshop scheduling prob-

lem [7].

This work takes a similar approach and outlines a con-

ceptual framework for a complex network representation of

the interactions between ants in ant-inspired algorithms for

permutation problems. In a permutation problem, the goal of

each ant is to find a permutation of exactly n elements and

the solution space is usually represented as a complete graph

on n vertices. The dynamic representation of ant interactions

in the form of a complex network introduces an auxiliary

graph structure that is complementary to the graph defining

the solution space. It allows analyzing the dynamic aspects

of ant-inspired metaheuristics by established formal methods

from the areas of graph theory, social network analysis, and

e.g. network science.

The proposed network interpretation is illustrated on the

travelling salesman problem. Although a simple problem with

rather small instances that can be efficiently solved by a variety

of other methods, it illustrates the proposed concepts very well

and allows an initial assessment of the correlation between

algorithm properties and selected attributes of the interaction

network.

The remainder of this article is structured as follows:

the fundamentals of ant-inspired algorithms are summarized

in section II. The same section also provides a brief overview

of several earlier formal approaches to ant-inspired algorithms.

The proposed complex network interpretation of ant inter-

actions in ACO for permutation problems is developed in

detail in section III. Experimental evaluation of the proposed

concepts on a real-world permutation problem, the TSP, is

presented in section IV. Finally, major conclusions are drawn

and future work is outlined in section V.
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II. ANT COLONY OPTIMIZATION

Ant colony optimization is a metaheuristic optimization

method based on certain behavioural patterns of foraging

ants [12]. Ants have shown the ability to find optimal paths

between their nests and sources of food. This intelligent path-

finding activity is based on stigmergy – indirect communi-

cation through modification of the environment. Ants travel

randomly to find food, and when returning to their nest, they

lay down pheromones. When other foraging ants encounter a

pheromone trail, they are likely to follow it. The more ants

travel on the same trail, the more intensive the pheromone

trace is, and the more attractive it is for other ants.
Emulation of this behaviour can be used as a probabilistic

computational technique for solving complex problems that

can be cast as finding optimal paths [12]. An artificial ant, k,

placed on vertex i, moves to node j, with probability

pkij =
ταijη

β
ij∑

l∈Nk

i

(ταilη
β
il)

, (1)

where Nik represents the neighbourhood of node i for ant

k (i.e. a set of nodes that are available for the ant to move

to), τij is the amount of pheromones placed on arc aij , and

ηij corresponds to a-priori information reflecting the cost of

passing the arc. After ants finish their forward movement, they

return to the nest with food. The tour of ant k is denoted T k.

Its length, Ck, is used to determine the amount of pheromones,

Δτkij , to be placed by the ant on each arc, ij, on the trail that

led to the food source

Δτkij =

{
1
Ck if arc (i, j) belongs to T k

0 otherwise
, (2)

τij = τij +
m∑

k=1

Δτkij . (3)

Alternatively, Δτkij can be derived from the solution quality

expressed as the amount of food collected, Lk.
After all ants finish one round of their movement, the

amount of pheromones on each arc is reduced through evap-

oration

τij = (1− ρ)τij . (4)

The coefficients α, β, and ρ are general parameters of the

algorithm that control the ratio between exploitation of known

solutions and exploration of new areas of the search space.

This canonical form of the ACO algorithm is called Ant

System (AS).
There are numerous variants of the ant algorithm. Modifica-

tions of the original ant system, such as elitist ant system and

ant colony system [12], max-min ant system, fast ant system,

ant-Q, and antabu, have been designed and applied in various

problem domains, including bioinformatics, scheduling, data

clustering, text mining, and robotics [15]. They have also

been successfully used for finding optimal paths in complex

networks. They perform best when the solved problem has

a suitable a-priori heuristic information, and especially when

some sort of local search algorithm is employed [12].

A. Formalization and Interpretation of ACO

A number of different formal methods has been used to

study and interpret the ant-inspired problem-solving metaphor

represented by ACO.
Birattari et al. [3] defined a formal framework named ant

programming that identified ACO as a generic problem solving

strategy based on an incremental Monte Carlo construction of

problem solutions biased by a shared memory and linked it to

the fields of optimal control and reinforcement learning.
Dorigo and Blum have shown in [9] that ACO can be linked

to the stochastic gradient ascent and cross-entropy methods.

The authors used an algorithmic framework called model-

based search to represent the algorithm by its probabilistic

model and showed that the problem of finding good param-

eters of such model is equivalent to solving the underlying

combinatorial optimization problem.
An interesting interpretation and analysis of the processes

in an ant colony based on the notion of extended cognitive

processes (extended mind) was proposed by Bosse et al. [4].

The authors connected the principle of stigmergy to the bio-

logical concept of external mental states. The ACO processes

were in this approach summarized by an ontology of agents’

physical and mental states and their relations in time were

described by a temporal trace language. Dynamic properties

of ACO were studied on several aggregation levels and used

e.g. for a simulation-driven system verification.
Guthjar [19] proposed an analytical framework to model

and investigate the finite-time dynamics of ant-inspired meth-

ods. The framework, defined for algorithms with fitness-

proportional pheromone update strategy, was used to construct

and prove a limit theorem on the approximation of ACO by a

deterministic process based on a system of ordinary differential

equations. Moreover, it was shown that the proposed formal

model can be used to derive the evolution of expected fitness

values.
Another, more general, framework for a unified description

of the wide class of stochastic swarm algorithms was presented

by Kang et al. [21]. The unified model was applied to ant

colony system and several other swarm methods including

particle swarm optimization and estimation of distribution

algorithms.
Pellegrini and Favaretto [24] proposed a formal description

of the exploration conducted by various metaheuristic algo-

rithms in given problem space. The proposed problem and

algorithm independent formalism was used to quantify the

amount of exploration performed by each investigated method.

The study has shown that such formal notion of exploration

is connected to the overall performance of the metaheuristic

search process. The method was evaluated on an ACO and a

genetic algorithm for the TSP and the authors outlined several

possibilities how to use the algorithm e.g. for the control and

tuning of metaheuristic search and optimization methods.
This short overview demonstrates that there has been a num-

ber of different attempts to formalize the intuitive mechanisms

of ant-inspired algorithms by various formal methods. In this

work, we adopt the complex network model of population
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dynamics proposed by Zelinka et al. for evolutionary meth-

ods [7], [31], [6] and modify it for the use with ant-inspired

algorithms for permutation problems.

III. NETWORK INTERPRETATION OF ANT INTERACTION

The main aim of this work is the definition of an intuitive

framework for a network interpretation of ant interaction in

ant-inspired algorithms. For the sake of simplicity, the method

is defined for a distinct class of discrete optimization problems,

permutation problems.

The network interpretation of agent interaction has two

major parts. First, the amount of interaction between ants in

a colony during each iteration of the algorithm is evaluated.

Second, the ants’ interaction network and its dynamic aspects

(i.e. updating strategy) are defined.

A. Quantification of Ant Interaction

Consider a permutation problem defined by an undirected

graph G = (V,E), with the number of vertices in V denoted

by n (i.e. n = |V |), and an ant-inspired algorithm with a

colony of artificial ants, A. For each ant, ai ∈ A, let the

permutation of elements defined by its path in G at a time

step, t, be called πi(t) = (πt
i(1), π

t
i(2), . . . , π

t
i(n)). For each

pair of ants from A, ai and aj , i �= j, define the intersection

of πi(t) and πj(t) as

πi(t) ∩ πj(t) = S(πi(t), πj(t)), (5)

where the function S : Sn × Sn → R evaluates a similarity

between the two permutations and Sn is the set of all permu-

tations of length n. The similarity should reflect the amount

of information exchanged by the two ants that generated πi(t)
and πj(t), respectively. This amount should be proportional to

the level of agreement between the ants, i.e. to the number of

arcs in G where both ants, ai and aj , deposited pheromones

at the iteration t.

An arbitrary similarity measure can be used to implement

S . It should reach its maxima for πi(t) = πj(t) and minima,

for πi(t) ∩ πj(t) = ∅, i.e. when both ants chose completely

different paths in G. In this work, the bi-directional version

of the adjacency metric [26], [27] is used as permutation

similarity. The adjacency metric counts the number of times

elements u and v, u, v ∈ {1, . . . , n}, are adjacent to each other

in both, πi(t) and πj(t). The bi-directional adjacency relation

is defined by

adjπ(u, v) =

⎧⎪⎨
⎪⎩
1, |posπ(u)− posπ(v)| = 1

1, |posπ(u)− posπ(v)| = n

0, otherwise

, (6)

where posπ(x) is the position of an element, x ∈ {1, . . . , n},
in a permutation, π.

Remark 1. The second case of eq. (6) is in effect when u

and v are the first and the last element of the permutation,

respectively. In such case, π = (u, . . . , v) and adjπ(u, v) = 1.

That is a desirable behaviour for the TSP because it seeks for

a Hamiltonian cycle in a graph.

1

23

4

5 6

Fig. 1. An example of the similarity measure Sadj for the paths traversed by
two ants represented by red and green arrows, respectively. The paths corre-
spond to two permutations, πi = (1, 2, 3, 4, 5, 6) and πj = (1, 2, 3, 6, 5, 4).
In this example, the ants have agreed on 4 edges, (1,2), (2,3), (4,5)≡(5,4),
and (5,6)≡ (6, 5), so Sadj = 2

3
.

The bi-directional adjacency metric, Sadj , is for two per-

mutations of length n, π and σ, defined by

Sadj(π, σ) =
1

n

∑
u,v∈{1,...,n}

adjπ(u, v) · adjσ(u, v). (7)

Sadj returns values from the range [0, 1]. Obviously, Sadj is

for two identical permutations, π = σ, equal to 1. If π and σ

agree on exactly one half of the edges in G, the value of Sadj
is 0.5. If π and σ are disjoint, the value of Sadj is 0. A visual

example of Sadj for a permutation problem with 6 elements

is shown in fig. 1.

Remark 2. Ant-inspired algorithms are based on the collab-

oration between agents. In ACO algorithms with a single type

of pheromones, all ants are attracted towards an edge with a

high amount of pheromones with the same intensity. Intuitively,

the value of Sadj will have a growing tendency as the ants will

be coming to an agreement on an optimum path in G.

B. Interaction Network

For a permutation problem on G and an ant-inspired algo-

rithm with a colony of m artificial ants, A, consider a dynamic

interaction network, IAG = (VI , EI , wI). The network is

represented by a complete undirected edge-weighted graph on

m vertices, Km, with edge weights evolving in time.

Each vertex, i, in IAG corresponds to an ant, ai, in A. The

weight of an edge, e = (ij), at time t, wij(t), reflects the

intensity of interaction between ants ai and aj in the past t

iterations. In every iteration, the weights should be modified

so that they increase when the ants reach an agreement on a

certain portion of their paths in G and decrease in every other

case. This behaviour is analogous to the notion of pheromone

deposition and evaporation in ACO or weight increase and

forgetting in social network analysis [23].

At time t = 0, the initial weights in an interaction network

are set to zero:

∀i, j ∈ EI : wij(0) = 0. (8)
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a1

a2a3

a4

a5 a6

(a) t = 0.

a1

a2a3

a4

a5 a6

(b) t = 10.

a1

a2a3

a4

a5 a6

(c) t = 100.

Fig. 2. An example of interaction network for a colony with 6 artificial ants. Different subfigures show the network at different iterations. Edge thickness is
in all graphs proportional to edge weight. Note that this is an illustration of the desired behaviour and the structure and properties of real-world interaction
networks depend, among others, on the choice of S and Δ, respectively.

The general weight updating scheme considers increase and

decay of edge weights.

wij(t+ 1) = Δ(wij(t)) + S(πi(t+ 1), πj(t+ 1)), (9)

were S is a permutation similarity measure and Δ : R→ R is

an arbitrary decay function. In this work, we use the similarity

measure Sadj defined in eq. (7) and a simple constant decay

function

Δρ(x) = max(0, x− ρ), (10)

where ρ ∈ R is a parameter determining the rate at which

past agent interactions are forgotten in every iteration. An

illustration of an interaction network for a colony of 6 ants

at different stages of the algorithm is shown in fig. 2.

Remark 3. The constant decay function, Δ0, can be with

ρ = 0 used to model an interaction network with non-

decreasing edge weights. Such network never forgets an in-

teraction between any pair of ants.

C. Summary

A conceptual framework for the interpretation of ant inter-

action in ACO algorithms from a complex network perspective

was outlined in this section. The general concept includes a

mechanism for the quantification of ant interaction, defined

by eq. (5), and a set of generic rules for the construction and

updates of an interaction graph described by eq. (8) and eq. (9),

respectively.

Equation (6) and eq. (7), on the other hand, provide a

particular implementation of the similarity function and a

simple weight decay rule is proposed in eq. (10). These

straightforward functions are suitable for the use with simple

permutation problems such as the TSP instances from the

TSPLIB95 library1. These functions are utilized in section IV

to illustrate the proposed complex network interpretation of

ant interaction.

1http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

IV. NETWORK MODEL OF ANT INTERACTION IN THE TSP

This section provides a concrete illustration of the network

interpretation of ant interaction. Several instance of the travel-

ing salesman problem from the well-known TSPLIB95 library

are solved by an ACO algorithm and the corresponding inter-

action networks are constructed, visualized, and investigated.

A. Traveling Salesman Problem

The traveling salesman problem is an iconic hard combina-

torial optimization problem with a long tradition, a number

of different variants, and countless applications [1], [25].

Informally, the TSP consists in finding the shortest (least

expensive) route between n cities. In mathematical terms, the

TSP looks in a weighted graph, G = (V,E,w), with a set

of vertices V , number of vertices n = |V |, set of edges E,

and a set of edge weights w = {we ∈ R | ∀e ∈ E}, for a

Hamiltonian cycle, L, with a minimum sum of weights on the

edges of the cycle [25].

A particular instance of the TSP is often represented by

a cost matrix, Cn×n = (cij), where cij = we for all edges

e = (ij). If G is not complete, missing edges can be in C

represented by an arbitrary large weight.

The TSP can be also formulated as a permutation prob-

lem [25]. For a set of all permutations of a set of n objects,

Sn, find π = (π(1), π(2), . . . , π(n)) such that the cost of the

permutation (i.e. objective function),

fobj(π) = cπ(n)π(1) +
n−1∑
i=1

cπ(i)π(i+1), (11)

is minimized.

The TSP is of paramount significance for the ACO com-

munity. It was among the first problems used to demonstrate

the concepts and usefulness of ant colony optimization during

the advent of ant-inspired computing [10], [11]. Later on, it

was frequently used as a benchmark problem to demonstrate

the effectiveness of new algorithm improvements [13], [11],

innovative ACO variants [5], [17], [29], and novel software

and hardware solutions [2], [14]. The TSP is in this work used

to illustrate the proposed concepts of network interpretation
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Fig. 3. An example ACO run for the eil51 TSP instance.
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(d) Iteration 2000.

Fig. 4. Complex network model of an ACO solving eil51 at different iterations.

of ant interaction because of its familiarity, the simplicity of

TSPLIB95 instances, and known best solutions.

B. Interaction Network for the TSP

To demonstrate the proposed network model of ant in-

teraction, an elitist ant system [12] was implemented and

employed to solve TSP instances from the TSLPIB95 repos-

itory. The algorithm utilized a-priori information ηij = cij ,

and pheromone amplification rate, α, and a-priori information

amplification rate, β, set to 1. The amount of deposited

pheromone was proportional to the quality of solutions and

the evaporation rate, ρ, was set to 0.1. The number of artificial

ants, m, was fixed to 10 and the algorithm was executed for

2000 iterations. The selected ACO variant and its parameters

are based on best practices, authors’ past experience, and

extensive experimental trial-and-error runs. The number of

ants was selected so that the algorithm was able to find a

reasonable problem solution and the network model remained

clear and comprehensible. We note that the goal of presented

computational experiments was not the search for optimum

TSP solutions but the illustration of the network interpretation

of ant interaction on a real-world problem.

The network model of ant interaction utilized the bi-

directional adjacency metric, Sadj (7), and constant decay

function, Δρ (10), with the parameter ρ equal to 0.9. It means

that 90% of a full interaction between each pair of ants was

forgotten by the network in every iteration. Graph density,

den(G), was computed for IAG in every iteration to provide

an initial assessment of its properties [16]

den(IAG ) =
2 ·

∑
(ij)∈EI

wij

m(m− 1)
. (12)

Visual descriptions of two ACO runs solving two particular

TSP instances, eil51 and st70, are provided in fig. 3 and fig. 5,

respectively. Although only two particular algorithm runs for

two TSP instances are shown, the displayed behaviour is

typical and was observed also in other independent ACO

runs and for other TSP instances. The figures show for each

iteration current (i.e iteration-best) and so far best (i.e. global-

best) problem solutions as well as the running mean of the

density of the interaction network. Running mean with window

size 5 was computed to smooth out sudden changes of this

measure and to emphasize its trends.

It can be immediately seen that the values of den(IAG )
correspond to the trends of the objective function, fobj. The

density is zero or decreasing when the values of fobj are

improving and increasing when the algorithm becomes stuck

in a local minima and fobj stagnates. Such situations are

characterized by long plateaus on the plot of objective function

values. Figure 3 and fig. 5 suggest that the value of den(IAG )
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Fig. 5. An example ACO run for the st70 TSP instance.
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(d) Iteration 2000.

Fig. 6. Complex network model of an ACO solving st70 at different iterations.

drops when the algorithm becomes more explorative, i.e. when

the values of the iteration-best solution become increasingly

oscillating.

The interaction networks, sampled at different ACO it-

erations, are for each presented ACO run shown in fig. 4

and fig. 6, respectively. The thickness of edge weights repre-

sents the intensity of interaction between corresponding ants.

All interaction graphs were drawn using a straightforward

circular layout and the location of the vertices has no relation

to the solved problem or interaction network state.

V. CONCLUSIONS

This work proposes a framework for a complex network in-

terpretation and modelling of agent interaction in ant-inspired

algorithms for permutation problems. It allows representing

the dynamics of an ant colony optimization algorithm by an

dynamic graph that can be subsequently studied and eventually

used to control the algorithm. The framework is presented

in general terms and its simple implementation for a well-

known permutation problem, the travelling salesman problem,

is outlined.

Selected TSP instances are in this study solved by an elitist

ant system and the corresponding interaction networks are cre-

ated and analyzed. The conducted computational experiments

illustrate the proposed concepts and confirm that the graph-

theoretical properties of the interaction network can provide

a valuable information regarding the status of the algorithm.

The initial experiments show that interaction graph density

can be used to identify the state of the algorithm. A steadily

increasing value of interaction graph density can be interpreted

as a sign of local minima whereas its drop can be seen as a

signal that the algorithm has escaped from such a location.

Network interpretation and analysis of ant-inspired algo-

rithms is a promising new field of study that opens a number

of research questions. Besides a generalization of the proposed

approach to other than just permutation problems (e.g. subset

selection [20] or routing [22] problems) and to other types of

multiagent and swarm algorithms, the study of the relations

between various graph-theoretical properties of the interaction

networks and their implications for the optimization proce-

dures is of utmost interest.

Last but not least, network-based modelling and analysis

of ant-inspired algorithms is interesting also from a broader

perspective since it is now well-understood that real-world

ant colonies are governed by networks of interaction [18] and

complex network models may contribute to accurate emulation

of their behaviour.
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ISDA 2011, Córdoba, Spain, November 22-24, 2011, pages 510–515,
2011.

[3] M. Birattari, G. Di Caro, and M. Dorigo. Toward the formal foundation
of ant programming. In M. Dorigo, G. Di Caro, and M. Sampels, editors,
Ant Algorithms, volume 2463 of Lecture Notes in Computer Science,
pages 188–201. Springer Berlin Heidelberg, 2002.

[4] T. Bosse, C. M. Jonker, M. C. Schut, and J. Treur. Simulation and
analysis of a shared extended mind. SIMULATION, 81(10):719–732,
2005.

[5] S.-C. Chu, J. F. Roddick, and J.-S. Pan. Ant colony system with
communication strategies. Information Sciences, 167(14):63 – 76, 2004.

[6] D. Davendra, I. Zelinka, M. Metlicka, R. Senkerik, and M. Pluhacek.
Complex network analysis of differential evolution algorithm applied to
flowshop with no-wait problem. In Differential Evolution (SDE), 2014

IEEE Symposium on, pages 1–8, Dec 2014.
[7] D. Davendra, I. Zelinka, R. Senkerik, and M. Pluhacek. Complex

network analysis of evolutionary algorithms applied to combinatorial
optimisation problem. In P. Krömer, A. Abraham, and V. Snášel, editors,
Proceedings of the Fifth International Conference on Innovations in

Bio-Inspired Computing and Applications IBICA 2014, volume 303
of Advances in Intelligent Systems and Computing, pages 141–150.
Springer International Publishing, 2014.

[8] G. Di Caro, F. Ducatelle, and L. M. Gambardella. Theory and practice
of Ant Colony Optimization for routing in dynamic telecommunications
networks. In N. Sala and F. Orsucci, editors, Reflecting interfaces: the

complex coevolution of information technology ecosystems, pages 185–
216. Idea Group, Hershey, PA, USA, 2008.

[9] M. Dorigo and C. Blum. Ant colony optimization theory: A survey.
Theoretical Computer Science, 344(23):243 – 278, 2005.

[10] M. Dorigo and L. Gambardella. Ant colony system: a cooperative
learning approach to the traveling salesman problem. Evolutionary

Computation, IEEE Transactions on, 1(1):53–66, Apr 1997.
[11] M. Dorigo and L. M. Gambardella. Ant colonies for the travelling

salesman problem. Biosystems, 43(2):73 – 81, 1997.
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[27] T. Schiavinotto and T. Stützle. A review of metrics on permutations for

search landscape analysis. Comput. Oper. Res., 34(10):3143–3153, Oct.
2007.
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