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Abstract—We consider the problem of distributed rate adap-
tation among multiple video streaming sessions over the Internet
from a decision-theoretic and computational intelligence point
of view, and we design a multi-objective optimization model for
network resources, seeking a fair and efficient distribution of end-
users’ Quality of Experience (QoE). A social welfare function is
developed to capture both fairness and efficiency objectives at
the same time. Then, assuming a common altruistic goal for all
network users, we propose a Decentralized Partially Observable
Markov Decision Process (Dec-POMDP) model for finding the
optimal network bandwidth allocation that leads to social welfare
maximization. We show that the resulting optimal policy for the
proposed model outperforms TCP-Friendly Rate Control (TFRC)
protocol in terms of total utility and fairness.

I. INTRODUCTION

V IDEO traffic on the Internet has been growing at a rapid

pace during recent years. According to Cisco Visual

Networking Index [1], video traffic will make up 80% of

all consumer Internet traffic by 2019, up from 64% in 2014.

An increasing fraction of this video traffic comes from video

streaming services, such as live streaming, video-on-demand

and over-the-top (OTT) video services. Examples are YouTube

and Netflix, where the video has to be streamed in a continuous

manner and without interruption in playback or degradation

in quality, as much as possible. But doing so requires high

bandwidth and low packet loss, which imposes new challenges

to the existing best-effort Internet. These challenges are ex-

acerbated by the fact that there are multiple video streams

concurrently running on the network, potentially competing

for the limited bandwidth. Hence, a fair and efficient video rate

allocation model is required to 1) prevent congestion, and 2)

provide a balanced video quality to all end users. Since there is

no centralized authority for resource allocation in the Internet,

a distributed solution for video rate adaptation is needed for

congestion avoidance and bandwidth sharing among multiple

video streams. The design of such a solution is a challenging

problem in today’s video delivery industry.

The earliest attempt to providing such a solution was TCP-

Friendly Rate Control (TFRC) [2], in which the video sender

infers the network condition from the estimated packet loss

rates and delay metrics reported by the receiver via feedback

packets. Naturally, this can only react to network congestion

or packet loss and lacks a foresighted behavior. Some network-

assisted approaches [3] have been proposed to fix these

issues and improve agility in response to abrupt changes in

traffic or network conditions. Although TFRC tries to provide

fair bandwidth sharing to flows of different protocols, most

existing congestion control solutions fail to provide a fair allo-

cation of network bandwidth among competing video streams.

Generally, fairness is not explicitly taken into account as an

objective. Even when fairness is considered [4], it is about

fair distribution of throughput, while the end users’ quality-

fairness, which is more desirable and has the ultimate impact

on the human user, is typically ignored. In general, existing

approaches suffer from one or more of the following four

shortcomings [5]: 1) are generic protocols that are application-

agnostic and do not take into account video quality, 2) do not

capture the multi-agent nature of the problem, even though

the problem clearly involves more than one utility-maximizing

decision-maker interacting with each other, 3) do myopic

adaptation only based on instantaneous rates, and 4) do not

explicitly or correctly address fairness.

In this work, we address all of the above shortcomings and

target a quality-driven end-to-end congestion control and band-

width sharing mechanism. We propose a decision-theoretic

model, called Decentralized Partially Observable Markov De-
cision Process (Dec-POMDP), to formulate the interaction of

multiple concurrent video streaming sessions over the Internet.

Aiming at maximizing the perceived quality of end-users while

maintaining fairness in network bandwidth allocation, we

employ a QoE model and introduce a social welfare function

by combining the main objectives of efficiency and fairness.

The solution of the proposed multi-agent decision process

provides an optimal policy for all network users to adapt their

streaming rates in the best interests of the entire network,

leading to an optimum fair distribution of QoE among users.

We evaluate the performance of this rate adaptation scheme

through simulations, showing its advantages over the TFRC.

It should be mentioned that we previously presented a

Dec-POMDP model for TCP-based video streaming in [5].

But that work suffered from large state-space dimension,

which drastically increases the computational complexity of
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Figure 1. Schematic diagram of the problem showing N concurrent video streaming sessions

the problem. Furthermore, the binary observations in TCP

(success or failure of packet delivery) makes it difficult for the

learning agents to converge to the optimal policy. By replacing

TCP with TFRC in the present work, we take advantage of the

observation of packet loss rate in order to improve the model’s

capability for inferring the unobservable network congestion.

The rest of the paper is organized as follows. Section

II provides a detailed description of the multi-user video

streaming problem. We also explain the QoE model employed

and the rate adaptation mechanism assumed for users. The

concept of social welfare will also be developed in this

section. The proposed Dec-POMDP model will be presented

in section III, after introducing its mathematical definition and

its components. Section IV will discuss the computationally

intensive task of solving Dec-POMDP, before presenting the

implementation details and evaluation results in section V,

which compares the performance of the proposed model with

TFRC, in terms of total QoE and fairness. Final remarks and

future research avenues concludes the paper.

II. PROBLEM DESCRIPTION

We consider the problem of network bandwidth sharing by

several video streaming sessions over the Internet, seeking a

fair and efficient distribution of Quality of Experience (QoE)

from the media consumers’ perspective. All network users are

supposed to share a common altruistic goal to maximize some

notion of social welfare. A dynamic rate adaptation scheme is

also assumed to be implemented by the media servers.

A. Network Model

Consider N concurrent video streaming sessions over the

Internet, sharing the bandwidth of the network. Each session

is composed of a sender node (media streaming server) and

a receiver node (client) that establish an end-to-end transport

layer connection, equipped with TCP-Friendly Rate Control
(TFRC) protocol [2] to stream a multimedia content. We

assume that the network has a single bottleneck link that

causes packet loss once congested. Since the sender-side of

each session cannot observe the traffic generated by other

sessions, it is only able to infer the congestion status based

on the feedback information received from the network or

receiver-side. The major source of information about network

congestion level is the receiver’s estimate of packet loss rate,

which is included in TFRC feedback packets.
As depicted in Figure 1, each session n chooses its

transport-layer sending rate xn at sender-side and receives

an estimate of the packet loss rate pn from the receiver-side.

The bottleneck link of the network, with a capacity of Cb,

should handle the total sum of sending rates plus a time-

varying cross-traffic xc. As the total traffic on bottleneck link

comes close to its capacity, all sessions would experience

higher rates of packet loss. Therefore, a distributed rate control

and congestion avoidance scheme, capable of dealing with this

dynamic and partially observable environment is required.

B. Utility Model: QoE
The utility of users is their ultimate Quality of Experience

(QoE). Since QoE is a subjective measure of quality which

is not readily available in real-time, an automatic prediction

method is required to map the network’s Quality of Service

to user’s QoE. We adopt the G.1070 opinion model recom-

mended by ITU-T [6] as the video quality model for predict-

ing the subjective quality measured in Mean Opinion Score
(MOS). In multimedia communications, the MOS provides a

numerical measure of the perceived quality from the users’

perspective of received media at the destination. It is expressed

as a single number in the range 1 to 5, where 1 corresponds

to the lowest perceived quality, and 5 to the highest.
There are several factors affecting the perceived quality of

a video: codec type and specifications, spatial resolution, key

frame interval, delay, frame rate, bit rate and packet loss rate.

Among these, we assume that all are fixed (or have negligible

impact on video quality) during a streaming session except the

last two: encoding bit rate (r) and packet loss rate (p). Under

such conditions and according to G.1070 quality model, the

utility (u) or QoE of the user could be summarized as:
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Figure 2. Video QoE based on ITU-T Recommendation G.1070

u = 1 +

[
c1

(
1− 1

1 + ( rc2 )
c3

)]
e−

p
d ∈ [1, 5] (1)

where c1, c2, and c3 are codec-dependent constants and d
is the degree of robustness against packet loss and is itself

a function of bit rate, frame rate and a number of codec-

dependent constants.

A visualization of the above QoE model and its variations

with respect to bit rate and packet loss is shown in Figure 2.

It is clearly observed that a significant degradation of video

quality occurs at packet loss rates above 0.05%, even with

a pretty high source bit rate. Therefore, a QoE-aware rate

adaptation scheme at the sender-side should not only try to

maximize its bandwidth utilization, but also be able to pro-

actively avoid congestion leading to higher packet loss rates.

C. Rate Adaptation Mechanism

State-of-the-art adaptive video streaming [7] [8] embed

the rate adaptation algorithm inside the client application.

This allows the client to independently choose the playback

quality without any need for intelligent components inside the

network. However, both industry [9] and academia [10] are

showing interest in server-side or network-assisted adaptive

streaming. In this study, we are considering a server-based
adaptive streaming.

The adaptation mechanism is to be done jointly at both

the application and the transport layers. Video source rate

control would be carried out by the application layer, while

a TFRC-like congestion control scheme is performed at the

transport layer to take care of the packet loss rate. In TFRC,

the sending rate x reacts to variation of packet loss rate p
using the following formula:

x = g(p) =
�

RTT

√
3

2p
(2)

where � represents the packet size and RTT is the round-trip

time.

Similar to TFRC, our server-based adaptation mechanism

includes a rate switching scheme at transport layer, which

uses a mapping from observed packet loss rates to optimal

sending rates. But unlike TFRC, this adaptation is not tied to

instantaneous values; rather it takes into account the history

of observations and tries to do a foresighted optimization.

At the application layer, the source rate r (the target rate

of the live video encoder or the source rate of pre-encoded

videos) is adjusted according to the chosen sending rate using

the sending buffer level:

r = x+ δ

(
B − Bu +Bl

2

)
(3)

where B is the current buffer level, Bu and Bl are the upper

and lower limits of the buffer and δ is the adjustment rate. The

buffer’s input and output rates are r and x, respectively. Using

this rate adjustment method, the source rate would closely

follow the sending rate, especially at steady state. Therefore,

we might use them interchangeably in some approximations

later on.

D. Social Welfare: Efficiency + Fairness

We assume that all users of the network are programmed

to behave altruistically, as opposed to selfishly, although they

all operate independently without any type of communications

or information exchange. In other words, the geographically

distributed users of the network not only share common

resources, but also share a common objective function, called

social welfare, which captures both efficiency and fairness.

By efficiency, we mean maximizing total utility of all users.

Fairness, on the other hand, could have many different inter-

pretations and criteria [11]. Various fairness measures have

been proposed across different scientific disciplines, ranging

from the simple ratio between the smallest and the largest

entries, to more sophisticated functions like Jain’s index [12],

which is very popular in network resource allocation. An

axiomatic theory of fairness was constructed by [13] in an

attempt to formalize the notion of fairness. This work showed

that all fairness measures satisfying five basic axioms, form

a unique family of functions fβ(·) parametrized by β, where

the Jain’s index corresponds to the special case of β = −1.

We define the social welfare function as a weighted

sum of the network’s total utility and some fairness mea-

sure of the distribution of utility, namely Jain’s index. Let

u = [u1, u2, . . . , uN ]T be the vector of utilities (i.e. QoE’s)

achieved for all N users of the network. We apply Jain’s

fairness function to the allocation vector and combine it with

the sum
∑N

n=1 un as a measure of efficiency in order to

construct a scalar metric for maximization of both objectives:

Φ(u) = log

(
N∑

n=1

un

)
+ λ log (J(u)) (4)

where

J(x) =

(∑N
i=1 xi

)2
N.
∑N

i=1 x
2
i

∈ [0, 1] (5)
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is the well-known Jain’s index for distributive fairness [12]

and λ serves as the relative importance of our two objectives.

It could be shown [13] that there is an upper bound for λ in

order for the welfare function to preserve the common sense

of Pareto dominance. It turns out that λ should be less than

or equal to λ̄ =
∣∣∣ β
1−β

∣∣∣, which would be equal to 1/2 for the

case of Jain’s index. Replacing λ = 1/2 in equation 4, our

social welfare function could be written as

Φ(u) = log

⎛
⎜⎝
(∑N

n=1 un

)2
√
N ·∑N

n=1 u
2
n

⎞
⎟⎠ . (6)

III. DEC-POMDP MODEL

Optimal sequential decision making under uncertainty have

been extensively studied in artificial intelligence [14] [15]

and stochastic control [16] literature. The basic theoretical

foundations of this area are the concept of state and the

Markov property –postulating that the future states of the

stochastic process depend only on the present state, not on

the past history of events. Markov Decision Process (MDP)

[16] models decision problems under uncertainty when the full

state information is available. In many real world problems this

is not the case and only incomplete state information might

be observable. Partially Observable Markov Decision Process
(POMDP) [17] provides a powerful modeling framework for

such problems.

Our adaptive video streaming problem is a decision mak-

ing problem with Markov property and partially observable

information about the network state. However, since there are

several active decision-makers interacting with the network, a

decentralized or multi-agent modeling tool would be required.

In this section, we first introduce the Dec-POMDP framework

and then present the proposed decision process model for rate-

adaptive video streaming.

A. Overview of Dec-POMDP Framework

Here we provide a formal definition of the employed

modeling framework, which is an extension of single-agent

POMDP to a multi-agent cooperative setting. A Decentralized
Partially Observable Markov Decision Process (Dec-POMDP)
is defined as a tuple 〈N ,S,A,O, T, O,R, h, I〉, where

• N = {1, 2, . . . , N} is the set of N agents.

• S is the finite set of states s in which the environment

can be.

• A = A1 × · · · × AN is the finite set of joint actions of

all agents a = 〈a1, . . . , aN 〉, where an individual action

of an agent n ∈ N is denoted by an ∈ An.

• O = O1×· · ·×ON is the finite set of joint observations

o = 〈o1, . . . , oN 〉, where an individual observation of an

agent n ∈ N is denoted by on ∈ On.

• T is the transition function that provides P (s′|s,a), the

probability of transition to a next state s′ given that joint

action a is executed at state s.

• O is the observation function that specifies P (o|a, s′),
the probability that the agents receive joint observation

o of state s′, when they reached this state through joint

action a.

• R is the common immediate reward function which

depends on the state of the environment and actions of all

agents. R(s,a) specifies a real number as the common

reward for all agents.

• h is the time horizon of the problem, which could be

either finite or infinite.

• I ∈ P(S) is the initial probability distribution of the state,

where P(·) denotes the set of probability distributions

over its argument.

At each time step, also known as stage, the agents simul-

taneously take an action. The resulting joint action provides

a common reward based on the current state. It also causes

a stochastic transition to the next state, of which a joint

observation is emitted by the environment and each agent

observes its own component.

B. Proposed Model for Rate-Adaptive Video Streaming

Our proposed Dec-POMDP model is specified by the fol-

lowing components:

• Agents
The dynamic interaction is taking place among a finite

number of video streaming sessions, regarded as agents

or users, indexed by n ∈ N = {1, 2, . . . , N}. Each

streaming session comprises a sender and a receiver node

in the network. However, since we are considering a

sender-based adaptive streaming, the agents of the model

are actually the sending entities of the video streaming

process. The receiver nodes help provide the observations

to the senders by sending back TFRC-like feedback

packets. This multi-agent decision process runs over the

course of a sequence of discrete time steps indexed by

k = 0, 1, 2, .... We assume a fixed Round-Trip Time
(RTT ) for the network, and set the time step of Dec-

POMDP to be equal to one RTT .

• Actions
We take the sending rate (x) of each video stream at the

transport layer as the action of the agent. Note that the

source encoding rate (r) of the video streams are closely

tied to the chosen sending rate. We assume that in live

video streaming, the target encoding rate of the video

stream is adjusted at the application layer, according to

the sending rate, using the sending buffer level. For the

case of on-demand streaming, the video is supposed to

be pre-encoded at corresponding source rates as well.

Formally speaking, the action taken by user n at a given

time step k is to choose the appropriate sending rate akn =
xk
n ∈ An, where An is the set of discrete pre-defined

sending rates available for user n. The joint action of all

users would be denoted by ak = 〈ak1 , . . . , akN 〉 ∈ A =
A1 × · · · × AN .

• States
The state of the proposed Dec-POMDP is set to be the
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unobservable congestion level of the network. As men-

tioned before, we assume that there is a single bottleneck

link within the network that determines the congestion

status of the network for the video streaming scenario

under study.

The congestion level, denoted by Cg , takes values in the

interval of [0, 1] and is defined as the ratio of total traffic

on the bottleneck link to its capacity:

Cg = min{xc +
∑N

n=1 xn

Cb
, 1}, (7)

where Cb is the capacity of the bottleneck link, xn’s

are the sending rates of the concurrent video streaming

sessions, and xc is the rate of the cross-traffic on the

bottleneck link.

Since the state space is a finite set in the formalism of

MDP, we define the state of our model at time step k, as

sk = Ck
g ∈ S , where S is a discretization of the interval

of [0, 1] into a finite number of possibilities.

It is clear that the congestion level of the network is not

directly observed by the users. Therefore, we are dealing

with a Partially Observable MDP (POMDP) from the

viewpoint of each user, where it has to infer the state

of the decision process using its limited observations.

• Observations
As mentioned above, each user observes neither the traffic

generated by other users, nor the congestion level of the

network, which is impacted by the overall traffic trans-

mitted over the bottleneck link. The only available piece

of information about the network condition is the TFRC-

like feedback packets received per RTT . By means of

each feedback packet, the sender observes the receiver’s

estimate of the Packet Loss Rate (PLR), denoted by p̂,

which is an indication of how congested the bottleneck

router of the network is.

We define the observation of user n at time step k as

okn = p̂kn ∈ On, where On is a discretized set of possible

values for PLR estimates.

• Transition Function
In order to specify the transition function: T : S ×A →
P(S), which provides a probability distribution of the

new state given the current state and the joint action of the

users, we need a probabilistic model for the cross-traffic

over the bottleneck link. If the joint action of the users at

time step k is a = 〈xk
1 , x

k
2 , . . . , x

k
N 〉, the probability that

the new state Ck
g falls into the interval [α, β], denoted by:

P
(
α ≤ Ck

g ≤ β
)
= P (α ≤ xk

c +
∑N

n=1 x
k
n

Cb
≤ β), (8)

would translate to the probability that the cross-traffic fall

into a corresponding interval:

P

(
α · Cb −

N∑
n=1

xk
n ≤ xk

c ≤ β · Cb −
N∑

n=1

xk
n

)

= P
(
α̃ ≤ xk

c ≤ β̃
)
. (9)

We use the results of [18] for modeling the Internet

backbone traffic at the flow level. According to their

model, since the total cross-traffic is the result of a

number of flows with independent rates, the central limit

theorem asserts that the distribution of the cross-traffic

tends to be Gaussian at high loads, which is typical of

backbone links. The mean and variance of the rate of the

cross-traffic are also calculated in this model in terms of

the average size and duration of the contributing flows.

Having specified the probability distribution function of

the cross-traffic, we can calculate the transition probabil-

ities for each joint action using equation (9).

The transition probabilities depend on not only the joint

action of the users, but also on the current state of

the network. The auto-correlation function of the cross-

traffic stochastic process induces this dependency since

it restrains abrupt changes in the rate of the cross-traffic

and accordingly the congestion level.

• Observation Function
The observation function: O : S×A → P(O) determines

the probability of each joint observation o if a particular

joint action a is taken that leads to a new state s′. We

assume that the probability of observing a certain rate

of packet loss by each user is solely dependent on the

network’s state (congestion level) and independent of the

users’ actions (sending rates). This is justified by noting

that the congestion level itself is caused by and derived

from total sending rate generated by users plus cross-

traffic rate. We also assume that the observation of each

agent is statistically independent of other’s observations.

Therefore the probability of each joint observation would

be equal to the product of individual probabilities.

• Reward Function
The common goal of all agents is to achieve and maintain

an optimal allocation of the network bandwidth leading

to an efficient and fair distribution of end-users’ QoE.

Using the social welfare function defined in equation (6),

we can specify the common reward function of our Dec-

POMDP model as:

R = E

[
h∑

k=1

γk Φ(uk)

]
(10)

where γ is the discount factor (set to one in this model)

and uk = [uk
1 , u

k
2 , . . . , u

k
N ]T is the vector of utilities (i.e.

QoE’s) achieved for all N users at time step k as defined

by equation (1). Note that the QoE of the nth user uk
n is

in turn a function of its source rate rkn and experienced

packet loss rate pkn. Since the video source rate rkn is

adjusted to the sending rate xk
n, and the packet loss rate

pkn is determined by the network congestion level Ck
g , the

common reward function of equation (10) would reduce

to a function of joint action and state: R(a, s).
• Horizon

The choice of time horizon in sequential decision prob-

lems is very critical. On one hand, it has to be large

enough in order to fulfill the objective of foresighted (as
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opposed to myopic) optimization. On the other hand, it

has to be chosen small enough for the problem to remain

computationally solvable. We chose h = 5 for our model.

• Initial State Distribution
We assume that network congestion is not at the extreme

low or extreme high levels at the beginning of the video

streaming service, and is uniformly distributed over the

rest of the interval.

IV. OPTIMAL SOLUTION OF DEC-POMDP

A policy in a fully observable MDP is a mapping from states

to actions. The policy of a user is comprised of a sequence of

actions selected by the user at every time step based on the

state of the environment. In selecting the actions, the agent

can ignore the history because of the Markov property. In a

POMDP [17], the agent does not observe the state, but it can

compute a belief that summarizes the history and works as a

Markovian signal.

In a Dec-POMDP [19], however, each agent will only

have access to its individual actions and observations during

execution and there is no method known to summarize this

individual history. It is not possible to maintain and update an

individual belief in the same way as in a POMDP, because

the transition and observation functions are specified in terms

of joint actions and observations. The consequence of this

lack of access to a Markovian signal is that planning for Dec-

POMDPs involves searching the space of tuples of individual

policies that map full-length individual histories to actions.

Solving a Dec-POMDP is a really challenging task. In fact,

it is known that the problem of finding the optimal solution

for a finite-horizon Dec-POMDP with even only two agents

is NEXP-complete [20]. In practice, this means that solving

a Dec-POMDP takes doubly exponential time in the worst

case. Moreover, efficient approximation of Dec-POMDP is not

easily possible, and even finding an ε-approximate solution is

NEXP-complete [21].

Since the number of joint policies in a Dec-POMDP grows

exponentially with the number of possible observations, a

brute force search would only be suitable for very small

problems. Therefore, so much effort has been spent by re-

searchers during last decade to create efficient methods for

finding exact or approximate solution of Dec-POMDP. [22]

provides a recent survey of the existing methods.

For our work, we use the Joint Equilibrium based Search
for Policies (JESP) [23], which is guaranteed to find a locally

optimal joint policy. It relies on a procedure called alternating
maximization, that computes a maximizing policy for one

agent at a time, while keeping the policies of the other agents

fixed. This process is repeated until the joint policy converges

to a Nash equilibrium: a tuple of policies such that for each

agent’s policy is a best response to the policies employed by

the other agents. JESP uses a dynamic programming approach

to compute the best-response policy for a selected agent, using

a reformulation of the problem as an augmented POMDP by

fixing the other agent’s policies.

# Dec-POMDP Model for Adaptive Video Streaming
#----------------------------------------------
#Agents
#------
agents: 2
#Discount factor
#---------------
discount: 1.0
#Type of Values
#--------------
values: reward
#States (Congestion Level)
#-------------------------
states: CgLL CgL CgM CgH CgHH
#Initial state distribution
#---------------------------
start exclude: CgLL CgHH
#Actions (Sending Rate kbps)
#---------------------------
actions:
R1M R2M R3M
R1M R2M R3M
#Observations (Packet Loss Rate)
#-------------------------------
observations:
pLL pL pM pH pHH
pLL pL pM pH pHH
#Transition Probabilities
#------------------------
# T: <a1 a2> : matrix of %f for all <s> & <s’>
# CgLL CgL CgM CgH CgHH
T: R1M R1M :

0.3845 0.5515 0.0635 0.0005 0.0000
0.0671 0.8661 0.0665 0.0003 0.0000
0.0642 0.5527 0.3820 0.0011 0.0000
0.1363 0.5864 0.2703 0.0070 0.0000
0.1584 0.6818 0.1571 0.0027 0.0000

...
T: R3M R3M :

0.0000 0.0027 0.1571 0.6818 0.1584
0.0000 0.0070 0.2702 0.5865 0.1363
0.0000 0.0011 0.3820 0.5527 0.0642
0.0000 0.0003 0.0665 0.8661 0.0671
0.0000 0.0005 0.0635 0.5515 0.3845

#Observation Probabilities
#-------------------------
# O: <a1 a2> : <s’> : <o1 o2> : %f
O: * * : CgLL : pLL pLL : 0.8191
O: * * : CgLL : pLL pL : 0.0814
O: * * : CgLL : pLL pM : 0.0045
O: * * : CgLL : pLL pH : 0.0000
O: * * : CgLL : pLL pHH : 0.0000
...
O: * * : CgHH : pHH pHH : 0.8191
#Rewards
#-------
# R: <a1 a2> : <s> : <s’> : <o1 o2> : %f
R: R1M R1M : CgLL : * : * : 1.8855
R: R1M R1M : CgL : * : * : 1.8831
R: R1M R1M : CgM : * : * : 1.8591
R: R1M R1M : CgH : * : * : 1.6343
R: R1M R1M : CgHH : * : * : 0.7411
...
R: R3M R3M : CgHH : * : * : 0.6932

Listing 1. Description of Dec-POMDP Model in a Text Format
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V. IMPLEMENTATION AND EVALUATION

In order to find the optimal policy for our proposed

Dec-POMDP model, we used Multi-Agent Decision Process
(MADP) Toolbox [24], which provides software tools for

modeling, specifying, planning and learning a variety of

decision-theoretic problems in multi-agent systems. This tool-

box includes a parser for reading text descriptions in Tony

Cassandra’s POMDP file format (.pomdp) [25] and its Dec-

POMDP extension (.dpomdp).

The description of our Dec-POMDP model for two agents

is shown in Listing 1. The state space (interval of [0, 1] for

congestion level) is discretized into five bands from very low

to very high, namely CgLL, CgL, CgM, CgH, CgHH. Initial

distribution of the state is assumed to be uniform over all

states excluding the extreme cases: CgLL, CgHH. Both agents,

assumed to be homogeneous in terms of their actions and

observations, have three choices for their actions at each time

step: sending video packets at 1, 2, or 3 Mbps rates, denoted

by R1M, R2M, R3M, respectively.

The observation space (PLR estimates) is also discretized

into five levels in logarithmic scale: pLL ≈ 10−5, pL ≈ 10−4,

pM ≈ 10−3, pH ≈ 10−2, and pHH ≈ 10−1.

For each pair of joint action a, a |S|×|S|matrix specifies the

transition probabilities from start sate s to end state s′. The

probability values are calculated as described in section III.

For the sake of brevity, not all matrices are shown in Listing

1; only the first and the last cases. As mentioned before, the

probability of each observation only depends on the network

state and is independent of the actions taken by the users and

observations of other agents. Based on this assumption, the

probability of occurrence of all possible joint observations are

calculated and specified in the description of the model.

The reward model, as described in section III-B, only

depends on the joint action and state: R(a, s). The calculated

reward values for all combinations of actions and states

constitute the last part of our model description. Note that

only a few lines of the observation probabilities and rewards

specification are included in Listing 1 due to limited space.

We used the JESP algorithm implemented in MADP Tool-

box to solve our Dec-POMDP model. The result of JESP

planning is a deterministic policy which maps every possible

sequence of observations (PLR) with different lengths to an

optimal action (sending rate). This policy is guaranteed to

yield a local maximum of expected common reward, which

provides both efficiency and fairness according to equation

(6). Using a simple look-up table, the resulting optimal policy

could be hard-coded into the transport layer protocol of the

media streaming servers to replace/augment TFRC.

In order to evaluate our proposed rate adaption scheme,

we compare its performance with that of TFRC in terms of

total utility of the users as well as the fairness index of the

distribution of QoE. Since there are stochastic components in

our problem formulation and proposed model, we conducted

50 rounds of simulations and calculated the mean values to

cross out the random effects. Figure 3 illustrates one sample

Table I
COMPARISON OF THE PROPOSED SOLUTION WITH TFRC

BASED ON THE AVERAGE RESULTS OF 50 RUNS OF SIMULATIONS

Metric Dec-POMDP TFRC Improvement

Total QoE 7.452 5.975 24.7%
Fairness Index 0.881 0.780 12.9%
Social Welfare 1.946 1.663 17.0%

of these simulations for each of the methods. We can see that

the sending rates chosen by TFRC tend to oscillate between

minimum and maximum values due to the reactive nature of

this mechanism, whereas the foresighted optimization of Dec-

POMDP model provides less switching in sending rate, lower

congestion levels and higher common reward at the same time.

Table I shows the average results of 50 runs of simulations

for three main metrics: total utility of users, fairness of users’

QoE, and the social welfare function (equation (6)). Simulation

results confirm that the optimal solution of our proposed

Dec-POMDP model outperforms TFRC congestion control

mechanism both in terms of efficiency and fairness.

VI. CONCLUSION

The problem of network bandwidth sharing among multiple

video streaming sessions was considered from a decision-

theoretic and computational intelligence point of view. A

Dec-POMDP model was proposed to capture the multi-agent

aspects of the dynamic interaction between network users.

A common objective function, called social welfare, which

incorporates maximization of total utility while achieving a fair

distribution of QoE, was designed to be collectively optimized

by different users. The solution of this sequential decision-

making process provides an optimal policy for each agent to

adapt its sending rate based on the sequence of packet loss rate

observations. The optimal solution of Dec-POMDP induces

an implicit cooperation among non-communicating network

users, resulting in a much higher total QoE for users as well

as improved fairness, in contrast to the popular TFRC.

For the next steps, we are currently working on developing

a model-free Multi-Agent Reinforcement Learning (MARL)

[26] algorithm for finding the optimal policy of users on-the-

go. Learning, as opposed to planning, refers to the process

of acquiring knowledge about optimal policy in a decision

process, without having access to the model of the underlying

dynamics. In the present study, we used JESP planning for

computing the optimal policy, assuming that the Dec-POMDP

model is known to the network protocol designer. We are

investigating the possibility for the individual network users

to learn the optimal policy on their own through interacting

with the network.
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