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Abstract— One of the most striking aspects of nature inspired 

algorithms is their capability of reaching a pareto front for a set 
number of objectives with much lesser computational cost than 
the classical ones; this is primarily due to the intrinsic 
intelligence that they inherit from nature. In this paper, as a first 
example, optimization of linear antenna arrays with dipole 
element pattern is exemplified for side lobe (SLL) reduction with 
fixed main-lobe beam width using real coded genetic algorithm 
(RGA). Though multi goal optimization seems to be possible with 
proper cost/fitness function formulation in linear arrays, such a 
task becomes extremely difficult when it comes to planar arrays. 
This calls for the use of multi objective variants of an algorithm 
to reach the pareto-objectivity. As a second example, non-
dominated sorting genetic algorithm II (NSGA2) is considered as 
the optimization algorithm for SLL reduction and fixed main-
lobe directivity for concentric regular hexagonal antenna arrays 
(CRHAA). The results show good outcome with respect to side 
lobe reduction and directivity.  

 

I. INTRODUCTION  
Nature inspired algorithms are those computer algorithms 

which are inspired by the interactions among the species or 
living entities as they search for the requirements (like food, 
room etc.). Evolutionary and Swarm intelligent algorithms are 
examples of nature inspired algorithms. Among the 
evolutionary algorithms, genetic algorithm is perhaps the most 
widespread and robust optimization procedures used in the 
domain of communication technology. Genetic Algorithms are 
inspired by natural phenomenon of evolution where the 
properties of inheritance, accidental changes and survival of 
the fittest take place in the crossover tool, mutation tool and 
the selection tool respectively. The term generational means 
that the solutions (resembling the species) are evolved in 
iterations. In this paper a broadside linear arrays of dipole 
elements is considered for optimization as the first example. 
The phase difference between any two elements is kept zero. 
The excitation and inter-element spacing of each element are 
optimized using RGA [6-8]. A cost function is defined, which 
keeps the SLL at low levels. The  dipole  antenna  or  dipole  
aerial  is  one  of  the  most important  and  commonly  used  
types  of  RF antenna.  It  is widely used on its  own, and it is 
also  incorporated  into  many  other  RF  antenna  designs  
where  it  forms  the  driven  element  for  the  antenna.  
Dipole antenna is constructed with two thin dipole elements 
that are symmetrically fed at the centre by a balanced two-

wire transmission line [1]. There  are  several  types  of  dipole  
antennas  such  as  hertzian  dipole, half-wave dipole, small 
dipole [2] etc.  Radiation resistance of the half-wave dipole 
was 73 Ohm which matched with the line impedance [3]. In 
this paper linear array of dipole element has been taken. There 
are several parameters by varying which the radiation pattern 
can be modified. These parameters are geometrical 
configurations (e.g. linear, circular, planar, spherical etc.), 
inter element spacing, individual excitations (amplitude and 
phase) and relative pattern of individual elements [1-9].The 
non-uniform current excitation and optimal uniform inter-
element spacing allows for increased degrees of freedom in 
design. All these procedures control both peak and average 
SLL [5]. If the array elements are place symmetry along with 
the z- axis about the centre of the array, the number of 
attenuators required and the computational time are halved. 
Amplitude and inter-element only control is also easy to 
implement and less sensitive to quantization error [9].   As we 
shift from linear to planar arrays the need for more complex 
algorithms is strengthened; in view of this, a multi-objective 
variant of GA named NSGA2 is used for optimization of 
concentric hexagonal arrays. 

Multiple objective system designing has been the major 
concern for last few decades. While dealing with system 
design problems with multiple trade-off parameters, basic 
modification to be done in the optimization algorithms is in 
their selection tools, more precisely, the fitness assignment 
procedures [10]. Other issues those come with this 
modification are the selection pressure and the premature 
convergence. Consequently, multiple objective optimization 
algorithms focus on maintaining the diversity while 
conducting the search for a set of good solutions. Several 
approaches of multiple objective optimization algorithms are 
made since in the past decade. Developments of algorithms 
have been based on the frameworks [11-14], archiving 
strategies [15] fitness assignment procedure [16] etc. While 
dealing with multiple objective problems it is desired that the 
species having the qualities of performing well in all the 
circumstances (more-or less, in a trade-off) be focused. Hence, 
a concept of dominance is developed which may be viewed as 
a modified selection tool. The next section gives a brief 
outline of RGA and NSGA2 algorithm; Section III and IV 
take the optimization examples of linear and hexagonal arrays 
respectively.  
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II. THE USE OF GENETIC ALGORITHM AND ITS 
MULTIOBJECTIVE VARIANT 

Genetic algorithms have been very effectively used in 
optimization of Antenna designs and areas of Electromagnetics 
in general [7, 8]. The use of GA has somewhat effectuated the 
classification optimization solutions as local or global.  
Algorithmic steps of real coded genetic algorithms (RGA) can 
be found from [7] which is an excellent treatise on the subject; 
hence there is no point in repeating those steps here; therefore, 
only a brief description on NSGA-2 is given here. Goldberg 
[18] realized the basic objective to carry out successful search 
for acceptable solutions for MOP. Elitist non dominated sorting 
based GA (NSGA II) follows not only the same steps of 
genetic algorithm for single objective, but some additional 
steps to tackle multi-objective problems. This work utilizes real 
coded NSGA II [11] for the considered problem and the whole 
search procedure as applied in this work is listed step by step 
below: 

i. A population of 100 randomized individuals is 
created maintaining limits of every variable. Each 
population member is a string of probable current 
amplitudes (each string is called a “chromosome”) 
one for each ring. Stopping criteria (200 generations), 
tournament size, crossover and mutation types with 
individual internal parameters. For this work a 
simulated binary crossover [19] operator with index 
to control the spread factor as 2 is opted for crossover 
operation, and for mutation, polynomial mutation 
[11] operator with external parameter to control 
mutation of 2 is opted. 

ii. Then non dominated sorting is carried out to record 
non-domination rank of every chromosome in the 
population. Until the stopping criteria satisfied the 
following steps are repeated; 

iii. For mating selection crowded distance based 
tournament selection operator is called for filling the 
mating pool. This operator operates on a pair of 
chromosomes, and favors more potential one (less 
non-domination rank calculated at step ii or v if 
found, otherwise (if both the chromosomes are at 
same front) it selects the one which is from relatively 
less crowded region. 

iv. Solutions are combined in a successive pair-wise 
order to create offspring solutions, which are then 
individually mutated. 

v. The old and new populations are merged, and a non-
domination rank is re calculated. Out of these 200 
solutions worst 100 solutions based on non-
domination rank are discarded. This process by 
default maintains the elite chromosomes from the 
past 

III. LINEAR ARRAYS OF DIPOLE ELEMENT  
      Consider a broadside linear array of 2M equally spaced 
isotropic elements as shown in Figure 1. The array is 
symmetric in both geometry and excitation with respect to the 
array center. 

                              
 

Fig. 1.  Geometry of a 2N-element linear dipole array along the z-axis.  
 
For broadside beams, the array factor is given by 
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2 1( ) 2 cos[( ) cos( )]
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where 
=θ   Angle of radiation of electromagnetic plane wave;  
=d   Spacing between elements;  
=k    Propagation constant; 

=M2 Total number of elements in the array;  
 
The cost function (CF) for reducing the side lobe level is 
given below 

),(/),( 0 nnmsl IAFIAFCF θθ=                                      (2) 

where 0θ  is the angle where the highest maximum of central 

angle is attained in ],0[ πθ ∈ . mslθ  is the angle where 

maximum side lobe ),( nmsl IAF θ is attained on either side of 

main beam. Minimization of CF means maximum reduction 
of SLL. RGA technique is employed for optimizing non-
uniform current excitation weights and optimal uniform inter-
element spacing.  

As dipole antenna, one of the most commonly used 
antennas is the half-wavelength ( / 2L λ= ) dipole. Because of 
its radiation resistance as 73 ohms, which is very near to 50-
ohm or 75-ohm characteristic impedances of some 
transmission lines, its matching to the line is simplified 
especially at resonance. The far-field radiation pattern from a 
dipole antenna of length L is given by [1].   For the half wave 
dipole antenna, where / 2L λ= , the far field radiation pattern 
of dipole antenna can be given by   
 

1165



 
 

cos cos
2( )

sin
EP

π θ
θ

θ

� �
� �
� �=                                                                (3) 

 
where θ denotes the angle measured from the axis of the 
dipole to the line of site.  
From (2) and (3) the overall total radiation pattern is given by 
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Here, ( )EP θ is the radiation pattern of individual array 

elements, ( )TotalAF θ is the array factor of linear array of dipole 
element. 

The numerical results for three sets of linear arrays of dipole 
element designs are obtained by RGA technique. For each 
antenna array, constraints of the optimization variable are 
maintained. The best parameters for the RGA are set after 
many trial runs. It is found that the best results are obtained 
for the initial population size (

pn ) of 120 chromosomes; and 
maximum number of generations, Nm as 400. For selection 
operation, the method of natural selection is chosen with 
selection probability of 0.3. Crossover is randomly selected as 
dual point. Crossover ratio is 0.8. Mutation probability is 0.15. 
RGA generates a set of optimal normalized non-uniform 
current excitation weights and optimal uniform inter-element 
spacing [ ]( )λλ ,2/∈d  for each set of linear array of dipole 
element. Sets of arrays considered are of 12-, 16- and 20-
elements. Table II shows the optimal results. Table I depicts 
SLL values and BWFN values for all corresponding uniformly 
exited linear array of dipole element antenna. 
 

A. Analysis of Radiation Patterns 
 

TABLE I. INITIAL VALUES OF SLL AND  BWFN FOR UNIFORMLY 

EXCITED ARRAYS HAVING ( nI =1)  AND 2/λ INTER-
ELEMENT SPACING OF LINEAR ARRAY OF ISOTROPIC AND 
DIPOLE ELEMENTS 

 
Set 
No. 

2M SLL (dB) 
isotropic 
elements 

SLL (dB) 
dipole 

elements 

BWFN       
( deg.) 

(isotropic) 

BWFN           
( deg.) 

(dipole) 
I 12 -13 -13.07 19.8000 19.8000 
II 16 -13.11 -13.14 14.4000 14.4000 
III 20 -13.12 -13.15 11.8800 11.8800  

 
Figs. 3, 4 and 5 depict the optimal radiation patterns of 12-

, 16- and 20-element time modulated linear antenna array sets, 
respectively, with optimal non-uniform excitation weights and 
optimal uniform inter-element spacing using RGA. From each 
figure, it is clearly visible that beside noticeable reduction of 
SLL, BWFN is also well restricted upon optimizing. As seen 
from the Table II, for optimal non-uniformly exited and 
optimal uniformly spaced symmetric time modulated 12-

element, 16-element and 20-element,  linear antenna arrays, 
SLL reduces to -37.41 dB, -36.25 dB, -39.74 dB, respectively, 
against -13 dB , -13.11 dB , -13.12 dB, respectively, for 
corresponding uniform linear arrays 
 
TABLE II. OPTIMAL CURRENT  EXITATION COFFICIENS, OPTIMAL 

INTER-ELEMENT SPACING, SLL AND BWFN FOR THREE  
LINEAR ARRAY OF DIPOLE ELEMENT SETS 

 
 

Set 
No. 

 
( MIII ......., 21 ) 
 

Inter-element 
spacing 

)(λ  

SLL (dB) BWFN 
(deg.) 

I 0.9348    0.8325   
0.6569    0.4564   
0.2590      0.1262 

0.8485 -37.41 19.8000 

II 0.9652    0.9110   
0.8064    0.6669   
0.5134    0.3620   
0.2270      0.1548 

0.8713 -36.25 14.4000 

III 0.8530    0.8062   
0.7564    0.6481   
0.5420    0.4283   
0.3152    0.2182   
0.1379      0.0805 

0.8874 -39.74 11.8800 
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Fig 2.  Optimal array pattern obtained by the RGA in case of 12-element 
linear array of dipole element. 
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Fig 3. Optimal array pattern obtained by the RGA in case of 16-element linear 
array of dipole element.  
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Fig 4. Optimal array pattern obtained by the RGA in case of 20-element linear 
array of dipole element. 

 

IV. CONCENTRIC REGULAR HEXAGONAL ANTENNA ARRAYS: 
(CRHAA)   

  A structure of a CRHAA resting on x-y plane is shown in  

X

Y

 
Fig 5 Structure of a CRHAA resting on the x-y plane. 

Let M is the number of the rings on this structure; mN  is the 

number of elements on the thq  sector { }1, 2, 6q = � of the 

ring m  from the centre; { },mnq mnqr φ be the location of the 
thn -element on the thq  sector on the thm ring according to 

the cylindrical co-ordinate system; ma be the inter-element 

separation between the rings ( )1m −  and m  ( 1a  represents 
the maximum separation of an element of the first ring), and 

md  be the inter-element separation on the ring m . The array 
factor of this array is given as [20]: 

( )2
6

sin cos
0

1 1 1

m
mnqmnq

NM
j r

mnq
m n q

AF I I e
π
λ φ φθ −

= = =
= +���                (5) 

where 1j = − ; λ  is the wavelength  of operating signal 

frequency; { },θ φ  represents the angular co-ordinate of any 

far-field point surrounding the array geometry; 0I  and mnqI  

represent the complex excitation currents of the centre element 
and the thn -element on the thq  sector on the thm ring, 
respectively. The parameters of the above expression are inter-
related as follows: 
 

( ) ( )

( )( ) ( )

22 2

1 3
2 3

1 1

sin 11

m

m

m

mnq

a
m d

mnq m m m m

d
mnq r

N

r a d a dn n

qn πφ −

	 
= � �

= + −− −

= + −−

                       (6) 

Total number of elements on the aperture is given by 

1
1 6

M

m
m

N N
=

= + � . This work considers a eight-ring CRHAA 

with 2m ma d λ= = . Thus, N  for this work is 217. For this 

optimization problem, (1, ), (1,6)mnq m n N qI I ∀ ∈ ∈= . 

 The optimization problem is considered as  
                  

{ },CF SLL D=                                      (7) 

where SLL  represents the relative peak sidelobe level of the 
antenna pattern and D  [17] corresponds to the maximum 
directivity value. Usually, these two parameters are in trade-
off and both are very sensitive to the current excitations. 
Tapering the current distribution will favorably cause 
suppression of SLL , but will equally cause the fall of D . 
Hence, this is a multiple objective problem. Both of the 
parameters are expressed in dB. Usually, a high negative value 
of SLL and high positive value of D  is desired. Using a 
positive D  and negative SLL  complicates the design of 
selection parameter. Rather minimizing D−  will serve the 
purpose and will make the design of selection tool easy, the 
objective vector is formulated as (1). The entire simulation 
was carried out using MATLAB software using MATLAB 
8.1.0.604 (R2013a) on a Intel® Core™ i5-2500 CPU with 
processor speed 3.30 GHz and 8.00 GB RAM and operating 
system Microsoft Windows 7 Version 6.1 (Build 7600). For 
this work, NSGA2 is run independently for twenty five times 
and the non-dominated solutions of the combined populations 
are extracted. Then the most evenly spread twenty five Pareto 
front representative solutions are reported. The obtained 
Pareto set for the considered array design problem is depicted 
in Fig.6 below. Two extreme solutions of the obtained Pareto 
front are tabulated in Table III. Figures 7(a) through 7(d) 
depict the excitation profiles and the corresponding radiation 
patterns of the array geometries corresponding to the extreme 
points in the obtained pareto-front. Figs 7(b) and 7(d) show 
upper hemisphere patterns only. 
 
Table III denotes that uniformly excited (isophoric) CRHAA 
design has an SLL  value of -16.92 dB and the corresponding 
D  value is 27.56 dB; Set 1 corresponds to an excitation 
profile for the considered CRHAA geometry has a dynamic 

dm 

am 
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range ratio (DRR) of 3 and which results in an SLL  value of 
-25.93 B and the corresponding D  value is 26.94 dB; Set 2 
corresponds to an excitation profile for the considered 
CRHAA geometry has a DRR of 1.01 and which results in an 
SLL value of -16.91 dB and the corresponding D  value of 
27.59 dB. Fig 7(a) and 7(c) depict the excitation 
corresponding to Set 1 and Set 2 of Table III; Fig 7(c) and 
7(d) depict the array factors respective to the excitation 
profiles of Set 1 and Set 2, respectively, for the CRHAA 
geometry considered in this work. This table denotes that with 
more tapering of currents (large DRR value), the SLL value 
drops more, but the directivity also drops. This phenomenon is 
expected and is similar to the common practice of minimizing 
the contributions of the far-end elements while minimizing the 
SLL value. Again D  is proportional to the squared sum of 
the current amplitudes [17], hence, gradual decay in the 
current amplitudes for far-end elements also causes drop of 
D -value. It is also interesting to note that the directivity of 
‘set-2’ in Table III is higher than that of an uniformly excited 
array; this may be attributed to the increase in peak SLL and 
overall sidelobe levels in ‘set-2’ with respect to the uniformly 
excited array. 

-26 -24 -22 -20 -18 -16
26.9

27

27.1

27.2

27.3

27.4

27.5

27.6

SLL (dB) →

D
 (
dB

) 
→

 
Fig. 6: Obtained pareto front for the pattern optimization problem (1) for eight 
ring CRHAA design. 
 
The increase in directivity of the mainlobe at the cost of 
increase in the power of sidelobes is a well-established 
phenomenon in all forms of antenna arrays including those of 
uniform spacing and variable amplitudes. It may be further 
observed that how an inverse amplitude taper is applied, on ‘m 
= 4’ of ‘set-2’ unlike ‘set-1’, as a resultant of the pareto-
optimization process. 

 

Table III: Current excitation amplitudes and the corresponding pattern parameters for eight-ring CRHAA geometries 
 

  
 

0I  mI  Pattern 
Parameters 

Centre 
element 
 

m  
SLL  D  

1 2 3 4 5 6 7 8 

Uniform 1 1 1 1 1 1 1 1 1 -16.92 27.56 

Set-1 (Lowest SLL) 1.00 0.95 0.94 0.89 0.57 0.53 0.49 0.33 0.30 -25.93 26.94 

Set-2 (Highest D) 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00 0.95 -16.91 27.59 
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Fig. 7. Excitation profile and the corresponding array factor of CRHAA geometries; 7(a) excitation profile of set (1) of Table III; 7(b) array factor corresponding 

to the current excitations as in 7(a); 7(c) excitation profile of set (2) of Table III; 7(d) array factor corresponding to the current excitations as in 7(c). In this figure 
sin osu cθ φ=  and sin inv sθ φ=  where 

2(0, )πθ ∈  and (0,2 )φ π∈ . 

V. CONCLUSIONS  
In this paper the optimal design of non-uniformly excited 

linear arrays of dipole elements with uniform inter-element 
spacing has been described using the technique of real coded 
genetic algorithm. Simulation results reveal that the optimal 
design of non-uniformly excited linear antenna arrays with 
optimal inter-element spacing offers a considerable SLL 
reduction with respect to corresponding time modulated 
uniform linear arrays with uniform inter-element spacing 
of 2/λ . For the array sets having 12, 16 and 20 elements, SLLs 
have reduced corresponding uniform time modulated linear 
arrays with a very little change in BWFN. The BWFNs of the 
initial and final radiation pattern remain approximately the 
same. A bi-objective current-only sidelobe suppression 
problem for eight ring CRHAA geometries is dealt with. Non-
dominated sorting genetic algorithm II (NSGA2) is chosen as 
the optimizing algorithm. NSGA2 is found to successfully 
produce a set of well spread trade-off pareto optimal solutions. 
Future research will be aimed at dealing with other geometries 
and constraints of many different areas of antenna design and 
analysis requires a feasible and versatile procedure, being able 
to perform array synthesis by tuning antenna characteristics 
and parameters. 
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