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Abstract— Attainment of global optimal solution and 
reduction of computational time and resources have always been 
a tradeoff issue in formulation of nature inspired algorithms; this 
tradeoff challenge has brought in a deluge of new algorithms 
proposing their efficacy over one another. Particle swarm 
optimization (PSO) algorithm and its variants are quite popular 
in optimizing antenna designs particularly due to their 
algorithmic simplicity and fast convergence rates. However, as a 
matter of the ever present tradeoff, fast convergence is often 
immature and leads to sub optimal solutions; another problem 
which may lead to inferior performances is the issue of 
stagnation. In some recent researches it has been shown that a 
class of boundary handling algorithms of PSO, known as position 
regulated boundary conditions (PRBCs), can minimize the 
tradeoff between ‘immature fast convergence’ and 
accomplishment of ‘global optimal solution’; the problem of 
stagnation is also avoided in most of these cases. Here, the 
performance of these boundary algorithms are compared with 
that of other established ones over three different optimization 
targets of antenna designs namely, “Multi target optimization in 
linear antenna arrays”, “Inset feed position optimization of 
rectangular patch antennas” and “Edge feed position 
optimization of rectangular patch antennas”. Results show that 
the use of most of the PRBCs in PSO leads to impressive 
improvement in the optimization efficiency in terms of lesser 
computational time and attainment of global optimal solution. 

I. INTRODUCTION 
Swarm algorithms being a subset of meta-heuristic 

optimization techniques find variety of applications in 
communication engineering [1-5,9-11,32-41] or science and 
technology in general [3-11]. The length and breadth of these 
applications are so vast that it is impossible to outline them in a 
single write-up.  Among the myriad of these applications, we 
focus on the area of antenna optimization to fit into the aims 
and scopes of the special session on “Nature Inspired Antenna 
Systems”. Moreover, antenna systems draw a considerable 
attention of researchers due to their complex and diverse 
design requirements apart from their indispensable role in the 
area of wireless communications. In antenna optimization 
problems the solution spaces are quite often multimodal in 
nature; therefore, nature inspired algorithms show better 
optimization results than their classical counterparts. 
Optimization techniques based on swarm intelligence are in 
use for over two decades now; particularly, techniques like 

PSO have drawn larger interest due to its easy implementation 
and faster computational time compared to other popular 
techniques like Genetic Algorithm (GA) or Differential 
Evolution (DE). The canonical form of PSO shown in Eqn.1 in 
general suffers from premature convergence and stagnation; 
several researches have analyzed these problems across various 
objective functions and benchmarks [12-18].This paper doesn’t 
delve into detailed analysis of the aforesaid problems but it 
does provide a physical picture of those and suggests 
algorithmic changes to mitigate them.  

Most of the practical optimization targets are seen as 
constrained problems where the entire solution space can be 
divided into feasible and infeasible regions; the interface 
between these regions may be termed as a boundary. Some of 
the techniques assume constrained optimization as part of 
unconstrained one and impose a penalty function [19] or a 
constriction factor [20]. However, most of the algorithms 
which deal with constrained optimizations try to control and 
confine the particles within the boundary or the feasible 
solution space [21-30]; different boundary conditions play a 
crucial role in PSO optimization of antenna array problems. 
Since its beginning, PSO with different boundary 
considerations has been applied to variety of problems [21-30] 
including those of electromagnetics and antennas [24-30]. 
Boundary behaviors of PSO for electromagnetics and antenna 
problems were first analyzed in [24]; ever since then, a 
particular class of boundary behavior which primarily regulates 
the velocities of the particles became the standard of boundary 
consideration. [24, 25] conclusively showed that condition 
which does not try to confine the particles in the solution space, 
i.e. invisible boundary, fetches better optimization results; 
nevertheless, an analysis of these boundary conditions shows 
that the particles which move out of the feasible solution space 
may be brought back for their increased participation in the 
solution finding process and better optimal solution. This leads 
to the proposition of a new class of boundary algorithms called 
position regulated boundary conditions (PRBCs) [34, 35]. A 
recent article [30] on analysis of different bound handling 
techniques also finds the standard conditions of [24, 25] as 
inferior. PRBCs do not control or regulate the velocity of the 
particles; instead, they reposition the particles, which go out of 
bounds, back into the solution space right in the next iterative 
cycle. One of the earlier cases of position regulated boundary 
was the hard boundary differentiated against soft boundary 
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[10]; later an effective position regulated boundary called 
periodic boundary condition (PBC) was reported in [17] and 
applied to antenna array problems in [11]. Here, the various 
significant boundary conditions, including the one focused 
here, are compared with each other; the physics of PRBCs are 
analyzed and compared with those of velocity regulation 
algorithms. It is also shown that how significantly the PRBCs 
influence the inertia factor of PSO algorithm to obtain a 
quicker and matured convergence. Before beginning with the 
optimization, a brief review on optimization process and 
targets is presented where different ways of cost/fitness 
function formulation in context of antenna problems are 
described. 

II. THE BOUNDARY DYNAMICS IN PSO 

A. Comparison of Boundary Conditions 
Though velocity regulated boundary conditions have been 

the most established ones in context of PSO, they have some 
intrinsic problems as described ahead. For example, the  
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maximum velocity (Vmax) has to be heuristically set between 
10-20% of the dynamic range of each dimension [2] or may be 
equal to that dynamic range [2].Other techniques suggests an 
alternate expression of velocity with a constriction factor[20] 
or new velocity updating mechanism [22]. Despite 
enforcement of such conditions, the particles with any finite 
velocity may go beyond the solution space. The more modern 
approaches, like absorbing or damping boundary [24, 25], 
may lead to unnecessary accrual of particles near the boundary 
and also adversely affect the particles intelligence of finding 
the global minimum (i.e. particularly, when the global 
minimum isn’t near the boundary). Moreover, forced 
minimization of the velocity (as shown in Eqn.1) of a particle 
can let it conclude that it has reached its gbest and pbest. Such a 
situation is show in Fig.1 where either the velocity is reduced 
to zero at a fixed boundary or particles’ positions are truncated 
to the fixed boundary; here the fixation is at 0.8 and 0.1 for a 
two variable optimization target; amplitudes of six element 
linear antenna arrays were optimized. 

Few more conditions, described in [24, 25], assign a negative 
velocity to the particles which go out of solution space and 
hence bring them back; such conditions have to work outside 
the boundary and can’t immediately reposition the particles 
inside but would rather take some unknown iterative steps to 
do so. Unprecedented oscillations in the particles may also be 
seen when negative velocities are assigned. Random velocities 
also fail to reposition the particles immediately into the 
solution space [23]. Assigning higher velocities can also take 
more iterative steps for the particles to converge. The better 
approach of boundary conditions shown in [24, 25] is that of 
invisible wall/boundary or floating boundary [21]; the 
problem is, a significant number of particles may escape the 
solution space and those which escape can’t contribute to 
further exploration and hence reduce the chances of finding an 
optimal global minimum. 

Fig.1. Accumulation of particles near a fixed boundary in a two dimensional 
solution space 

It may now be readily concluded that velocity regulation in 
some situations can give rise to unwanted results in the PSO 
process. The invisible boundary described in [24-25] is almost 
an equivalent of floating/ no-boundary [21]. Therefore, more 
suitable boundary conditions need to be sought. Position 
regulation has the advantage of immediately relocating the 
particles within the solution space thus avoiding additional 
iterations and working beyond the boundaries. Control or 
regulation of the velocities of the particles need not be done 
either; however, both positions and velocities may be regulated 
to give a hybrid boundary condition [28]. 

B. Position Regulated Boundary Conditions 
Before the classification of PRBCs some of these appeared in 
[27-28, 36]. Few possible PRBCs are described in this 
subsection with a comparison of their convergence 
characteristics in Fig.3 where six isotropic elements linear 
antenna array was used for side lobe reduction. The 
convergence results are averaged over fifty independent runs. 
Fig 2 pictorially represents the different PRBCs. Fixed 
Position Relocation: It is the simplest of all PRBCs where the 
particles are repositioned to particular fixed values within the 
solution space. These values are usually the boundary 
positions as in [27] or may be different. The intrinsic 
weakness of this method is that the particles here are easily 
trapped into a local minimum near the boundary as shown in 
Fig 1. An uncontrolled accumulation, or at times stagnation 
[12-18] of these particles, may be seen near the boundary 
limits; however, this method can outperform other boundary 
regulation methods when the global minimum is near the 
boundary. Random Position Relocation: To avoid the 
unintended accumulation of particles near the boundary in the 
preceding case, a random repositioning of particles is 
suggested here.  

Random repositioning of particles helps in better 
exploration of the solution space and therefore has clear 
advantages over the fixed repositioning method to find the 
global minimum solution. Nevertheless, due to its random 
nature the method is rather inconsistent in its behavior when 
compared with other methods. Symmetric Position Relocation: 
First proposed in [34], this method relocates the particles 
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escaping a boundary to an equidistant position ‘l’ inside that 
boundary as shown in Fig.2(c). 

 

 
Fig.2. (a) Fixed/Hard Boundary (b) Random Boundary (c) Symmetric 
Boundary (d) Hysteretic Boundary 

Here both the lower and higher boundary behave as mirrors 
where the distance of the escaped particle from the respective 
boundary outside the solution space is calculated; the particle 
is then repositioned inside the solution space with the same 
distance from its boundary. 

 
Fig.3. Comparison of convergence characteristics of different PRBCs 
 
The method, though similar, is significantly different from the 
PBC (Periodic Boundary Condition) and is shown to perform 
better than it in an antenna optimization problem [34]. Lastly, 
another category of PRBCs were introduced in [35] known as 
Hysteretic Boundary Conditions: this category of algorithms 
reposition the errant particles back to their previous or 
hysteretic positions inside the boundary; two sub 
classifications within this category were defined as self and 
collective hysteretic conditions shown in Fig. 2(d); these were 

found to be most promising in the optimization targets 
described here.  

 
Fig.4. Convergence characteristics of collective hysteresis for three 
independent runs with inertia factors of 0.2 and 0.9. 

 
Fig.4 shows the convergence results of collective 

hysteresis (with a fixed weight of 0.8) over three independent 
runs. It is very important to note here that a lower inertia 
factor of 0.2 gives quicker and matured convergence to the 
global optimum after around 50 iterations where as a factor 0f 
0.9 is not able to converge even after 200 iterations; this is 
strikingly different from the established fact that 0.9 inertia 
factor is most suitable for good optimization results [24, 25]. 
The results are similar for other PRBCs. In usual 
circumstances it is quite obvious that a higher inertia factor 
shall take more number of iterations to converge; however, in 
such situations the convergence is matured and apparently 
reaches the global optimum unlike the present case where it 
doesn’t seem to converge at all within the stipulated number 
of iterations. It may be interpreted from this result that due to 
the increased number of participation from the errant particles, 
which are brought back inside the boundary, chance of finding 
the global solution increases within lesser number of 
iterations. Therefore, our hypothesis of utilizing the errant 
particles to explore further solutions seems to be correct as 
opposed to the interpretations drawn in [24-25]. The weight 
factor of collective hysteresis is fixed to ‘0.8’ in all the results. 

III. OPTIMIZATION PROCEES AND TARGETS 
Optimization problems within the broad purview of 
electromagnetics and antenna systems are fairly intricate. It 
has been shown in few research reports that some 
metaheuristic algorithms which show an excellent 
performance in several theoretical benchmark functions are 
not so impressive in antenna optimization targets [38-41]; this 
indicates that the algorithms should be benchmarked in their 
respective areas of application before claiming their 
superiority in the area; certainly, this aspect is in congruity 
with the famous no free lunch theorem [37]. Meta-heuristic 
optimization technique in general involves two major 
processing blocks namely the ‘Optimization Algorithm’ and 
the ‘Cost/Fitness Function’ as shown in Fig.5. Search spaces 
in most of the antenna optimization problems are either large, 
multimodal or complex and sometimes a combination of 
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these. Therefore, to make the algorithms more effective, some 
optimization techniques initially reduces the search space by 
developing a coarse model before developing a finer model as 
in space-mapping [42] or at times a sub-optimal search space 
is obtained before metaheuristic algorithms work on them 
[43]. 
 

 
Fig.5. Optimization process with different ways of cost/fitness function 
formulation 

To begin with an optimization problem, one has to 
formulate the cost/fitness function; this function is based on a 
mathematical model and targets minimization or maximization 
of a particular output/result. Mathematical models of antenna 
systems can be analytical, empirical or numerical depending on 
the complexity of the system (Fig.5), these models are mostly 
confined to a particular application or design situation, a small 
change in the physical structure of an antenna may require a 
completely new mathematical model. However, these models 
are able to provide physical insights into the design problems 
in hand. Modern systems demand versatility and higher design 
accuracies leading to the use of black-box simulation tools, like 
CST or HFSS, in the optimization process; these tools have a 
remarkable ability to model any electromagnetic structure from 
user provided inputs and numerical modelling. In an 
optimization process these black-box simulation tools replace 
the role of analytical or empirical models mentioned before. 
Such tools make an optimization process almost autonomous 
that seldom require any expert human intervention; 
nevertheless, the vital engineering requisite of drawing a 
physical insight and developing a fundamental understanding 
of a problem is almost lost in such cases. In the subsequent 
sections three optimization examples are taken which shall 
touch the aforesaid categories of mathematical modelling and 
also demonstrate the optimization efficiency of the boundary 
algorithms in consideration. 

IV. MULTI-TARGET OPTIMIZATION IN LINEAR ANTENNA 
ARRAYS 

Linear antenna arrays have been one of the easiest and most 
popular areas where optimization algorithms have been 
extensively used for radiation pattern synthesis. However, the 
scope of fixing multi target or multi criteria optimization is 

relatively less explored. Here, we take the example of antenna 
array factor, an analytical model, which shall be optimized for 
multiple targets or goals specified below. 

• Symmetric windowed null placements. 

• Overall symmetric side lobe reduction 

• Minimization of FNBW between optimized and 
un-optimized patterns. 

 

 

 

 

 

 
 

 

 

Fig.6. A linear antenna array 

Here a linear antenna array of twelve elements is 
considered where the optimization variables are the individual 
amplitude of the elements and the uniform inter-element 
spacing. Fig.6 shows the topology of linear arrays. Eqn.2 
shows the array factor [31] used to formulate the fitness 
function and Fig.7 compares the performance of boundary 
algorithms over one another. The optimized and the un-
optimized array factor plots are compared in Fig.8; it can be 
seen that an overall side lobe reduction of more than -35dB is 
attained and a symmetric windowed nulls bellow -55dB are 
placed from 420 to 620 and from 1180 to1380. The FNBW also 
remains intact. The optimized uniform spacing is found to be 
0.88�. 

 
Fig.7. Convergence characteristics of collective hysteresis with other 
established boundary algorithms in linear antenna array example. 
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Fig.8. Array Factor plot of un-optimized and optimized linear antenna array 
with twelve isotropic elements. 

V. FEED POSITION OPTIMIZATION OF RECTANGULAR PATCH 
ANTENNAS 

Optimization of feed position in microstrip patch antennas 
is important to achieve better impedance match resulting in 
minimization of return loss and maximization of the radiated 
power. However, analytical closed form models are not 
available in these cases and the designs are done using 
empirical models. In usual practice, further approximations 
need to be made in the empirical expressions so that those are 
reduced to simple equations; these approximations further 
compromise the accuracy of a design. Empirical results for an 
inset feeds are well established; therefore, these relations are 
taken here, without approximation, to device the cost function 
for minimization of return loss (S11) indirectly from impedance 
matching; this example is taken as the first  in this section. 
Secondly, the example of edge feed is illustrated where black-
box simulation is used to minimize the S11 due to the 
unavailability of proper empirical formulation; though an edge 
feed can be modeled as a stepped impedance [46], good 
empirical relation to include the offset positions of the feed-
line along the patch edge are not reported. In the second 
example an interface is established between MATLAB and 
CST microwave studio, using VBA based macro programming 
[44], to establish interoperability. The convergence 
characteristics shown in the examples are averaged over 50 
independent runs. 

A. Inset Position Optimization 
Rectangular patch antenna with an inset feed is one of the 

most established feed line design technique but due to 
approximations in the traditional approach there is no room for 
multivariable optimization.Here, both y0 and W0 of Fig.9 act as 
the optimization parameters for the impedance matching cost 
/fitness function shown in Eqn.5  

 
Fig.9. Rectangular patch antenna array with inset feed. 

The idea is to minimize the difference between the 
impedance of the feed-line Zc and at the inset point Rin (y= y0). 
Eqn.3 and Eqn. 4 are taken from [45] where the different 
parameters carry their usual meanings described in [45]. The 
impedance matching cost function is given below. It is worth 
mentioning here that the approximations done in Eqn. 3 in the 
traditional approach [22] is avoided here; moreover, feed line 
variations give another degree of freedom to the optimization 
process. 

    (3) 

      (4) 

                        { }cos / mint fitness in cF R Z= −                         (5) 

The performance of different boundary algorithms evaluated 
over the aforesaid cost function is given in Fig.10.  

 
Fig.10.Convergence characteristics of collective hysteresis with other 
established boundary algorithms in inset fed rectangular patch example.  

Fig.10.Convergence characteristics of collective hysteresis with other 
established boundary algorithms in inset fed rectangular patch example. 

1161



 

It is seen that collective hysteresis condition gives better result 
in this case. The return loss S11 is shown in Fig.11 along with 
the fabricated antenna. The antenna is designed over a 
microstrip PTFE dielectric of �=2.2 and resonant frequency of 
6 GHz. 

B. Edge Position Optimization 
As described before a black-box simulation approach is 

incorporated in this example where CST Microwave studio 
acts a black-box cost function and returns the performance of 
optimizing variables to MATLAB; this process continues till 
the total number of allocated iterations is completed. The cost 
function is directly fixed as the minimization of S11 with 
optimizing variables as the feed-line width W0 and edge feed 
position l0 as shown in Fig.12. The cost/fitness function is 
given in Eqn.6. 

 

 

 
          

 
 

Fig.12. Rectangular patch antenna with edge feed 
 

                              { }cos / 11mint fitnessF S=                       (6) 

The convergence curves of different boundary algorithms 
are shown in Fig.13 and the corresponding S11 plots of 
optimized and un-optimized results are shown in Fig.14. 

         
Fig.13. Rectangular patch antenna with edge feed 

 
Fig.14. Rectangular patch antenna with edge feed 

From the results it is apparent that collective hysteresis 
algorithm shows better performance in this case too. Fig.14 
also shows the picture of the fabricated antenna. The antenna is 
designed at 7.5 GHz of frequency over a microstrip PTFE 
dielectric of �=2.2. 

VI. CONCLUSIONS 
The various position regulated boundary conditions were 

evaluated. Collective hysteresis algorithm showed better 
performance in all the examples taken up here. An important 
fact is established that the inertia factor in PSO can be much 
less than 0.9 to get good and fast optimal results in case of 
PRBCs; this can be attributed to the fact that PRBCs increase 
the number of participants in search process. Three different 
examples on three different categories of cost/fitness function 
formulation were described. Scopes of the proposed methods 
are not limited to the antenna problems and are applicable in 
general to all possible optimization areas. 
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