
ACORg: A Gradient-Guided ACO Algorithm for
Neural Network Learning

Ashraf M. Abdelbar
Dept. of Mathematics & Computer Science

Brandon University

Manitoba, Canada

Email: AbdelbarA@brandonu.ca

Khalid M. Salama
School of Computing

University of Kent

Canterbury, UK

Email: kms39@kent.ac.uk

Abstract—The ACOR algorithm is an Ant Colony Optimization
(ACO) algorithm for real-valued optimization, and has been
applied to neural network learning. Unlike many algorithms
for neural network learning, ACOR does not use gradient
information at all in its operation. Also, unlike many discrete
ACO algorithms, ACOR does not allow for the incorporation of
domain-specific heuristics. In this work, we present a gradient-
guided variation of ACOR, that we call ACORg , that incorporates
gradient information while retaining the core aspects of the ACOR

algorithm. Experimental results using 10-fold cross-validation
with 20 UCI datasets indicate that our variation produces lower
test set error than standard ACOR, after a markedly smaller
number of training generations.

I. INTRODUCTION

Feedforward neural networks are one of the most widely-

used and generally-effective techniques for classification [1].

The most commonly-used techniques for neural network learn-

ing are either direct implementations of stochastic gradient

descent, such as the well-known Back-Propagation (BP) algo-

rithm [2], or are methods (such as resilient propagation [3], the

conjugate gradient method [4], and others [5]) that use gradient

information in a more advanced way. Non-gradient population-

based methods, such as Genetic Algorithms (GA) and Particle

Swarm Optimization (PSO), have also been applied to neural

network training [6], [7].

Gradient-based methods have the advantage that partial

derivatives can provide very direct and immediate information

on the direction in which to move the network weights in order

to reduce the error. But, they also have the disadvantage that

they cannot directly see beyond the nearest local optimum. On

the other hand, non-gradient methods have the disadvantage

that the only problem-dependent information they have access

to is the error function. Therefore, they will generally take

longer and will sometimes not be as effective as gradient-

based methods.

ACOR [8], [9] is a fairly-recent Ant Colony Optimization

(ACO) algorithm for real-variable optimization, and has been

applied to training fixed-topology feedforward neural networks

[10]. Like GA and PSO approaches, ACOR does not use

gradient information at all, and the only problem-dependent

information that it has access to is the fitness function (error

function). We propose a variation of ACOR, that we call

ACORg , for training fixed-topology neural networks that al-

lows for the use of gradient information to an extent that is

controlled by an external parameter 0 ≤ � ≤ 1. Setting � to 1
reduces ACORg to ACOR, while setting it to 0 makes maximal

use of gradient information. Based on initial experimentation,

we have determined � = 0.05 to be a good generic setting,

and this is the setting that we use in the present work.

Using stratified 10-fold cross-validation, we compare our

proposed ACORg to ACOR, in the training of 3-layer Multi-

Layer Perceptron (MLP) neural networks on 20 UCI datasets

[11]. We find that ACORg produces lower test set MSE (mean-

squared error) than ACOR in a clear majority of the datasets,

and consistently (on 20 out of 20 datasets) converges after a

smaller number of generations—on average, reducing ACOR’s

number of generations by nearly a factor of 4.

This rest of the paper is structured as follows. Section II

provides a brief introduction to ACO and to feedforward neural

networks. Section III reviews the ACOR algorithm, while

Section IV presents our proposed ACORg . Section V presents

our experimental methodology, followed by computational

results in Section VI. Finally, Section VII concludes with some

final remarks and suggestions for further research.

II. BACKGROUND

A. Ant Colony Optimization

Swarm intelligence studies natural systems composed of

many individuals interacting locally with each other and with

their environment, using forms of decentralized control and

self-organization to achieve their goals. Introduced by Dorigo

et al., Ant Colony Optimization (ACO) [12] is a well-studied

and widely-applied type of swarm-based systems for problem

solving, which mimics the real ants foraging behaviour in

finding the shortest path between the food source and the nest.

The search process is guided in an ACO algorithm through

the accumulating pheromone information associated with the

different parts of the problem’s search space, which is updated

by the ants according to the quality of the constructed solution

during the course algorithm’s execution.

In essence, the search space of a given problem is first

transformed into a graph of solution components, whereby

a combination of these components would present a valid

2015 IEEE Symposium Series on Computational Intelligence

978-1-4799-7560-0/15 $31.00 © 2015 IEEE

DOI 10.1109/SSCI.2015.162

1133

candidate solution to that problem. A population of ants then

navigates this graph, selecting decision components to add to

their path chosen throughout the graph in an attempt to build

a candidate solution. In parallel to real life ants, the ants are

trying to find the shortest path, where the “shortness” of their

path corresponds to the “quality” of the constructed solution

in the context of the problem at hand. The probability for an

ant to select its next component is based on two properties:

the heuristic advantage associated with it, and the amount of

pheromone present.

As the ants traverse the graph, they deposit pheromone on

the nodes that they have chosen in proportion to the quality

of the solution constructed by the ant. The more a decision

component is chosen by ants in the colony (implying that it

contributes well to the quality of solutions produced), the more

pheromone is deposited on it and the higher the probability

that it will be picked by ants in future iterations. The iterative

process of building candidate solutions, evaluating their quality

and updating pheromone values allows an ACO algorithm to

converge to near-optimal solutions.

Classically applied to combinatorial optimization problems,

ACO has also been successful in tackling classification prob-

lems. A number of ACO-based algorithms have been intro-

duced in the literature with different classification learning

approaches. Ant-Miner [13] is the first ant-based classification

algorithm, which discovers a list of classification rules. The al-

gorithm has been followed by several extensions in [13]–[17].

Otero and Salama [18], [19] have proposed two different ACO-

based algorithms for inducing decision trees for classification.

ACO was also employed in [20]–[22] to learn various types

of Bayesian network classifiers. ANN-Miner [23], [24] was

recently introduced as an ACO-based algorithm for learning

neural network topologies.

B. Neural Networks

One of the most popular and well-established methods

for pattern classification are Feed-Forward Neural Networks

(FFNN), which are neural networks in which the pattern of

connections between neurons is acyclic. The most common

FFNN topology is a three-layer structure in which neurons

are arranged in an input layer, a hidden layer, and an output

layer, with full connectivity between layers—i.e. the output of

every neuron in a layer feeds in as an input to every neuron in

the succeeding layer. The external input to the network feeds

into the input layer, and the network’s external output is the

output of the output layer.

Each neuron i is fairly simple, and can be considered to

be a combinatorial circuit which receives r inputs o1, . . . , or
(these inputs may represent the outputs of neurons in the

previous layer or may represent the network’s external inputs)

and produces a single output oi:

neti =
r∑

j=1

wijoj + θi (1)

oi = f(neti) (2)

where each input oj is the output of a neuron in the previous

layer, the weight wij represents a real-valued weight between

neuron j and neuron i, θi represents a weight associated

with neuron i itself called the neuron’s self-bias, and f is

a nonlinear activation function, most commonly chosen to be

the sigmoid function:

f(x) =
1

1 + e−x
(3)

After an input pattern x is presented to the network, the

output of the network is observed and is referred to as the

actual output vector y′. A discrepancy function E is used to

compare the target output y to the actual output y′ resulting

in a scalar error value. A common discrepancy function is the

mean squared error (MSE):

E =
1

m|P |
∑
p∈P

Ep (4)

and

Ep =
1

2

m∑
i=1

(yi − y′i)
2 (5)

where P is the set of training patterns and m is the number of

classes. Note that the MSE is the total sum of squared error

divided by the number of patterns and the number of classes.

Thus, it will always be the case that 0 ≤MSE ≤ 0.5, with a

value of 0 representing the lowest error and of 0.5 representing

the highest error.

In pattern classification applications, the target vector y is

m-dimensional where m is the number of classes. For a pattern

with class label ĉ:

yk =

{
1 if k = ĉ

0 otherwise
(6)

The weights and self-biases of a given FFNN are col-

lectively referred to as the network’s weight vector w. For

example, a FFNN with 4 neurons in the input layer, 5 neurons

in the hidden layer, and 3 neurons in the output layer would

have a weight vector of 43 real numbers. If the weight vector

for a given network is fixed, then the output of the network is

a function of its input, and the total error E of the network is

a mathematical function of the training set. If the training set

is fixed, then the error E is a function of the weight vector

w. Our objective is to find the value of the weight vector w
which minimizes the error E.

In gradient descent methods, the partial derivative ∂E
∂wi

of

the error E with respect to each element i of the weight vector

is computed, and the weights are updated according to:

w
(new)
aj = w

(old)
aj + α

(
− ∂E

∂wi

)
(7)

where α is a learning rate parameter.

1134

III. REVIEW OF THE ACOR ALGORITHM

Suppose the ACOR algorithm is to be applied to an opti-

mization problem over n real-valued variables V1, V2, . . . , Vn.

The central data structure, analogous to pheromone infor-

mation in natural ants, that is maintained by ACOR is an

archive A of R previously-generated candidate solutions. Each

element sa in the archive, for a = 1, 2, . . . , R, is an n-

dimensional real-valued vector, sa = (sa,1, sa,2, . . . , sa,n). For

example, sa,j refers to the value of the j-th variable in the a-

th solution in the archive. The archive is sorted by solution

quality, so that Q(s1) ≥ Q(s2) ≥ . . . ≥ Q(sR). Each solution

sa in the archive has an associated weight ωa that is related

to Q(sa), so that ω1 ≥ ω2 ≥ . . . ≥ ωR.

Algorithm 1 represents the pseudo-code of ACOR. As

shown, ACOR consists of repeated iterations until some ter-

mination criteria is reached (e.g. solution cost falls below

some desired threshold, some maximum number of iterations

is reached, etc.). In each iteration, there are two phases:

solution construction, and pheromone update. In the solution

construction phase, each ant probabilistically constructs a solu-

tion based on the solution archive A (representing pheromone

information). The solution archive A is initialized with R
randomly-generated solutions, where the size R is an external

parameter of the ACOR algorithm. Then, in the pheromone

update phase, the m constructed solutions (where m is the

number of ants) are added to A, resulting in the size of A
temporarily being R + m. The archive A is then sorted by

solution quality, and the m worst solutions are discarded, so

that the size of A returns to being R.

The heart of the algorithm is the solution construction phase.

In this phase, each ant i generates a candidate solution si,
where si is an n-dimensional vector, and si,j represents an

assignment to the j-th variable Vj . In constructing its solution

si, ant i is influenced by one of the R solutions in the archive

A. The ant first probabilistically selects one of the R solutions

in the archive according to:

Pr(select sa) =
ωa∑R
r=1 ωr

(8)

Thus, the probability of selecting the a-th solution is propor-

tional to its weight ωa. Recall that the archive A is sorted by

quality, so that solution sa has rank a. The weights ωa that

are used in Equation (8) are constructed in each iteration as:

ωa = g(a; 1, qR) (9)

where g is the Gaussian function:

g(y;μ, σ) =
1

σ
√
2π

e−
(y−μ)2

2σ2 (10)

Thus, Equation (9) assigns the weight ωa to be the value of the

Gaussian function with argument a, mean 1.0, and standard

deviation (qR). The value of q is an external parameter of

the algorithm, where smaller values of q cause the better

ranked solutions to have higher weights ω (and thus makes the

algorithm more exploitative), while larger values of q result in

a more uniform distribution.

Let sa be the solution of A that is selected by ant i according

to Equation (8) in a given iteration. Ant i then generates each

solution element si,a by sampling the Gaussian probability

density function (PDF):

si,j ∼ N(sa,j , σa,j) (11)

where N(μ, σ) represents the Gaussian PDF with mean μ and

standard deviation σ.

In Eq. (11), sa,j represents the value that the solution sa
assigns to variable Vj , and the standard deviation σa,j is

computed according to:

σa,j = ξ
R∑

r=1

|sa,j − sr,j |
R− 1

(12)

where ξ is an external parameter of the algorithm. The effect

of Equation (12) is that the average distance from sa to other

solutions in the archive, for the j-th dimension, is computed,

and is then multiplied by ξ. The parameter ξ plays a role

in ACOR similar to that of evaporation rate in other ACO

algorithms. The higher the value of ξ, the less the extent to

which the search is biased towards the area of the search space

around the solutions stored in the archive, and the slower the

algorithm will converge. Once each ant constructs its solution,

the archive A is updated as described above. The process

repeats until the desired termination criteria are met.

In all, the algorithm has four external parameters m, R, q,

and ξ, in addition to any parameters related to the termination

criteria. The parameter m determines the number of ants; the

parameter R determines the number of solutions stored in the

archive A; the parameter q controls the extent to which the

top solutions in the archive will dominate solution construction

(Eq. 9); and the parameter ξ influences the degree of diversity

in solution construction (Eq. 12).

When ACOR is applied to neural network learning, the

n real-valued variables V1, . . . , Vn that are optimized by the

algorithm correspond to the neural network weight vector w,

with n = |w|. Each archived solution si is a representation of

a network weight vector wi, and each entry si,j of an archived

solution si corresponds to the j-th element of the weight vector

wi, denoted wi,j . In the remainder of this paper, we will use

the notation si and wi interchageably, when referring to the

application of ACOR to neural network learning.

To evaluate the quality Q(si) of the i-th archived solution,

the solution si is interpreted as a weight vector wi. A neural

network is then created using the weight vector wi. The

training set is presented to the network, and the training set

MSE is obtained according to Eqs. (4-5). The quality Q(si)
is then set as:

Q(si) = 2 · (1−MSE) (13)

so that 0 ≤ Q(si) ≤ 1, with 1 representing the best quality

and 0 representing the worst quality.

1135

Algorithm 1 Pseudo-code of the ACOR Algorithm

1: Begin
2: t = 1;
3: sbest = null;
4: Qbset = −∞;
5: RandomizeArchive(A,R);
6: for i = 1 → R do
7: Qi = EvaluateQuality(si);
8: end for
9: RankArchiveByQuality(A);

10: repeat
11: for i = 1 → m do
12: sa = SelectFromArchive(A, q);
13: for j = 1 → n do
14: σa,j = Calculate(ξ, A, j);
15: si,j = N(sa,j , σaj); // N denotes Gaussian PDF

16: end for
17: Qi = EvaluateQuality(si);
18: if Qi > Qbest then
19: sbest ← si;
20: end if
21: AddToArchive(A, si);
22: end for
23: RankArchiveByQuality(A);
24: RemoveWorstSolutions(A,m);
25: t = t+ 1;
26: until t = tmax or termination condition();
27: return sbest;
28: End

IV. OUR PROPOSED ACORg ALGORITHM

Most ACO algorithms make use of problem-dependent

heuristic information. Readers who are familiar with discrete

ACO algorithms will recognize the familiar ACO probabilistic

action equation:

Pr(di) =
τi · ηi∑
k τk · ηk

(14)

where τ represents pheromone information and η represents

heuristic information. Perhaps the most useful heuristic in-

formation available in the case of neural network learning

is gradient information. In the ACOR algorithm, the solution

archive A plays the role of pheromone information, but there

is no mechanism for incorporating such information in a

general way within the framework of ACOR. Perhaps, future

researchers will investigate ways to incorporate heuristic infor-

mation, where it is available, within ACOR in a general way.

In the present work, we propose a mechanism for including

heuristic information (gradient information) in a way that is

specific to the problem of training neural networks.

Our ACORg algorithm modifies ACOR in several ways.

First, in the solution quality evaluation step of ACOR, as

described above, the training set is applied to the network

corresponding to the solution under evaluation, pattern by

pattern. For each pattern, the input is propagated forward to

obtain the output of the network so that the pattern error

(Eq. 5) can be determined. In ACORg , we add a second

substep in which the pattern error is propagated backwards

through the network to obtain the gradient vector G(p) where

|G| = |G(p)| = |w|, and

G(p)
i ≡ −∂Ep

∂wi
(15)

The overall gradient vector is then obtained as:

Gi =
∑
p∈P

G(p)
i (16)

(Note that we are being a little “loose” with our nomenclature

in referring to G as the gradient vector. Technically, of course,

G is the negative-of-the-gradient-vector, but for ease of ex-

pression, we will refer to it as the gradient vector throughout

the remainder of this paper.) Thus, a side-effect of evaluating

Q(si) is that a gradient vector Gi is also computed, and is

stored in the archive as auxiliary information attached to si.
Second, in the solution construction phase, before gener-

ating the j-th element of the i-th constructed solution, si,j ,

we probabilistically decide whether or not to apply gradient

guidance. With probability (1 − �), gradient guidance is ap-

plied; with the opposite probability �, gradient guidance is not

applied. Note that this decision is made independently for each

1136

Algorithm 2 Pseudo-code of the ACORg Algorithm

1: Begin
2: t = 1;
3: sbest = null;
4: Qbset = −∞;
5: RandomizeArchive(A,R);
6: for i = 1 → R do
7: (Qi,Gi) = EvaluateQualityAndComputeGradient(si);
8: end for
9: RankArchiveByQuality(A);

10: repeat
11: for i = 1 → m do
12: sa = SelectFromArchive(A, q);
13: for j = 1 → n do
14: if Random(0, 1) ≤ � then
15: σa,j = Calculate(ξ, A, j);
16: si,j = N(sa,j , σa,j);
17: else
18: Sa,j = ComputeInfluenceSet(A,Ga, j);
19: σa,j = Calculate(ξ, Sa,j , j);
20: if σa,j/sa,j < 0.05 then
21: σa,j = 0.05 ∗ sa,j ;

22: end if
23: si,j = sa,j + φ(Gt,j) ∗ |N(sa,j , σa,j)− sa,j |
24: end if
25: end for
26: (Qi,Gi) = EvaluateQualityAndComputeGradient(si);
27: if Qi > Qbest then
28: sbest ← si;
29: end if
30: AddToArchive(A, si);
31: end for
32: RankArchiveByQuality(A);
33: RemoveWorstSolutions(A,m);
34: t = t+ 1;
35: until t = tmax or termination condition()
36: return sbest;
37: End

dimension j of each constructed solution. Thus, for a given

constructed solution, it is possible that some of its dimensions

will have been constructed with gradient guidance and some

without. This can be expected to increase the diversity of the

solution construction process. In the present work, we fix � at

0.05.

Third, in the solution construction phase, if it is decided to

apply gradient guidance for a particular element si,j , then Eq.

(12) is modified as follows. Eq. (12) computes σa,j , which

is the standard deviation to be used with the j-th element

of the weight vector wa in the Gaussian PDF of Eq. (11).

The standard deviation σa,j is obtained by first obtaining the

average distance, in the j-th dimension, between wa and all

other archived solutions, and then multiplying this average by

the external parameter ξ. In the case of ACORg , we would like

to make use of the value Ga,j . If the value of Ga,j is positive,

then this indicates that the signal contained within the gradient

information is that an increase in the value of the j-th element

of weight vector wi will result in a decrease in the error E.

If Ga,j is negative, then the gradient is signalling that wi,j

should be decreased in order to decrease the error E.
We identify the set Sa,j of archived solutions sr for which

(sr,j − sa,j) has the same sign as Ga,j :

Sa,j = {sr|φ(sr,j − sa,j) = φ(Ga,j)} (17)

where φ is the sign function,

φ(x) =

⎧⎪⎨
⎪⎩
1 if x > 0

0 if x = 0

−1 if x < 0

(18)

For example, if Ga,j is positive, then Sa,j will include those

archived solutions sr for which sr,j > sa,j ; if Ga,j is negative,

1137

then Sa,j will include those solutions sr for which sr,j < sa,j .

Eq. (12) is then replaced with

σa,j = ξ
∑

sr∈Sa,j

|sa,j − sr,j |
|Sa,j | (19)

This modification will ensure that, for the j-th dimension,

solution construction will be guided only by those elements

of the archive that would move sa,j in the direction indicated

by gradient information.

Fourth, if gradient guidance is employed, then Eq. (11) is

replaced by:

t ∼ N(sa,j , σa,j) (20)

and

si,j = sa,j + φ(Ga,j) · |t− sa,j | (21)

In other words, if Ga,j is positive, then si,j is set to sa,j plus

the non-negative value |t−sa,j |, while if Ga,j is negative, then

si,j is set to sa,j minus the non-negative value |t−sa,j |. Thus,

this ensures that, in all cases,

φ(si,j − sa,j) = φ(Ga,j) (22)

Fifth, it will rarely but occasionally happen that the ap-

plication of Eq. (17) will result in a set Sa,j consisting of a

single vector (or a small number of similar vectors). In such

a case, σa,j , computed according to Eq. (19) will be zero (or

very small), resulting in no diversity (or very little diversity)

in solution construction. To avoid this, after computing σa,j

according to Eq. (19), we check to make sure that

σa,j

sa,j
≥ 0.05 (23)

Otherwise, we set

σa,j = 0.05 · sa,j (24)

Algorithm 2 summarizes the overall behaviour of the

gradient-guided ACO Algorithm ACORg .

V. EXPERIMENTAL METHODOLOGY

TABLE I
PARAMETER SETTINGS FOR THE ACOR ALGORITHM.

Parameter Description Values

m # of ants 5
R archive size 90
q controls exploration/exploitation 0.05
ξ controls speed of convergence 0.68

We evaluate the performance of ACORg relative to ACOR.

In [9], Liao et al. used the Iterated F-Race [25] automated

parameter optimization procedure to optimize the parameters

of ACOR. In our experimental results, we use the optimized

ACOR parameters reported by Liao et al. [9], rounded to two

decimal places; these values are shown in Table I. For ACORg ,

we used the same values for the parameters that ACORg has

in common with ACOR; for the � parameter, that is unique to

ACORg , we used a value of � = 0.05, based on some initial

ad hoc experimentation along with the intuition that we would

like to inject a 5% element of noise.

We set the termination criteria for both ACOR and ACORg

to be the occurrence of one of the following two conditions:

1) the number of generations exceeds 5000,

2) 100 generations elapse during which there is no improve-

ment in the quality of the best solution in the archive R.

We used 20 datasets, obtained from the publically-available

University of California Irvine (UCI) dataset repository [11].

Table II reports the main characteristics of these datasets.

Each of the two algorithms (ACOR and ACORg) was ap-

plied to training a feedforward Multi-Layer Perceptron (MLP)

neural network. The number of network inputs and network

outputs are of course determined by characteristics of the

dataset. Continuous attributes are scaled to the range [0,1],

and any missing values are set to the average value for that

attribute. Each categorial attribute, with k category labels, is

mapped to k network inputs, where one of the inputs has a

value of 1, and each of the other (k−1) inputs has a value of

0. Any missing values for a categorial attribute are set to the

mode for that attribute. If the dataset has m possible classes,

then the network will have m outputs, whose target values are

set according to Eq. (6). The last three columns of Table II

show the topology of the neural network for each dataset. As

described above, the number of network output neurons is the

same as the number classes. The number of network inputs

is equal to the number of continuous attributes plus the sum

of the number of category labels of the categorical attributes.

In the present work, we set the number of hidden neurons to

be equal to the number of input neurons plus the number of

output neurons.

The experiments were carried out using the stratified ten-

fold cross validation procedure. This means that a dataset is

divided into ten mutually exclusive partitions (folds), with

approximately the same number of instances and roughly the

same class distribution in each fold. Then, each classification

algorithm is run ten times, where each time a different fold

is used as the test set and the other nine folds are used as

the training set. Performance on each of the test set folds

is recorded, and the average test set performance, aggregated

over all 10 folds, is reported as representative of the perfor-

mance of each algorithm.

VI. EXPERIMENTAL RESULTS

Table III reports the results for the ACOR and ACORg

algorithms on the datasets shown in Table II. For each dataset,

the table reports the average test set MSE for each of the two

algorithms, with the best test MSE for each dataset indicated in

boldface, along with the number of training generations, again

with the smaller number of generations shown in boldface. The

penultimate row in both tables indicates the number of datasets

for which each algorithm had the best performance. The last

row indicates the average rank of each algorithm for test set

MSE along with the average number of training generations.

The average rank for a given algorithm g for test set MSE

is obtained by first computing the rank of g on each dataset

1138

TABLE II
CHARACTERISTICS OF THE DATASETS AND THE NEURAL NETWORK TOPOLOGIES.

Dataset Instances Classes Features NN Topology

Total Numeric Categorical Input Hidden Output

balance 625 3 4 0 4 20 23 3

breast-p 198 2 32 32 0 32 34 2

breast-tissue 106 6 9 9 0 9 15 6

breast-w 569 2 30 30 0 30 32 2

cylinder 540 2 35 19 16 79 81 2

ecoli 336 8 7 7 0 7 15 8

hay 132 3 4 0 4 15 18 3

heart-c 303 5 13 7 6 23 28 5

heart-h 293 5 13 7 6 23 28 5

ionosphere 351 2 34 34 0 34 36 2

iris 150 3 4 4 0 4 7 3

liver-disorders 345 2 6 6 0 6 8 2

parkinsons 195 2 22 22 0 22 24 2

pima 768 2 8 8 0 8 10 2

pop 90 3 8 0 8 24 27 3

segmentation 2,273 7 19 19 0 19 26 7

transfusion 722 2 4 4 0 4 6 2

ttt 958 2 9 0 9 27 29 2

wine 178 3 13 13 0 13 16 3

zoo 101 7 16 0 16 36 43 7

TABLE III
EXPERIMENTAL RESULTS.

Dataset Test Set MSE Training Generations

ACOR ACORg ACOR ACORg

balance 0.0190 0.0141 3,809 726
breast-p 0.0683 0.0653 3,627 1,623
breast-tissue 0.0335 0.0307 3,654 1,447
breast-w 0.0263 0.0244 3,264 625
cylinder 0.0757 0.0713 4,222 1,696
ecoli 0.0181 0.0300 3,550 1,016
hay 0.0311 0.0238 3,447 648
heart-c 0.0337 0.0448 4,266 1,604
heart-h 0.0329 0.0407 4,183 1,469
ionosphere 0.0310 0.0352 3,923 881
iris 0.0244 0.0118 3,713 1,013
liver-disorders 0.0811 0.0730 3,467 883
parkinsons 0.0445 0.0541 3,630 1,465
pima 0.0598 0.0546 2,534 777
pop 0.0564 0.0750 4,368 1,080
segmentation 0.0204 0.0112 4,417 1,013
transfusion 0.0628 0.0612 2,989 1,082
ttt 0.0333 0.0258 3,994 934
wine 0.0165 0.0098 3,621 712
zoo 0.0026 0.0021 4,741 233

#wins 6 14 0 20
avg. rank/avg. gens. 1.70 1.30 3,771.0 1,046.4

1139

individually, and then averaging the individual ranks across

all datasets to obtain the overall average rank for algorithm

g. Note that the lower the value of the rank, the better the

algorithm.

The results indicate that ACORg had better test set perfor-

mance on 14 out of 20 datasets, a clear majority, with an

average rank of 1.3. The results also indicate that ACORg had

a smaller number of generations on every single dataset, with

the average number of generations for ACORg being 27.7%

of the number of generations for ACOR.

VII. CONCLUDING REMARKS

In this proof of concept paper, we have shown that gradient

information can be effectively used within the ACOR algo-

rithm, when applied to neural network training. Most discrete

ACO algorithms include heuristic information in their solution

construction procedure, and it makes sense that gradient infor-

mation should play a similar role in neural network learning.

Using 20 publicly-available UCI datasets, we found that the

use of gradient information improves test set performance in

14 out of 20 datasets, and also substantially and consistently

reduces the number of training generations in all 20 datasets.

In future work, we would like to consider a hybridization in

which the algorithm has two concurrent threads. One thread

runs the ACORg algorithm, as described in this paper. The

other thread repeatedly takes the top weight-vector in the

archive (or perhaps a random vector from the archive) and

uses it to launch a gradient-based algorithm, such as the Scaled

Conjugate Gradient algorithm [4] or the Levenberg-Marquardt

algorithm [5], and then return the resultant “improved” weight

vector to compete for a place in the archive based on its qual-

ity. Such a hybrid approach would benefit from the advantages

of both gradient and population-based non-gradient methods.

ACKNOWLEDGMENT

Partial support of a grant from the Brandon University

Research Council is gratefully acknowledged.

REFERENCES

[1] S. Haykin, Neural Networks and Learning Machines. New York, NY,
USA: Prentice Hall, 2008.

[2] P. J. Werbos, The Roots of Backpropagation: From Ordered Derivatives
to Neural Networks and Political Forecasting. New York, NY: Wiley-
Interscience, 1994.

[3] M. Riedmiller and H. Braun, “A direct adaptive method for faster
backpropagation learning: The RPROP algorithm,” IEEE International
Conference on Neural Networks, pp. 586–591, 1993.

[4] M. F. Møller, “A scaled conjugate gradient algorithm for fast supervised
learning,” Neural Networks, vol. 6, no. 4, pp. 525–533, 1993.

[5] D. W. Marquardt, “An algorithm for least-squares estimation of non-
linear parameters,” Journal of the Society for Industrial & Applied
Mathematics, vol. 11, no. 2, pp. 431–441, 1963.

[6] N. Saravanan and D. Fogel, “Evolving neural control systems,” IEEE
Expert, vol. 10, no. 3, pp. 23–27, 1995.

[7] X. Cai, G. Venayagamoorthy, and D. Wunsch, “Evolutionary swarm
neural network game engine for capture Go,” Neural Networks, vol. 23,
pp. 295–305, 2010.

[8] K. Socha and M. Dorigo, “Ant colony optimization for continuous
domains,” European Journal of Operational Research, vol. 185, pp.
1155–1173, 2008.

[9] T. Liao, K. Socha, M. Montes de Oca, T. Stützle, and M. Dorigo, “Ant
colony optimization for mixed-variable optimization problems,” IEEE
Transactions on Evolutionary Computation, vol. 18, no. 4, pp. 503–518,
2014.

[10] K. Socha and C. Blum, “An ant colony optimization algorithm for
continuous optimization: Application to feed-forward neural network
training,” Neural Computing & Applications, vol. 16, pp. 235–247, 2007.

[11] A. Asuncion and D. Newman, “University of California
Irvine Machine Learning Repository,” 2007. [Online]. Available:
http://www.ics.uci.edu/ mlearn/MLRepository.html

[12] M. Dorigo and T. Stützle, Ant Colony Optimization. Cambridge, MA,
USA: MIT Press, 2004.

[13] R. S. Parpinelli, H. S. Lopes, and A. A. Freitas, “Data mining with an
ant colony optimization algorithm,” IEEE Transactions on Evolutionary
Computation, vol. 6, no. 4, pp. 321–332, 2002.

[14] D. Martens, M. De Backer, R. Haesen, J. Vanthienen, M. Snoeck,
and B. Baesens, “Classification with ant colony optimization,” IEEE
Transactions on Evolutionary Computation, vol. 11, no. 5, pp. 651–665,
2007.

[15] K. Salama, A. Abdelbar, and A. Freitas, “Multiple pheromone types
and other extensions to the Ant-Miner classification rule discovery
algorithm,” Swarm Intelligence, vol. 5, no. 3-4, pp. 149–182, 2011.

[16] F. Otero, A. Freitas, and C. Johnson, “Handling continuous attributes in
ant colony classification algorithms,” in Proceedings IEEE Symposium
on Computational Intelligence and Data Mining (CIDM-2009), 2009,
pp. 225–231.

[17] ——, “A new sequential covering strategy for inducing classification
rules with ant colony algorithms,” IEEE Transactions on Evolutionary
Computation, vol. 17, no. 1, pp. 64–76, 2013.

[18] ——, “Inducing decision trees with an ant colony optimization algo-
rithm,” Applied Soft Computing, vol. 12, no. 11, pp. 3615–3626, 2012.

[19] K. Salama and F. Otero, “Learning multi-tree classification models with
ant colony optimization,” in Proceedings International Conference on
Evolutionary Computation Theory and Applications (ECTA-2014), 2014.

[20] K. Salama and A. Freitas, “Learning Bayesian network classifiers using
ant colony optimization,” Swarm Intelligence, vol. 7, no. 2-3, pp. 229–
254, 2013.

[21] ——, “Ant colony algorithms for constructing Bayesian multi-net clas-
sifiers,” Intelligent Data Analysis, vol. 19, no. 2, pp. 233–257, 2015.

[22] ——, “ABC-Miner+: Constructing Markov blanket classifiers with ant
colony algorithms,” Memetic Computing, vol. 6, no. 3, pp. 183–206,
2014.

[23] K. Salama and A. Abdelbar, “A novel ant colony algorithm for building
neural network topologies,” in Proceedings ANTS-2014, Lecture Notes
in Computer Science Vol. 8667. Springer, 2014, pp. 1–12.

[24] ——, “Learning neural network structures with ant colony algorithms,”
Swarm Intelligence, 2015, to appear.

[25] M. Birattari, Z. Yuan, P. Balaprakash, and T. Stützle, “F-Race and
iterated F-Race: An overview,” in Experimental Methods for the Anal-
ysis of Optimization Algorithms, T. Bartz-Beielstein, M. Chiarandini,
L. Paquete, and M. Preuss, Eds. Berlin: Springer, 2010, pp. 311–336.

1140

