
Ant Colony Optimization for First-order Rule
Discovery

Rafael Ramirez
Department of Information and

Communications Technologies

Pompeu Fabra University

08018 Barcelona, Spain

Email: rafael.ramirez@upf.edu

Abstract—In the past, ant colony optimization has been applied
to learning sets of propositional rules. In this paper, we present
an algorithm for learning sets of first-order rules with ant colony
optimization. First-order rules can sometimes provide a more
intuitive and accurate concept description as they are more ex-
pressive than traditional propositional rules. As a case study, we
apply our algorithm to expressive music performance modeling,
one of the most challenging problems in music informatics, and
compare our results with the results obtained by state-of-the-art
first-order rule learning algorithms.

I. INTRODUCTION

Classification rules are a popular approach to classification

learning in which the antecedent of an if-then rule is generally

a conjunction of tests (or conditions) and the consequent is the

predicted class or classes (possibly with a probability associ-

ated to each class). It is often assumed implicitly that the con-

ditions in classification rules involve testing an attribute value

against a constant. Such rules are called propositional because

they have the same expressive power as propositional logic.

In many cases, propositional rules are sufficiently expressive

to describe a concept accurately. However, there are cases

where more expressive rules would provide a more intuitive

concept description. These are cases where the knowledge to

be learned is best expressed by allowing variables in attributes.

Algorithms that are capable of learning first-order rules are

natural candidates for dealing with data in domains where

background knowledge is available, e.g. biological or musical

data.

In this paper we describe Relational-AntMiner (RAM),

a new algorithm for inducing first-order rules using ant

colony optimization. RAM extends previous approaches to

learning classification rules using ant colony optimization

by inducing sets of first order logic rules, and incorporates

ant colony optimization in inductive logic programming. We

apply Relational-AntMiner to expressive music performance

modeling, one of the most challenging problems in music

informatics.

II. RELATED WORK

A. Ant colony optimization

Swarm intelligence [20] studies the emergent collective

intelligence of groups of simple agents that interact locally

through their environment [21]. It is inspired by groups of

insects who live in colonies, such as ants and bees. These

insects can only do simple tasks individually, while the colony

as a whole shows complex intelligent behavior. Thus, the

intelligent behavior can be seen as an emergent property of

the group. Ants, for instance, initially wander randomly. Upon

finding food they return to their colony while laying down

pheromone trails. If other ants find such a path, they are likely

not to keep traveling at random, but to instead follow the trail,

returning and reinforcing it if they eventually find food.

Over time, the pheromone trail starts to evaporate, thus

reducing its attractive strength. The more time it takes for

an ant to travel down the path and back again, the more time

the pheromones evaporate. A short path, by comparison, gets

marched over faster, and thus the pheromone density remains

high as it is laid on the path as fast as it can evaporate.

Pheromone evaporation has also the advantage of avoiding

the convergence to a locally optimal solution. If there were no

evaporation at all, the paths chosen by the first ants would tend

to be excessively attractive to the following ones. In that case,

the exploration of the solution space would be constrained.

Thus, when an ant finds a good (i.e. short) path from the

colony to a food source, other ants are more likely to follow

that path, and positive feedback eventually leads all the ants

to follow a single path. The idea of the ant colony algorithm

is to mimic this behavior with simulated ants walking around

the graph representing the problem to solve.

Ant colony optimization algorithms [4], [5], [6] have been

applied to a variety of problems, including vehicle routing

(e.g. [19]), scheduling (e.g. [3]), timetabling (e.g. [16]), and

the traveling salesman problem (e.g. [18]). They have an

advantage over simulated annealing and genetic algorithms

approaches when the graph may change dynamically; the ant

colony algorithm can be run continuously and adapt to changes

in real time.

The application of ant colony optimization to learning

classification rules was first introduced by Parpinelli et al.

2015 IEEE Symposium Series on Computational Intelligence

978-1-4799-7560-0/15 $31.00 © 2015 IEEE

DOI 10.1109/SSCI.2015.163

1141

[11]. Their proposed algorithm, AntMiner, was soon followed

by the extensions AntMiner2 and AntMiner3 proposed by

Liu et al. [7], [8]. Martens et al. [9] recently proposed

AntMiner+, an algorithm improving on the previous AntMiner

versions. However, the aim of all these algorithms is to obtain

propositional classification rules of the form

IF antecedent THEN consequent

where antecedent is a conjunction of terms of the form

variable = value, e.g. sex = female. Here we extend

these algorithms by inducing first-order rules as opposed to

propositional rules.

B. Inductive logic progrmming

As mentioned before, in many cases, propositional rules

are sufficiently expressive to describe a concept accurately.

However, there are cases where more expressive rules would

provide a more intuitive concept description. These are cases

where the knowledge to be learned is best expressed by

allowing variables in attributes (e.g. father(X,Y)). One

important special case involving learning sets of rules con-

taining variables is called inductive logic programming [15],

[14]. While most existing machine learning approaches tend

to look for patterns in a single table of data and require

preprocessing to integrate data from multiple tables, inductive

logic programming looks for patterns that involve multiple

relations (i.e. tables) from a relational database. This is, the

input data in inductive logic programming typically consists of

several tables, as opposed to only one table. Integrating data

from several tables may cause loss of meaning or information.

In relational data bases, a relation can be defined either exten-
sionally (e.g. by tables) or intensionally (as logical rules). Re-

lations defined intensionally typically represent relationships

that can be inferred from other relationships and correspond

to general knowledge about the domain of discourse. Such

general knowledge is often referred as background knowledge.

Inductive logic programming techniques are natural candidates

for dealing with data in domains where background knowledge

is available. This is the case for musical data where there is

often background knowledge available.

As an example of rules containing variables, consider the

following two rules jointly describing the concept of ancestor

(parent(X,Y) indicates that Y is the mother or the father of

X and ancestor(X,Y) indicates that Y is the ancestor of X):

IF parent(X,Y) THEN ancestor(X,Y)
IF parent(X,Z) AND ancestor(Z,Y) THEN ancestor(X,Y)

These two rules describe a recursive predicate that would be

very difficult to represent using a propositional representation.

III. RELATIONAL-ANTMINER

Relational-AntMiner creates a directed construction graph

as the ants’ environment. However, the construction of the

construction graph in Relational-AntMiner is dynamic. This is,

it is constructed lazily at run-time as the ants walk through the

environment. As mentioned before, ant colony optimization

algorithms have the advantage (over genetic algorithms and

simulated anealing) of being able to run continuously and

adapt to dynamic changes in the construction graph in real

time. Relational-AntMiner takes advantage of this fact.

Initialize TrainingExamples
Construct graph
while (# of positive examples > threshold)

while (not convergence)
create ants
run ants
prune rule of best ant
update edge pheromones levels:

evaporate edge levels
reinforce best path

update probabilities of edges
end
collect best rule
remove examples correctly

classified by best rule
end
return collected rules

A. Construction graph

The graph G = (V,E) is defined as follows:

• Vertices. First, a vertex with the predicate

qtarget(v1, . . . , vm), corresponding to the target

concept, is defined. Second, for each predicate name qi
i = 1, . . . , n in the training data and in the background

knowledge we define a vertex group. The exact number

and form of each vertex in the vertex group for qi
is determined dynamically by the position of the

current ant. Each vertex corresponds to a candidate

specialization of the rule of the current ant. For each

predicate symbol qi in the training data and background

knowledge a vertex qi(v1, . . . , vr) is defined where each

vk (1 ≤ k ≤ r) is either a new variable or a variable

already appearing in a vertex visited by the ant. At least

one of the vk in qi(v1, . . . , vr) must already exist as a

variable in the rule, i.e must appear in a vertex already

visited by the ant.

• Edges. At any time point, the set of bidirectional edges

in the graph is defined as the set containing the pairs of

vertices:

(qi(var1, . . . , vark), qj(v1, . . . , vr)) for j = 1, . . . , n

where qi(var1, . . . , vark) is the current position of the

current ant, and qj(v1, . . . , vr) (j = 1, . . . , n) are the

vertices defined as indicated above. At any time point,

the number of vertices in a vertex group is (|V | + 1)r

1142

where |V | is the number of variables already occurring

in the clause, and r is the arity of the predicate associated

with the vertex group.

B. Edge probabilities

The probability for an ant in vertex qi(v1, . . . , vr) to

choose the edge to vertex qj(v1, . . . , vs) is a function of the

pheromone value (τij) of the edge and an heuristic value (ηij)

associated to vertex qj(v1, . . . , vs) and normalized over all

possible edge choices.

Pij(t) =
τij(t)·ηij∑n

i=1

∑mk

l=1
xkl(τkl(t)·ηkl)

where xkl is a binary variable which is set to one if vertex kl
(i.e. the lth vertex with predicate name qk) is not yet used by

the current ant and to zero, otherwise. The choice of the next

edge is restricted in order to avoid the same predicate symbol

with the same arguments (i.e. variables) to be chosen more

than once in a rule.

Relational-AntMiner determines the heuristic value associ-

ated to vertices by considering the performance of the rule

over the training data. The estimation of the utility of adding

a new vertex is based on the number of positive and negative

bindings covered before and after adding a new vertex. More

precisely, if R0 is a rule corresponding to the path ending at

vertex qi(v1, . . . , vr), and R1 is the rule created by adding

vertex qj(v1, . . . , vs) to rule R0, then the heuristic value ηij
(associated to adding qj(v1, . . . , vs) to the antecedent of R0)

is defined as

ηij = t(log2
p1

p1+n1
− log2

p0

p0+n0
)

where p0 is the number of positive bindings of rule R0, n0 is

the number of negative bindings of R0, p1 is the number of

positive bindings of R1, n1 is the number of negative bindings

of R1, and t is the number of positive bindings of R0 that are

still covered by R1.

The definition of ηij is based on information theory. Ac-

cording to information theory, −log2 p0

p0+n0
is the minimum

number of bits needed to encode the classification of an

arbitrary positive binding among the bindings covered by rule

R0. Similarly, −log2 p1

p1+n1
is the number of bits required

if the binding is one of those covered by rule R1. Since t
is just the number of positive bindings covered by R0 that

remain covered by R1, ηij can be seen as the reduction due

to qj(v1, . . . , vs) in the total number of bits needed to encode

the classification of all positive bindings of R0.

IV. EXPRESSIVE PERFORMANCE MODELING

In this section, we present a case study on the application of

Relational-AntMiner to one of the most challenging problems

in music informatics, namely expressive music performance

modeling. We show the benefits of our approach by comparing

Relational-AntMiner’s accuracy with the accuracies of both

traditional propositional methods (e.g. decision trees) and ILP

systems (i.e. Tilde).

A. Melodic description

We use sound analysis techniques based on spectral models

[13] for extracting high-level symbolic features from the

recordings. The spectral model analysis techniques are based

on decomposing the original signal into sinusoids plus a

spectral residual. From the sinusoids of a monophonic signal it

is possible to extract high-level information such as note pitch,

onset, and duration among other information (the details can

be found in [12]).

B. Musical Analysis

It is widely recognized that humans perform music con-

sidering a number of abstract musical structures. Once the

pitch of each note in the performances is extracted, we

implement Narmour’s Impliction/Realization theory [10] in

order to provide structure for the recordings. Very briefly,

the Implication/Realization model proposed by Narmour is a

theory of perception and cognition of melodies. The theory

states that a melodic musical line continuously causes listeners

to generate expectations of how the melody should continue.

Melodic patterns or groups can be identified that represent

different degrees of expectations in the listener.

C. Training data

The data set is composed of monophonic recordings of four

Jazz standards (Body and Soul, Once I Loved, Like Someone
in Love and Up Jumped Spring) performed by a professional

saxophonist at 11 different tempi. The data set consists of

3192 performed notes. It contains musical-context descriptors

of notes for which several expressive transformations have

been observed. The observed deviations are in terms of note

duration, onset and energy. Each note in the training data is

annotated with a class for each expressive transformation.

D. Note descriptors

We characterize each performed note by a set of features

representing both properties of the note itself and aspects of

the musical context in which the note appears. Information

about the note includes note pitch, note duration amd metrical

strength, while information about its melodic context includes

the relative pitch and duration of the neighboring notes (i.e.

previous and following notes) as well as a musicological

analysis (Narmour analysis [10]) of the pitch context in which

the note appears. In Relational-AntMiner the characterization

of each note is specified by predicates context/6, narmour/2,

succ/2 and member/3. Predicate context/6 specifies the local

context of a note, narmour/2 specifies the note’s Narmour anal-

ysis, metric/2 specifies the note’s metrical strength. succ(X,Y)
means note Y is the successor of note X, and member(X,L)
means X is a member of list L. Note that succ(X,Y) also mean

X is the predecessor of Y.

1143

Algorithm C.C.I(%)
Relational-AntMiner 84.7

Tilde 80.3
Foil 77.2

Decision trees 74.5
TABLE I

Cross validation results (correctly classified instances percentage) for the
duration transformation model. In the case Relational-AntMiner the standard

deviation is σ = 1.03

Algorithm C.C.I(%)
Relational-AntMiner 92.3

Tilde 90.0
Foil 84.6

Decision trees 78.6
TABLE II

Cross validation results (correctly classified instances percentage) for onset
transformation. In the case Relational-AntMiner the standard deviation is

σ = 1.65

E. Learning task

For each expressive transformation, we approach the prob-

lem as a classification problem. The classes that interest us are

lengthen, shorten and same for duration transformation; ad-
vance, delay, and same for onset deviation; and soft, loud and

medium for energy variation. We apply Relational-AntMiner

with the following target predicates: duration/3, onset/3 and

energy/3 (where /n at the end of the predicate name refers to

the predicate arity).

F. Results

The correctly classified instances percentage (C.C.I:%) for

each expressive transformation (i.e. duration, onset and en-

ergy) and each considered algorithm is presented in Tables

I-III. Results were obtained using 10-fold cross valiadtion.

Relational AntMiner is consistently the algorithm with higher

C.C.I:% with 84.7% (σ=0.43), 92.3% (σ=0.4) and 84.9%

(σ=0.31) for duration, onset and energy, respectively.

V. CONCLUSIONS AND FUTURE RESEARCH

We have described Relational-AntMiner, a new algorithm

for inducing first-order rules using ant colony optimization.

The algorithm provides a dynamic environment in which the

ants choose a paths and implicitly construct a rule. Each time

a best rule is collected, it is added to the disjunctive hypothesis

represented by the set of learned rules. Viewed at this level,

the search is a specific-to-general search through the space of

Algorithm C.C.I(%)
Relational-AntMiner 84.9

Tilde 79.8
Foil 74.9

Decision Trees 79.5
TABLE III

Cross validation results (correctly classified instances percentage) for energy
variation. In the case Relational-AntMiner the standard deviation is

σ = 1.08

hypotheses. By walking in the environment, each ant searches

a second hypothesis space, consisting of conjunctions of liter-

als, to find a conjunction that will form the preconditions for

its own rule. Within this hypothesis space, each ant conducts

a general-to-specific, hill-climbing search, beginning with the

most general preconditions possible. One advantage of such

process is that it produces a comprehensible model, which

is important in many application domains. Our algorithm

extends previous approaches to learn classification rules using

ant colony optimization by inducing sets of first-order rules,

and incorporates ant colony optimization to inductive logic

programming. We have applied our algorithm to expressive

music performance modeling and the showed the benefits of

our approach by comparing the obtained accuracy with the

accuracies of state-of-the-art algorithms.

ACKNOWLEDGMENT

This work has been partly sponsored by the Spanish TIN

project TIMUL (TIN2013-48152-C2-2-R)

REFERENCES

[1] H. Blockeel, L. De Raedt, and J. Ramon. Top-down induction of
clustering trees. In ed. J. Shavlik, editor, Proceedings of the 15th
International Conference on Machine Learning, pages 53-63, Madison,
Wisconsin, USA, 1998. Morgan Kaufmann.

[2] Srinivasan, A. (2001). The Aleph Manual.
[3] A. Colorni, M. Dorigo, V. Maniezzo, and M. Trubian, Ant system for

job-shop scheduling, J. Oper. Res., Stat., Comput. Sci., vol. 34, no. 1,
pp. 39-53, 1994.

[4] M. Dorigo, V. Maniezzo, and A. Colorni, Positive feedback as a
search strategy Dipartimento di Elettronica e Informatica, Politecnico
di Milano, Milano, Italy, TR 91016, 1991.

[5] M. Dorigo, V. Maniezzo, and A. Colorni, Ant system: Optimization by
a colony of cooperating agents, IEEE Trans. Syst., Man, Cybern. Part
B, vol. 26, no. 1, pp. 29-41, 1996.

[6] M. Dorigo and T. Sttzle. Ant Colony Optimization, MIT Press, 2004
[7] B. Liu, H. A. Abbass, and B. McKay. Density-based heuristic for rule

discovery with ant-miner, in Proc. 6th Australasia-Japan Joint Workshop
on Intell. Evol. Syst., Canberra, Australia, pp. 180-184, 2002.

[8] B. Liu, H. A. Abbass, and B. McKay. Classification rule discovery with
ant colony optimization, in Proc. IEEE/WIC Int. Conf. Intell. Agent
Technol., pp. 83-88, 2003.

[9] D. Martens, M. De Backer, R. Haesen, J. Vanthienen, M. Snoeck,
and B. Baesens, Classification With Ant Colony Optimization, IEEE
Transactions on Evolutionary Computation, 11(5), 2007.

[10] E. Narmour. The Analysis and Cognition of Basic Melodic Structures:
The Implication Realization Model. University of Chicago Press (1990).

[11] R. S. Parpinelli, H. S. Lopes, and A. A. Freitas. An ant colony based
system for data mining: Applications to medical data, in Proc. Genetic
and Evol. Comput. Conf., pp. 791-797, 2001.

[12] R. Ramirez, A. Hazan. Discovering Expressive Transformation Rules
from Saxophone Jazz Performances, Journal of New Music Research,
Vol. 34, No. 4, (2005) pp. 319-330

[13] X. Serra, S. Smith. Spectral Modeling Synthesis: A Sound Analy-
sis/Synthesis System Based on a Deterministic plus Stochastic Decom-
position, Computer Music Journal 14(4), (1990).

[14] J.R. Quinlan. (1990) Learning logical definitions from relations. Ma-
chine Learning, 5, pp. 239-266, 1990

[15] E. Shapiro. Algorithmic Program Debugging. Cambridge MA, MIT
Press, 1983.

[16] K. Socha, J. Knowles, and M. Sampels, A MAX-MIN ant system for
the university timetabling problem, in Proc. 3rd Int. Workshop on Ant
Algorithms, M. Dorigo, G. Di Caro, and M. Sampels, Eds., vol. 2463,
pp. 1-13, Lecture Notes in Computer Science, 2002.

1144

[17] A. Srinivasan, S. Muggleton, R. D. King: Comparing the use of
background knowledge by inductive logic programming systems. In-
ternational Workshop on Inductive Logic Programming, 2005.

[18] L. M. Gambardella and M. Dorigo, Ant-Q: A reinforcement learning
approach to the traveling salesman problem, in Proc. 12th Int. Conf.
Mach. Learn., A. Prieditis and S. Russell, Eds., Palo Alto, CA, pp. 252-
260, 1995.

[19] A. Wade and S. Salhi, An ant system algorithm for the mixed vehicle
routing problem with backhauls, in Metaheuristics: Computer Decision-
Making. Norwell, MA: Kluwer, pp. 699-719, 2004.

[20] G. Beni, J. Wang. Swarm Intelligence in Cellular Robotic Systems,
Proceed. NATO Advanced Workshop on Robots and Biological Systems,
Tuscany, Italy, 1989.

[21] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence: From
Natural to Artificial Systems. New York: Oxford Univ. Press, 1999.

1145

