
Physics-based Performance Enhancement in
Computational Electromagnetics: A Review

Alireza Baghai-Wadji
Electrical Engineering Department

University of Cape Town

Rondebosch, Western Cape, South Africa

alireza.baghai-wadji@uct.ac.za

Abstract—Maxwell’s electrodynamic differential equations in
general bi-anisotropic media have been split into an independent
4× 4 diagonalized and a dependent 2× 4 supplementary system
of equations, referred to as the D- and S- forms, respectively.
The forms have been utilized to construct standard singular
Dyadic Green’s functions (DGFs). Problem-tailored expressions
for the Dirac’s δ−function have been obtained using Fourier
integral representations for the DGFs. The resulting expressions
for the δ− function have been used to regularize the originating
DGFs exponentially. On the other hand, employing standard
finite-support basis- and testing functions, the DGFs have been
regularized algebraically. Since the geneses of the exponential
and algebraic regularization techniques are conceptually dif-
ferent they can be employed independently or in unison. Fi-
nally, frequency-, material- and geometry independent universal
functions have been constructed for accelerated and highly
performance-enhanced computation of the self- and mutual
interactions in the method of moments applications.

I. INTRODUCTION

In this contribution several physics-inspired measures for

enhancing the performance of computations in electromagnetic

applications have been reviewed. In spite of the fact that

the scope of the developed theory extends beyond electro-

dynamics the emphasis in this paper has been Maxwell’s

equations ([1] and references therein). The theory is based

on six concepts which are briefly touched upon in six sec-

tions. (i) Diagonalization of Maxwell’s equations leading to

the D- and S-forms, [2], [3]; (ii) construction of standard

singular dyadic Green’s functions (DGFs); (iii) construction

of problem-tailored integral representations for the Dirac’s

δ−function; (iv) exponential regularization of DGFs, [4]; (v)

algebraic regularization of DGFs, [5]; (vi) construction of

frequency- and geometry independent universal functions, [1].

It is worth pointing out the following distinguishing features

of the theory: The procedures (i)-(vi) can be implemented an-

alytically or numerically, whichever the case may be. Thereby,

the steps leading to the D- and S-forms can algorithmically be

automated using symbolic languages. The D-form in spectral

domain is an eigenvalue problem, depending only on the slow-

ness variable s = k/ω, rather than on k and ω individually.

Here, k and ω refer to the wavenumber and the frequency,

respectively. The dependence of the eigen equation on s is the

origin for the s−dependence of the eigenpairs and thus the

s−dependence of the Green’s functions and consequently the

s−dependence of the universal function.

II. DIAGONALIZATION

A. Diagonalization of Maxwell’s equations with respect to the
variable x in bi-anisotropic media: The Dx−form

⎧⎪⎪⎨
⎪⎪⎩
⎡
⎢⎢⎣

ζ32 ζ33 μ32 μ33

−ζ22 −ζ23 −μ22 −μ23

−ε32 −ε33 −ξ32 −ξ33
ε22 ε23 ξ22 ξ23

⎤
⎥⎥⎦

+

⎡
⎢⎢⎢⎣
−ζ31 − ∂y

jω −μ31

ζ21 − ∂z

jω μ21

ε31 ξ31 − ∂y

jω

−ε21 −ξ21 − ∂z

jω

⎤
⎥⎥⎥⎦
[

ε11 ξ11
ζ11 μ11

]−1

×
[

ε12 ε13 ζ12 − ∂z

jω ζ13 +
∂y

jω

ζ12 +
∂z

jω ζ13 − ∂y

jω μ12 μ13

]}

×

⎡
⎢⎢⎣

E2

E3

H2

H3

⎤
⎥⎥⎦+

1

jω

⎡
⎢⎢⎢⎣

ζ31 +
∂y

jω μ31

−ζ21 + ∂z

jω −μ21

−ε31 −ξ31 + ∂y

jω

ε21 ξ21 +
∂z

jω

⎤
⎥⎥⎥⎦

×
[

ε11 ξ11
ζ11 μ11

]−1 [
J1
0

]
+

1

jω

⎡
⎢⎢⎣

0
0
J3
−J2

⎤
⎥⎥⎦

=
∂x
jω

⎡
⎢⎢⎣

E2

E3

H2

H3

⎤
⎥⎥⎦ (1)

B. The equation supplementary to the x−diagonalized form:
The Sx−form

[
E1

H1

]
= −

[
ε11 ξ11
ζ11 μ11

]−1

×
[

ε12 ε13 ζ12 − ∂z

jω ζ13 +
∂y

jω

ζ12 +
∂z

jω ζ13 − ∂y

jω μ12 μ13

]

×

⎡
⎢⎢⎣

E2

E3

H2

H3

⎤
⎥⎥⎦+

1

jω

[
ε11 ξ11
ζ11 μ11

]−1 [
J1
0

]
(2)
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C. Diagonalization of Maxwell’s equations with respect to the
variable y in bi-anisotropic media: The Dy−form

⎧⎪⎪⎨
⎪⎪⎩
⎡
⎢⎢⎣

ζ13 ζ11 μ13 μ11

−ζ33 −ζ31 −μ33 −μ31

−ε13 −ε11 −ξ13 −ξ11
ε33 ε31 ξ33 ξ31

⎤
⎥⎥⎦

+

⎡
⎢⎢⎢⎣
−ζ12 − ∂z

jω −μ12

ζ32 − ∂x

jω μ32

ε12 ξ12 − ∂z

jω

−ε32 −ξ32 − ∂x

jω

⎤
⎥⎥⎥⎦
[

ε22 ξ22
ζ22 μ22

]−1

×
[

ε23 ε21 ζ23 − ∂x

jω ζ21 +
∂z

jω

ζ23 +
∂x

jω ζ21 − ∂z

jω μ23 μ21

]}

×

⎡
⎢⎢⎣

E3

E1

H3

H1

⎤
⎥⎥⎦+

1

jω

⎡
⎢⎢⎢⎣

ζ12 +
∂z

jω μ12

−ζ32 + ∂x

jω −μ32

−ε12 −ξ12 + ∂z

jω

ε32 ξ32 +
∂x

jω

⎤
⎥⎥⎥⎦

×
[

ε22 ξ22
ζ22 μ22

]−1 [
J2
0

]
+

1

jω

⎡
⎢⎢⎣

0
0
J1
−J3

⎤
⎥⎥⎦

=
∂y
jω

⎡
⎢⎢⎣

E3

E1

H3

H1

⎤
⎥⎥⎦ (3)

D. The equation supplementary to the y−diagonalized form:
The Sy−form

[
E2

H2

]
= −

[
ε22 ξ22
ζ22 μ22

]−1

×
[

ε23 ε21 ζ23 − ∂x

jω ζ21 +
∂z

jω

ζ23 +
∂x

jω ζ21 − ∂z

jω μ23 μ21

]

×

⎡
⎢⎢⎣

E3

E1

H3

H1

⎤
⎥⎥⎦+

1

jω

[
ε22 ξ22
ζ22 μ22

]−1 [
J2
0

]
(4)

E. Diagonalization of Maxwell’s equations with respect to the
variable z in bi-anisotropic media: The Dz−form

⎧⎪⎪⎨
⎪⎪⎩
⎡
⎢⎢⎣

ζ21 ζ22 μ21 μ22

−ζ11 −ζ12 −μ11 −μ12

−ε21 −ε22 −ξ21 −ξ22
ε11 ε12 ξ11 ξ12

⎤
⎥⎥⎦

+

⎡
⎢⎢⎢⎣
−ζ23 − ∂x

jω −μ23

ζ13 − ∂y

jω μ13

ε23 ξ23 − ∂x

jω

−ε13 −ξ13 − ∂y

jω

⎤
⎥⎥⎥⎦
[

ε33 ξ33
ζ33 μ33

]−1

×
[

ε31 ε32 ζ31 − ∂y

jω ζ32 +
∂x

jω

ζ31 +
∂y

jω ζ32 − ∂x

jω μ31 μ32

]}

×

⎡
⎢⎢⎣

E1

E2

H1

H2

⎤
⎥⎥⎦+

1

jω

⎡
⎢⎢⎢⎣

ζ23 +
∂x

jω μ23

−ζ13 + ∂y

jω −μ13

−ε23 −ξ23 + ∂x

jω

ε13 ξ13 +
∂y

jω

⎤
⎥⎥⎥⎦

×
[

ε33 ξ33
ζ33 μ33

]−1 [
J3
0

]
+

1

jω

⎡
⎢⎢⎣

0
0
J2
−J1

⎤
⎥⎥⎦

=
∂z
jω

⎡
⎢⎢⎣

E1

E2

H1

H2

⎤
⎥⎥⎦ (5)

F. The equation supplementary to the z−diagonalized form:
The Sz−form

[
E3

H3

]
= −

[
ε33 ξ33
ζ33 μ33

]−1

×
[

ε31 ε32 ζ31 − ∂y

jω ζ32 +
∂x

jω

ζ31 +
∂y

jω ζ32 − ∂x

jω μ31 μ32

]

×

⎡
⎢⎢⎣

E1

E2

H1

H2

⎤
⎥⎥⎦+

1

jω

[
ε33 ξ33
ζ33 μ33

]−1 [
J3
0

]
(6)

Comments: Each pair of the above D-forms and

their corresponding S-forms; i.e., {Dx − form, Sx − form},
{Dy − form, Sy − form} or {Dz − form, Sz − form} is

equivalent with the Maxwell’s equations in bi-anisotropic

media characterized by material matrices ε, ξ, ζ and

μ, and thus constitutive equations D = εE + ξH and

B = ζE + μH. Thereby, Ji (i = 1, 2, 3) is the component

of the electric current in the ith direction. Assuming, e.g.,

J1(x, y, z) = J1δ(x − x′, y − y′, z − z′), J2(x, y, z) = 0,

and J3(x, y, z) = 0 the resulting field components Ei and

Hi, (i = 1, 2, 3) correspond to the Green’s functions

GEi,J1
(x, y, z|x′, y′, z′) and GHi,J1

(x, y, z|x′, y′, z′).
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It is worth mentioning that while manipulations and

computations can be carried out in most general cases,

the discussion in the remaining sections will focus on

free-space elucidating details of the ideas involved rather

than on the manipulatory complexities. To this end consider

free-space with J1(x, y, z) = J1δ(x − x′, y − y′, z − z′),
J2(x, y, z) = J2δ(x− x′, y − y′, z − z′), and J3(x, y, z) = 0,

to obtain:

G. Diagonalization of Maxwell’s equations with respect to the
variable z in free space with J3 = 0: The Dz−form

⎧⎪⎪⎨
⎪⎪⎩
⎡
⎢⎢⎣

0 0 0 μ
0 0 −μ 0
0 −ε 0 0
ε 0 0 0

⎤
⎥⎥⎦

+

⎡
⎢⎢⎢⎣
− ∂x

jω 0

− ∂y

jω 0

0 − ∂x

jω

0 − ∂y

jω

⎤
⎥⎥⎥⎦
[

ε 0
0 μ

]−1

×
[

0 0 − ∂y

jω
∂x

jω
∂y

jω − ∂x

jω 0 0

]}

×

⎡
⎢⎢⎣

E1

E2

H1

H2

⎤
⎥⎥⎦+

1

jω

⎡
⎢⎢⎢⎣

∂x

jω 0
∂y

jω 0

0 ∂x

jω

0
∂y

jω

⎤
⎥⎥⎥⎦

+
1

jω

⎡
⎢⎢⎣

0
0
J2
−J1

⎤
⎥⎥⎦ =

∂z
jω

⎡
⎢⎢⎣

E1

E2

H1

H2

⎤
⎥⎥⎦ (7)

H. The equation supplementary to the z−diagonalized form
in free space with J3 = 0: The Sz−form

[
E3

H3

]
= −

[
ε 0
0 μ

]−1

×
[

0 0 − ∂y

jω
∂x

jω
∂y

jω − ∂x

jω 0 0

]⎡⎢⎢⎣
E1

E2

H1

H2

⎤
⎥⎥⎦ (8)

III. CONVENTIONAL SINGULAR DYADIC GREEN’S

FUNCTIONS IN 3D ELECTRODYNAMICS

Statement of the problem: Consider the dipoles J1e1 δ(x−
x′, y − y′, z − z′) and J2e2 δ(x− x′, y − y′, z − z′) located

at (x′, y′, z′) in a medium characterized by constant scalar

permittivity ε and permeability μ. The unit vectors in the x−
and y− directions are denoted by e1 and e2, respectively.

Consider (7) and (8) and calculate the electric field vector

E (x, y, z) and the magnetic field vector H (x, y, z) in entire

(x, y, z)−space as the response of the medium to the assumed

unit dipoles.

Solution procedure: Partition (x, y, z)−space into sub-

spaces z > z′ and z < z′ by introducing the fictitious plane

z = z′. Find solution ansatzes for E (x, y, z) and H (x, y, z),
involving a priori unknown coefficients, in regions z > z′ and

z < z′. Satisfy Sommerfeld radiation conditions at infinity

along with ‘‘interface’’ conditions at z = z′ to determine the

unknown coefficients.

It is advantageous to introduce W (k1, k2):

W =

⎧⎨
⎩

√
k21 + k22 − εμω2; k21 + k22 − εμω2 > 0

−j
√
εμω2 − (k21 + k22); εμω2 − (k21 + k22) > 0

(9)

Since there is no danger of ambiguity the same symbols

are used to denote fields in spatial- and spectral domain, e.g.,

E1(x, y) and E1(k1, k2), rather than E1(x, y) and E1(k1, k2).

Interface conditions (suppressing ejk1(x−x′)ejk2(y−y′))

read:

Ez>z′
1 (k1, k2)− Ez<z′

1 (k1, k2) = 0 (10a)

Ez>z′
2 (k1, k2)− Ez<z′

2 (k1, k2) = 0 (10b)

Hz>z′
1 (k1, k2)−Hz<z′

1 (k1, k2) = J2 (10c)

Hz>z′
2 (k1, k2)−Hz<z′

2 (k1, k2) = −J1 (10d)

Explicit expressions for the dyadic Green’s functions in

spectral domain read:

GE1,J1
(k1, k2) =

j

2εω

k22 −W 2

W
(11a)

GE1,J2(k1, k2) =
j

2εω

−k1k2
W

(11b)

GE2,J1(k1, k2) =
j

2εω

−k1k2
W

(11c)

GE2,J2(k1, k2) =
j

2εω

k21 −W 2

W
(11d)

GH1,J1
(k1, k2) = 0 (11e)

GH1,J2(k1, k2) = sgn(z − z′)
1

2
(11f)

GH2,J1
(k1, k2) = −sgn(z − z′)

1

2
(11g)

GH2,J2
(k1, k2) = 0 (11h)

GE3,J1(k1, k2) = sgn(z − z′)
k1
2ωε

(11i)

GE3,J2(k1, k2) = sgn(z − z′)
k2
2ωε

(11j)

GH3,J1(k1, k2) = − jk2
2W

(11k)

GH3,J2(k1, k2) =
jk1
2W

(11l)
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IV. INTEGRAL REPRESENTATIONS FOR

PROBLEM-TAILORED FIELD-INDUCED DIRAC’S

δ−FUNCTIONS

Consider GH2,J1
(k1, k2). In real space we have:

GH2,J1
(x|x′) = −sgn(z − z′)

1

2

∞∫
−∞

∞∫
−∞

dk1
2π

dk2
2π

× ejk1(x−x′)ejk2(y−y′)e−W |z−z′| (12)

In view of (9) W =
√
k2 − k20 if k2 − k20 > 0, and W =

−j
√
k20 − k2 if k20 − k2 > 0. Here, k2 = k21 + k22 and k0 =

ω/c0 with c0 being speed of light in free space, and ω the

angular frequency.

Consistent with Maxwell’s equations the following ‘‘inter-

face’’ relationship holds true:

− lim
z→z′+

Gz>z′
H2,J1

(x|x′) + lim
z→z′−

Gz<z′
H2,J1

(x|x′)

= δ(x− x′, y − y′) (13)

Substituting (12) into ( (13)) and replacing |z−z′| by η(> 0)
lead to:

δ(x− x′, y − y′) = lim
η→0

δη(x− x′, y − y′)

= lim
η→0

∞∫
−∞

∞∫
−∞

dk1
2π

dk2
2π

ejk1(x−x′)ejk2(y−y′)e−Wη(14)

Remarks: It is claimed that the procedure captured in

Eqs. (12)-(14) for constructing ‘‘physics-inspired’’ integral

representations for the Dirac’s delta function has been over-

looked in literature. For η finite, however small, (14) defines

the distributed smeared-out source function δη(x−x′, y−y′),
which smoothly approaches the symbolic generalized function

δ(x − x′, y − y′). Exciting the medium (here free-space)

with δη(x − x′, y − y′), and following the procedure for the

construction of standard DGFs in the preceding section, lead

to regularized dyadic Green’s functions. This fact will be

demonstrated in the next section. In view of the fact that W
can assume complex values, the validity of the relationships

in (14) is far from trivial. This non-obviousness is particularly

obscuring when the expressions are not available in closed

form. The following constructive proof has been devised to

clarify matters.

A. D−Theorem

The relationships in (14) are valid, [2].

Proof: Symmetry considerations lead to

δ(x− x′, y − y′) = lim
η→0

1

π2

∞∫
0

∞∫
0

dk1dk2

×cos[k1(x− x′)]cos[k2(y − y′)]e−Wη. (15)

Denote the double integral in (15) by I , change to polar

coordinates, partition the integration range over k into [0, k0]

and [k0,∞], and use the definition of W to obtain:

I = lim
η→0

1

π2

k0∫
0

π/2∫
0

dkdθkcos (cosθ|x− x′|)

× cos (sinθ|y − y′|) ej
√

k2
0−k2η

+ lim
η→0

1

π2

∞∫
k0

π/2∫
0

dkdθkcos (cosθ|x− x′|)

× cos (sinθ|y − y′|) e−
√

k2−k2
0η(= I1 + I2) (16)

Denote the 1st term at the RHS of (16) by I1, and use the

limit ej
√

k2
0−k2η → 1 for η → 0 (0 ≤ k ≤ k0), to obtain:

I1 =
1

π2

k0∫
0

π/2∫
0

dkdθkcos (cosθ|x− x′|)

× cos (sinθ|y − y′|) (17)

Denote the 2nd term at the RHS of 16) by I2, and use the

limit e−
√

k2−k2
0η → e−kη for η → 0 (k0 ≤ k <∞) to obtain

I2 = lim
η→0

1

π2

∞∫
k0

π/2∫
0

dkdθkcos (cosθ|x− x′|)

× cos (sinθ|y − y′|) e−kη (18)

Rearrangement of the integration range
∞∫
k0

dk =
∞∫
0

dk −
k0∫
0

dk

transforms (18) to

I2 = lim
η→0

1

π2

∞∫
0

π/2∫
0

dkdθkcos (cosθ|x− x′|)

× cos (sinθ|y − y′|) e−kη

− lim
η→0

1

π2

k0∫
0

π/2∫
0

dkdθkcos (cosθ|x− x′|)

× cos (sinθ|y − y′|) e−kη (19)

Consider the limit e−kη → 1 for η → 0 (0 ≤ k ≤ k0) in the

2nd integral at the RHS of (19), to obtain:

I2 = lim
η→0

1

π2

∞∫
0

π/2∫
0

dkdθkcos (cosθ|x− x′|)

× cos (sinθ|y − y′|) e−kη

− 1

π2

k0∫
0

π/2∫
0

dkdθkcos (cosθ|x− x′|)

× cos (sinθ|y − y′|) (20)
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The 2nd integral in (20) equals −I1. Rearrangement yields:

I1 + I2 = lim
η→0

1

π2

∞∫
0

π/2∫
0

dkdθkcos (cosθ|x− x′|)

× cos (sinθ|y − y′|) e−kη = I (21)

In earlier work it was established that the double integral

in (21) is a valid integral representation for the Dirac’s

δ−function. �
To demonstrate the power of the method for the construction

of integral representations for the Dirac’s δ−function it is

instructive to consider the Green’s function GH3,J1(k1, k2). To

fully appreciate the underlying intricate relationships it is also

instructive to visualize the relative orientation of the H3 field

component to the orientation of the dipole J1: Moving along

the y−axis and crossing the line y = y′, the field component

H3 has a jump discontinuity equal to δ(x − x′, z − z′).
This can be shown as follows. Consider the Green’s function

GH3,J1(k1, k2) in real space:

GH3,J1(x|x′) =

∞∫
−∞

∞∫
−∞

dk1
2π

dk2
2π

{
−1

2

jk2
W

}

× ejk1(x−x′)ejk2(y−y′)e−W |z−z′| (22)

Denote GH3,J1
(x|x′) in region y−y′ > 0 (y−y′ = |y−y′|)

by Gy>y′
H3,J1

(x|x′). Likewise, denote GH3,J1
(x|x′) in region y−

y′ < 0 (y−y′ = −|y−y′|) by Gy<y′
H3,J1

(x|x′). Then, consistency

with Maxwell’s equations requires that:

lim
|y−y′|→0

Gy>y′
H3,J1

(x|x′)− lim
|y−y′|→0

Gy<y′
H3,J1

(x|x′)
= δ(x− x′, z − z′) (23)

It should be noted that the limiting process acts on the variable

in the oscillating rather than the decaying exponential, thus

making this formula exceptionally interesting and important.

Replacing |y−y′| by η and substituting the resulting expres-

sions for Gy>y′
H3,J1

(x|x′) and Gy<y′
H3,J1

(x|x′) into (23) yields the

desired distributed source function, a relationship the validity

of which will be established in virtue of the S-Theorem:

δ(x− x′, z − z′) = lim
η→0

δη(x− x′, z − z′)

= lim
η→0

∞∫
−∞

∞∫
−∞

dk1
2π

dk2
2π

{
−1

2

jk2
W

}

×ejk1(x−x′)ejk2ηe−W |z−z′|

− lim
η→0

∞∫
−∞

∞∫
−∞

dk1
2π

dk2
2π

{
−1

2

jk2
W

}

×ejk1(x−x′)e−jk2ηe−W |z−z′| (24)

Remarks: It is claimed that the above procedure for

constructing ‘‘physics-inspired’’ delta functions has been over-

looked in literature. For η finite, however small, (24) defines

the distributed source function δη(x − x′, z − z′) which

smoothly approaches the symbolic Dirac’s δ(x− x′, z − z′).

B. S−Theorem

The relationships in (24) are valid, [3].

Proof: Symmetry considerations in (22) followed by

taking the limit lim
|y−y′|→0

gives

lim
|y−y′|→0

GH3,J1(x|x′) =
1

2π2
lim

|y−y′|→0

∞∫
0

∞∫
0

dk1dk2

{
k2
W

}

× cos[k1(x− x′)] sin[k2(y − y′)]e−W |z−z′| (25)

Observe that the term lim
|y−y′|→0

sin[k2(y − y′)] is non-zero

only for k2 → ∞ (and thus for k =
√
k21 + k22 → ∞).

Consequently, with lim
k→∞

W ∝ k, (25) is equivalent with

lim
|y−y′|→0

GH3,J1
(x|x′) = 1

2π2
lim

|y−y′|→0

∞∫
0

∞∫
0

dk1dk2

× cos[k1(x− x′)] {k2 sin[k2(y − y′)]}
{
e−k|z−z′|

k

}
(26)

With k2 sin[k2(y − y′)] = −∂/∂y cos[k2(y − y′)] and

e−k|z−z′|/k = −sgn(z−z′)
∫
dze−k|z−z′| (26) takes the form

lim
|y−y′|→0

GH3,J1(x|x′) =
1

2π2
lim

|y−y′|→0

∞∫
0

∞∫
0

dk1dk2

× cos[k1(x− x′)]
{

∂

∂y
cos[k2(y − y′)]

}
×
{
sgn(z − z′)

∫
dze−k|z−z′|

}
(27)

Exchanging the order of integral- and differential operators
∞∫
0

∞∫
0

dk1dk2
∂
∂y

∫
dz =⇒ ∂

∂y

∫
dz

∞∫
0

∞∫
0

dk1dk2 yields:

lim
|y−y′|→0

GH3,J1(x|x′) = lim
|y−y′|→0

∂

∂y
sgn(z − z′)

∫
dz

× 1

2π2

∞∫
0

∞∫
0

dk1dk2 cos[k1(x− x′)] cos[k2(y − y′)]

×e−k|z−z′| (28)

The double integral can be calculated in closed form. Thus,

lim
|y−y′|→0

GH3,J1
(x|x′) = lim

|y−y′|→0

∂

∂y
sgn(z − z′)

∫
dz

× 1

4π

|z − z′|
[(x− x′)2 + (y − y′)2 + (z − z′)2]3/2

. (29)

1194



Absorbing sgn(z − z′) into |z − z′| yields:

lim
|y−y′|→0

GH3,J1
(x|x′) = lim

|y−y′|→0

∂

∂y
(30)

× 1

4π

∫
dz

z − z′

[(x− x′)2 + (y − y′)2 + (z − z′)2]3/2

The following calculation is a delicate interplay of terms,

essentially replacing z−z′ in the numerator in (30) by |y−y′|,
which is crucially important for further arguments.

The integral in (30) can also be calculated in closed form:

lim
|y−y′|→0

GH3,J1
(x|x′) = lim

|y−y′|→0

∂

∂y
(31)

× 1

4π

{
− [

(x− x′)2 + (y − y′)2 + (z − z′)2
]−1/2

}
Differentiating with respect to y and using y−y′ = |y−y′|

and y− y′ = −|y− y′| for y > y′ and y < y′, respectively, in

the numerators of the resulting expressions, result in:

lim
|y−y′|→0

Gy>y′
H3,J1

(x|x′)− lim
|y−y′|→0

Gy<y′
H3,J1

(x|x′) (32)

= lim
|y−y′|→0

1

2π

|y − y′|
[(x− x′)2 + (y − y′)2 + (z − z′)2]3/2

Identifying the limits at the RHS as δ(x − x′, z − z′) the

claim in the S-Theorem is immediate. �

V. EXPONENTIAL REGULARIZATION OF SINGULAR

DYADIC GREEN’S FUNCTIONS

The representation in (14) enables the regularization of

singular integral expressions arising in the Method of Moments

(MoM) applications. The integral in (14) is well-defined for

any finite value η > 0, and can be utilized for defining the

‘‘smeared out’’ δ−function source, ρη(x− x′, y − y′):

δη(x− x′, y − y′) =

∞∫
−∞

∞∫
−∞

dk1
2π

dk2
2π

× ejk1(x−x′)ejk2(y−y′)e−Wη

⇐⇒ e−Wη (spectral domain) (33)

Thus, rather than exciting the medium (free space in the

present case) with sources J1 = J1e1δ(x − x′, y − y′) and

J2 = J2e2δ(x−x′, y−y′), consider their corresponding field-

theoretically constructed distributed ‘‘smeared out’’ counter-

parts J1,η = J1e1δη(x − x′, y − y′) and J2,η = J2e2δη(x −
x′, y − y′), respectively. Note that the support of J1,η and

J1,η are confined to the interface. Using these problem-tailored

distributed sources in the interface conditions we obtain the

following exponentially η−regularized Green’s functions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

GE1,J1,η(x|x′)

GE2,J1,η(x|x′)

GH1,J1,η(x|x′)

GH1,J1,η(x|x′)

GE3,J1,η(x|x′)

GH3,J1,η(x|x′)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

∞∫
−∞

∞∫
−∞

dk1
2π

dk2
2π

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j
2εω

k2
2−W 2

W

j
2εω

−k1k2

W

0

−sgn(z − z′) 12

sgn(z − z′) k1

2εω

− jk2

2W

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

× ejk1(x−x′)ejk2(y−y′)e−W(|z−z′|+η)

(34)

Similarly,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

GE1,J2,η(x|x′)

GE2,J2,η(x|x′)

GH1,J2,η(x|x′)

GH1,J2,η(x|x′)

GE3,J2,η(x|x′)

GH3,J2,η(x|x′)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

∞∫
−∞

∞∫
−∞

dk1
2π

dk2
2π

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j
2εω

−k1k2

W

j
2εω

k2
1−W 2

W

sgn(z − z′) 12

0

sgn(z − z′) k2

2εω

jk1

2W

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

× ejk1(x−x′)ejk2(y−y′)e−W(|z−z′|+η)

(35)
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Note that the original slowly-convergent or even divergent

integrals have become regularized with the appearance of a

problem-specific exponential damping term. The subindex η
is a reminder of this property!

VI. ALGEBRAIC REGULARIZATION OF DYADIC GREEN’S

FUNCTIONS

A. Preparatory considerations

Consider the following generic convolution type integral in

spectral domain, [1]:

ϕ(x, y) =

∞∫
−∞

∞∫
−∞

dk1
2π

dk2
2π

G(k1, k2)ρ(k1, k2)e
jk1xejk2y

(36)

A bar indicates quantities in (k1, k2)−spectral domain. Fur-

thermore, G(k1, k2) stands for a generic scalar-valued Green’s

function. It has been assumed that G(x, y) is translationally

invariant; i.e., G(x − x′, y − y′), where (x, y) and (x′, y′),
respectively, refer to the observation- and source point. In

addition we shall assume the following source distribution with

a priori unknown coefficients ρn:

ρ(x, y) =
N∑

n=1

ρnbn(x, y) (37)

with

bn(x, y) =

⎧⎨
⎩

1 xb
n < x < xe

n and ybn < y < yen

0 elsewhere
(38)

The Fourier transform of ρ(x, y) denoted by ρ(k1, k2) is:

ρ(k1, k2) =
N∑

n=1

Qn

−4�xn�ynk1k2

(
e−jk1x

e
n − e−jk1x

b
n

)
×

(
e−jk2y

e
n − e−jk2y

b
n

)
(39)

where 2�xn(= xe
n−xb

n) and 2�yn(= yen−ybn), respectively.

Furthermore, denoting the integral of the source on the nth

sub-square by Qn we have Qn = ρn(2�xn)(2�yn).
Testing ϕ(x, y) by the weighting functions bm(x, y), m =

1, · · · ,M , and denoting the average of ϕ(x, y) on the mth

sub-sqaure by ϕm we have:

ϕm =
1

(xe
m − xb

m)(yem − ybm)

xe
m∫

xb
m

ye
m∫

yb
m

dxdyϕ(x, y) (40)

Substituting (36) into (40) and rearranging the order of

integrals we obtain

ϕm =

∞∫
∞

∞∫
−∞

dk1
2π

dk2
2π

G(k1, k2)wm(k1, k2)ρ(k1, k2)︸ ︷︷ ︸
Rm(k1,k2)

(41)

with

wm(k1, k2) =
1

−4�xm�ymk1k2

(
ejk1x

e
m − ejk1x

b
n

)
×

(
ejk2y

e
m − ejk1y

b
n

)
; m = 1, · · · ,M (42)

Note the introduction of Rm(k1, k2) in (41). Also note that

the solvability condition requires M = N .

B. Automatic emergence of Hadamard Finite Parts

Consider Rm(k1, k2) as introduced in (41). It is evident

that Rm(k1, k2) only depends on the selected basis- and

testing functions, implying that the Green’s function does not

play any role in the structure of Rm(k1, k2). On the other

hand Rm(k1, k2) shall play a significant role in the algebraic

regularization of the field integrals, to any degree desirable.

Furthermore, Rm(k1, k2) will automatically give rise to the

emergence of Hadamard Finite Parts. In order to establish

these results we substitute for ρ(k1, k2) and wm(k1, k2),
respectively, from (39) and (42), and rearrange to obtain:

Rm(k1, k2) =

N∑
n=1

Qn
1

16�xm�ym�xn�ynk21k
2
2

×
[
ej(k1x

e
m+k2y

e
m) − ej(k1x

e
m+k2y

b
m)

−ej(k1x
b
m+k2y

e
m) + ej(k1x

b
m+k2y

b
m)
]

×
[
e−j(k1x

e
n+k2y

e
n) − e−j(k1x

e
n+k2y

b
n)

−e−j(k1x
b
n+k2y

e
n) + e−j(k1x

b
n+k2y

b
n)
]

(43)

Lemma: The following relationship holds true:

Rm(k1, k2) =
N∑

n=1

Qn
1

16�xm�ym�xn�ynk21k
2
2

×
[
+
{
1 + [j(k1x

e
m + k2y

e
m)] +

1

2
[j(k1x

e
m + k2y

e
m)]2

}
−
{
1 + [j(k1x

e
m + k2y

b
m)] +

1

2
[j(k1x

e
m + k2y

b
m)]2

}
−
{
1 + [j(k1x

b
m + k2y

e
m)] +

1

2
[j(k1x

b
m + k2y

e
m)]2

}
+
{
1 + [j(k1x

b
m + k2y

b
m)] +

1

2
[j(k1x

b
m + k2y

b
m)]2

}]
×
[
+
{
1 + [−j(k1xe

n + k2y
e
n)] +

1

2
[−j(k1xe

n + k2y
e
n)]

2
}

−
{
1 + [−j(k1xe

n + k2y
b
n)] +

1

2
[−j(k1xe

n + k2y
b
n)]

2
}

−
{
1 + [−j(k1xb

n + k2y
e
n)] +

1

2
[−j(k1xb

n + k2y
e
n)]

2
}

+
{
1 + [−j(k1xb

n + k2y
b
n)] +

1

2
[−j(k1xb

n + k2y
b
n)]

2
}]

=
N∑

n=1

Qn (44)
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VII. UNIVERSAL FUNCTIONS

Inspired by the aforementioned properties we define the

geometry-independent ‘‘Universal function,’’ which can be

pre-computed and stored for future numerical calculation, [1]:

U(X,Y ) =

2π∫
0

dθ
1

sin2 θ cos2 θ

×
{ kc∫

0

dkkG(k, θ) 1

k4

(
ejk(sin θX+cos θY )

−
3∑

l=0

1

l!

[
jk(sin θX + cos θY )

]l)

+

∞∫
kc

dkkG(k, θ) 1

k4
ejk(sin θX+cos θY )

}
(45)

The
∫ kc

0
dk−integral in (45) resembles Hadamard Finite

Part. Note that for k << kc the first dominant term in

the numerator of the expression in this integral is o(k4),
which cancels the 1/k4−term perfectly. An important question

is how to proceed if G(k, θ) ∝ 1/|k| for k << kc. In

such a case, as it turns out, the total source integral in the

‘‘universe’’ must add up to zero (
∑N

n=1 Qn = 0) (regularizing

condition in infrared region). In such a case we can include

in (45) the 4th−order terms as well by letting l run from

0 to 4. On the other hand, it must be pointed out, that

the
∫∞
kc

dk−integral in (45) decays sufficiently strongly for

k → ∞ to ensure convergence of the integral. Consequently,

U(X,Y ) is regular in the infrared- as well as ultraviolet

region. In electrodynamics certain dyadic Green’s functions

are proportional to k for k → ∞, implying that kG(k, θ)/k4
behaves according to 1/k2. Considering the

∫∞
kc

dk−integral

it can be concluded that the integrability in ultraviolet region

is safely guaranteed even in such cases.

Upon construction it is immediate that the interaction ele-

ments in the Method of Moments applications, Amn, can be

written in terms of the Universal Function U(X,Y ) as follows:

Amn =
1

64π2�xm�ym�xn�yn

{
+ U(xee

mn, y
ee
mn)− U(xee

mn, y
eb
mn)

− U(xeb
mn, y

ee
mn) + U(xeb

mn, y
eb
mn)

− U(xee
mn, y

be
mn) + U(xee

mn, y
bb
mn)

+ U(xeb
mn, y

be
mn)− U(xeb

mn, y
bb
mn)

− U(xbe
mn, y

ee
mn) + U(xbe

mn, y
eb
mn)

+ U(xbb
mn, y

ee
mn)− U(xbb

mn, y
eb
mn)

+ U(xbe
mn, y

be
mn)− U(xbe

mn, y
bb
mn)

− U(xbb
mn, y

be
mn) + U(xbb

mn, y
bb
mn)

}
(46)

It is worth noting that replacing ejk(sin θX+cos θY ) with

ejk(sin θX+cos θ)Y − 1 in the
∫∞
kc

dk−integral, (45), does not

alter the value of Amn. Therefore, denoting the corresponding

Universal Function by V (X,Y ), it can been shown that

V (0, 0) = 0, a result which is of theoretical and computational

significance. For completeness it should be mentioned that the

application of MoM leads to
∑N

n=1 AmnQn = ϕm.

VIII. CONCLUSION

A sequence of six constructive measures was reviewed

for the performance enhancement of computations in the

Method of Moments (MoMs) applications in computational

electromagnetics. Given a particular direction in space, it was

shown that Maxwell’s electrodymic equations can be split into

a diagonal form and a corresponding supplementary form,

the D- and S-forms, respectively. The D- and S- forms were

subsequently utilized to construct standard singular dyadic

Green’s functions (DGFs) in spectral domain. The DGFs

were employed to construct novel problem-tailored integral

representations for the Dirac’s δ−function. The resulting dis-

tributed ‘‘smeared out’’ Dirac’s δ−functions were employed

to regularize DGFs exponentially. Furthermore, standard finite-

support basis- and testing functions were used to additionally

regularize DGFs algebraically. The algebraic regularization

scheme enabled the construction of frequency-, and geometry

independent Universal functions for the calculation of self- and

mutual interaction elements arising in the MoMs applications.

Future work shall focus on the application of the method to

the investigation of small-scale phenomena in material science,

material engineering, and device modeling and simulation.

Furthermore, boundary value problems with fairly arbitrary

geometries should be investigated. It is also desirable to

construct problem-characteristic integral representations for

the Dirac’s δ−function in complex media. Finally, the method

will be applied to realistic problems to gauge its performance

under realistic conditions.
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