
Social-Insect-Inspired Networking for Autonomous
Fault Tolerance

Matthew Rowlings, Andy Tyrrell, Martin Trefzer
Intelligent Systems Group, Department of Electronics, University of York, York, YO31 5DD, UK

Email: mr589@york.ac.uk, andy.tyrrell@york.ac.uk, martin.trefzer@york.ac.uk

Abstract—As electronic hardware integration technologies de-
velop there is an increasingly strong shift towards implementing
complete systems within a single chip, extending the now estab-
lished paradigm of System on Chip towards high density many-
core systems by employing Networks on Chip (NoCs) to connect
the processing elements. This brings many new challenges to
fault-tolerant design when applied to embedded applications,
but also opportunities for new approaches that can leverage the
many-core fabric in ways that traditional system architectures
could not exploit. This paper describes such an approach by
adopting behavioural aspects of social insects as an inspiration
towards autonomous, self-repairing systems. Each router in the
NoC is considered as a member of a distributed colony and
a simple adaptive controller is responsible for determining the
behaviour of each node, relying only on a set of sensory inputs
local to each node and small amounts of information shared
between neighbours. This provides each node with a small
amount of “intelligence” that, for this paper, has been imple-
mented within a many-core hardware system to demonstrate an
adaptive routing scheme which provides effective network traffic
management through simple and decentralised agent-to-agent
communications. The emergent behaviours of the network are
then exploited to demonstrate an example of how fault tolerance
could be supported within a many-core system without any pre-
defined fault handling strategies. A discussion then follows on
how the emergent behaviours of this system can be further
inspired by social insect colonies to exhibit other autonomous
and adaptive behaviours such as dynamic task allocation.

I. INTRODUCTION

The extremely high logic density of modern VLSI platforms

has lead to an adoption of many-core systems for embedded

system design, relying on a Network on Chip (NoC) [1] [2] to

interconnect the processing elements of the many-core array.

Whilst the NoC shares many properties with conventional

computer networking, the application to embedded systems

means that the network should be designed to conform to

typical embedded system constraints such as power efficiency,

compact resource requirements and effective fault tolerance.

Therefore an inclination to simpler networking capabilities is

seen with NoCs when compared to conventional networking,

a caveat of this is that performance suffers and so a trade-off

between node router complexity and performance has to be

made. An alternative is to perform offline analysis [3][4][5]

and optimisation of the task and network model, however the

resulting strategy is generally fixed and so does not support

runtime dynamic reconfiguration of the system structure; a key

requirement for supporting future many-core system design

paradigms such as dynamic task allocation, in field self-repair

and autonomous online optimisation[6].

Thus we need a network that can self-organise and self-

optimise without the need for offline analysis. To support both

good scalability and dynamic network topology reconfigura-

tion, an ideal routing algorithm should therefore not rely on

global knowledge of the network layout; indeed if many-core

systems do scale into the hundreds and thousands of cores as

suggested in [6] then any online analysis will be computa-

tionally infeasible within an embedded system. Therefore the

network will have to take a decentralised approach to routing,

whereby each node in the network is responsible for its own

routing behaviour. A simple example of this is the Round

Robin algorithm [7]. By servicing each port in turn and only

allowing each port to be serviced once in a round, Round

Robin provides a decentralised and fair routing strategy that

does not rely on any global coordination. Whilst the authors

appreciate that Round Robin is a very simple case in a field

full of more capable algorithms for specific applications, its

simplicity means that not only is it suitable for implementation

of a NoC in an embedded system but it also serves as a good

baseline to compare the self-organising algorithms proposed

in this paper to.

When researchers consider self-optimising systems, many

have looked towards Nature for inspiration. Life has provided

a host of examples of decentralised self-organising systems

at all ranges of abstraction: from the chemical networks used

for gene regulation, to the cellular growth and development in

multicellular organisms, up to the social networks required

for survival of insect (and other) colonies. However when

these models are applied to engineering problems we often

see significant overhead requirements due to the extra re-

sources required to fit the engineering model to the biolog-

ical metaphor. The UNITRONICS project for example [8]

uses multi-cellular development as an inspiration for building

fault tolerant systems but a simple 4x4 hardware multiplier

required 40 cells, where each cell requires significant hardware

resources to support all of the cell development model; an

arguably large amount of unnecessary overhead for a simple

circuit that makes scalability across a whole many-core system

infeasible.

Therefore when considering inspiration from Nature, it

is important to find good links between the metaphor and

the target problem. For many-core networking we can break

our problem down into a decentralised model with simple

2015 IEEE Symposium Series on Computational Intelligence

978-1-4799-7560-0/15 $31.00 © 2015 IEEE

DOI 10.1109/SSCI.2015.172

1198

communication between neighbouring nodes in addition to

local knowledge available at each node. To implement this on

chip requires a model as efficient as possible, whilst bearing

in mind that although Nature produces efficient solutions they

are not guaranteed to be optimal! Considering this, we argue

that social insects are a suitable metaphor for many-core

networking as their communication structures fit the decen-

tralised model well, simple communications between members

result in self-organising behaviours emerging when observed

globally at colony level; examples include nest building, self-

replication and food scouting, gathering and dispersal. Their

typical habitat has resulted in Nature to produce behaviours

that are very food (i.e. energy) efficient, fitting the embedded

system application case well; indeed successful use of social

insect models in other problem areas have succeeded because

of the efficient emergent high level behaviour (ant colony

optimisation applied to the travelling salesman problem for

example [9] [10])

This paper describes a series of experiments exploring the

application of social insect inspired network routing schemes

to a simulated NoC. First each of the decentralised routing

algorithms are described in terms of their biological inspiration

and the local sensory inputs available to each node. The

experimental setup is then introduced including how these al-

gorithms are mapped to the implementation platform. Section

IV then presents a statistical analysis of the performance of

each routing scheme on two representative NoC applications.

Finally the results presented here inform discussion in Section

VI on how the model may be elaborated to exhibit autonomous

NoC topology optimisation.

II. INTELLIGENT MANY-CORE ROUTING

To investigate which behaviours of the social insects can

be applied to hardware systems, biological observations of

the social insects are examined. Those of particular interest

include [11] wherein the authors argue that a honey bee can

be described in terms of a behavioural repertoire of 59 distinct

behaviour patterns and [12] which explores several models

of agent task allocation and how this is determined at the

single organism level to result in an emergent task allocation

pattern at colony level. These distributed models have a clear

analogy to desired properties of many-core systems; each node

in such a system could be modelled with a distinct behavioural

repertoire depending on its function and then the repertoire of

each node (or agent) is exploited at the local level to provide

a scalable, distributed system with the desired emergent prop-

erties demonstrated by social insect colonies, i.e. scalability,

adaptability to new environments and colony fault tolerance.

Instead of the more traditional design-space analysis approach

to network-on-chip routing, we considered several agent level

behaviours that are implemented heterogeneously at each node

in the many-core grid. Taking inspiration from [12] we used a

simple threshold intelligence model at each node which takes

data from sensors local to the node and performs a routing

behaviour depending on the input to the sensors and the

threshold function applied. In each investigation step different

N FIFO

S FIFO

W
 F

IF
O

E
 F

IF
ORouting

Algorithm

I FIFO

Fig. 1. Five port router design. The internal link represents the application
node and the North, East, South and West ports connect to neighbouring
routers

sensors are incorporated into the threshold model; with the aim

to capture the following social insect inspired features within

the many-core system:

1) Simple sense/act behaviour of insects

2) Efficient communication strategies between agents

3) Emergent overall behaviour of the colony

The remainder of this section describes the sensory capabilities

investigated, with each capability striving to add more local

information to each node with the ambition to improving

the effectiveness of the emergent routing behaviour of the

many-core system. Each scheme assumes a five port router

as illustrated in Figure 1, this is a typical design for a router

with an attached application node and neighbours at each of

the cardinal points.

A. Round Robin Routing

To provide a suitable baseline to evaluate the proposed

algorithms against, a decentralised routing algorithm that does

not use any local node knowledge is required. Such a port

servicing algorithm is the simple, but well used, Round Robin
arbitrator[7]. In this routing scheme each port is checked in

turn for data. If a port has data to route then a single packet

is routed and then the next port in the router is checked

for data. This continues serving ports in a circular fashion

(in our case N,E,S,W,I and back to N), providing a fair and

balanced routing scheme without utilising any of the sensory

information available to the node.

B. FIFO Fill Threshold Model

The first investigation architecture looked at the possibility

of balancing the network’s overall load by balancing the

traffic at each node. To achieve this each node was given

knowledge of the fill levels of each of its North, East, South,

West and Internal FIFO buffers. A simple threshold model

then chooses the router port to service based on which node

has the most traffic waiting in its buffers, i.e:

1199

Port = max(fill(x)) ∀x ∈ {N,E, S,W, I}

where fill(x) is the FIFO fill level of port x

C. Neighbour Hunger Model

The previous models have considered how sensory inputs

can be used to decide which port to service, this model

however considers the output port that a packet should be

routed to. As introduced in Section III, each node has an

ordered preference list of output ports that it should route a

packet to dependent on its task. This ensures that short paths

are taken through the network, but it can also mean that certain

nodes are put under lots of pressure in congested scenarios.

Sometimes a longer path through the network will result in a

more balanced traffic flow, potentially improving throughput

over the entire network. To investigate this we have considered

the food distribution networks of ant colonies [13]. The nature

of task polyethism in the colony means that food must pass

from returning foragers at the front of a nest all the way

throughout the entire colony to keep all members well fed.

From a simplistic point of view this is achieved by individual

members taking more food than required for themselves when

offered and then sharing it with other members as they pass

them in the nest. If the recipient already has a plentiful

amount of food then she refuses the offer and the supplier

tries other members until her food excess is removed. This

self-organising, distributed methodology successfully balances

food distribution across the colony; this investigation explores

if can we use such a scheme to balance packet distributed

across the NoC.

As a node’s buffers fill up, their fill is accumulated and

compared to a “hunger” threshold, the output of which is

shared with each of a node’s neighbours. When this threshold

is passed then a node is no longer “hungry” and its neighbours

will not send it any more packets until it becomes “hungry”

again. To achieve this the ordered preference list of output

ports is used to select an increasingly less optimal output port

should the neighbour on the optimal output port not be hungry,

if all neighbours are not hungry then the router does not route

any packets until one of them is.

Formally, for each node:

Hungry = ‘Yes’ if {∑(fill x) < θ } else ‘No’
∀x ∈ {N,E, S,W, I}

And when servicing a port:

Output Port = first(y) where Hungry(y) = ‘Yes’

where θ is the total FIFO fill level at which a node is

no longer hungry and fill(x) is the FIFO fill level of port x
as with the first model. y represents a list of the the node’s

N,S,E,W neighbours (which may not exist if a node is located

on the edge)

D. Neighbour Hunger for Fault Tolerance

The hunger model introduced above can straightforwardly

be exploited to support node-level fault tolerance. If we assume

PC

Virtex-5

Spartan-3....
RISA

RISA RISA

RISA

Spartan-3

RISA

RISA RISA

RISA

Fig. 2. Many-RISA system layout. The host PC is responsible for gener-
ating and managing the experiment setup. The Virtex-5 acts as a mediator,
forwarding messages from the host PC to the Spartan-3s and also collating
results and status information from the Spartans. The RISAs perform only the
routing algorithm under experiment where the Spartan-3s act as the internal
port for a cluster of four RISAs, taking the role of an application node by
dispatching and accepting packets

that each node contains a fault detection method this could be

used to enforce a “not hungry” state when a fault is detected.

Other routers would then avoid sending data via this router

and would instead use the hunger model to route packets

around the faulty node, then to be ultimately processed by

a different node but of the same target task. Aside from the

resources required for fault detection in the node, a node-

level fault tolerance strategy can be supported by the system

without any extra resources required; a good example of the

powerful emergent properties that we can anticipate by taking

inspiration from the social insects.

III. EXPERIMENTAL SETUP

To facilitate characterisation of the behaviours of the pre-

sented routing schemes within a hardware implementation,

a many-core system was built in a fashion representative to

modern NoCs. A total of 36 Reconfigurable Integrated System

Array (RISA) [14] integrated circuits were used to fashion

a 6x6 many-core system, utilising the cardinal serial ports

of each RISA to produce a mesh interconnect. The RISA

platform consists of an embedded RISC processor coupled

to a small reconfigurable fabric, making the platform ideal

for implementing self-optimising structures at node level.

Whilst this network of processors is not strictly a Network-on-

Chip, the processors and their serial communications are basic

enough that they easily map to asynchronous NoC interconnect

technologies; indeed it would be possible to implement a NoC

of RISAs in a FPGA or ASIC without any redesign of the

platform.

The array was constructed by combining nine boards, with

each board comprising of four RISA chips with a Xilinx

Spartan-3 FPGA in the centre with a serial and GPIO interface

to each RISA. This allows the desired router design given

in Figure 1 to be created, whereby the Spartan-3 simulates

the application node for all four RISAs through each of its

serial interfaces and the RISA processor only performs routing

1200

operations. The GPIO interface is used to communicate status

information to ensure that the routers are not malfunctioning

and is used in the “Neighbour Hunger Model” to report the

hunger status of a node’s neighbours. When the experiment

is running the Spartan-3s dispatches packets to their various

RISA routers according to the profile generated by the host

PC which formulates a packet generation formula from the

following constraints:

• Maximum packet rate: the minimum time between suc-

cessive application packets

• Input data dependency: the minimum number of packets

a node must receive before it can send a packet out

• Processing time: the minimum time between receiving a

packet(s) and sending a packet out

These constraints allow a diverse range of application node

behaviours to be simulated, a key concern for experimenting

with realistic application scenarios. The Spartan-3s also re-

ceive packets from the RISA routers, whereby they calculate

and store the packet traversal time (through the use of a sent

timestamp stored in the packet) and also update the inputs to

the above packet dispatch constraints.

Overall control of the experiment is managed by a host PC

which is responsible for generating the NoC topology, gen-

erating the packet creation profiles, starting and stopping the

experiment and collecting the results. A mediator between the

host PC and the Spartan-3 boards was required, this is in the

form of a Virtex-5 board which manages the communication

between the Spartan-3 boards, including synchronisation of

each board’s real-time clock (for packet traversal measure-

ment) and communication of the hungry status of each RISA.

The Virtex-5 also forwards commands to and from the host

PC and the Spartan-3 boards, as well as providing support for

updating of the software and bitstream of the Spartan-3s and

updating of the RISA software. This is illustrated in Figure 2.

Implementation of the routing schemes was built around a

set of common routing functions working on input data buffers

connected to each port. These common functions consisted of:

• Reading a packet from the Spartan-3 serial link

• Writing a packet to the Spartan-3 serial link

• Reading a packet from a {N, E, S, W} RISA serial link

• Writing a packet to a {N, E, S, W} RISA serial link

For the Round Robin scheme, each of the N, E, S, W ports

were checked for valid packets in turn and one packet routed if

available before moving on to the next port. The FIFO fill level

scheme requires a little more knowledge and this is achieved

by keeping a count of how many packets are waiting to be

routed at each port. The router then decides which port to

service depending on which port has the most data ready to

route. These two schemes rely on a pre-defined optimal routing

direction for each task, this is generated by the host PC as

part of the task profile generation and optimally is based on

a simple Manhattan distance metric. The neighbour hunger

scheme however extends on this information by utilising a

pre-defined ordered list of routing directions for each task.

By ordering this list by optimality we can choose sub-optimal

choices when the chosen routing direction is no longer hungry.

The hunger status of each node is communicated via the

GPIO to the Spartan-3 and then distributed via the Virtex-

5 information network, however in different network schemes

this could be also implemented as a dedicated signal or status

packet.

To evaluate the hungry scheme under faulty conditions

a fault injection scheme must be supported. This is easily

achieved at node level in this system via manipulation of the

hungry status of a node. A number of nodes are randomly

selected to be faulty (depending on how many faults are

required) and the Spartan-3 responsible for each faulty node

communicates that this node is not hungry and does not

dispatch packets to it. This has the effect of forcing all packets

to route around this node (desirable in a faulty situation) whilst

also slightly reducing traffic local to the node as the node is no

longer dispatching new packets, representative of a fail-quiet

scenario. This will alter the balance of traffic in the network

which our routing scheme should exploit to recover some of

the routing performance of the network. The packet generation

rates of other nodes of the same task as the faulty node

are proportionally increased to ensure a realistic application

case, otherwise faulty nodes would actually lower the routing

requirements of the network thus this ensures there is always

the same amount of traffic in the network despite the failing

nodes.

IV. EXPERIMENTAL RESULTS

A series of experiments using the many-core system de-

scribed in the previous section are presented here. Two ap-

plication scenarios are considered to explore the strengths

and weaknesses of each strategy under different operating

conditions. Each experiment records the average time taken

for a packet to traverse from its source node to its target node

and its packets are continuously dispatched at a predefined rate

until 5000 packets have been sent throughout the network. The

experiment then waits for all packets to finally reach their

target node. This experiment is repeated 100 times with a

different randomly generated network topology in each run.

This allows a statistical outline of the performance across

many variations in network node topology to be measured,

capturing the mean performance as well as the worst and best

case outliers. This is performed for each of the schemes and for

each application scenario, shown in Figures 3 and 4: (1) Round

Robin, (2) FIFO Fill Threshold and (3) Neighbour Hunger

Model.

A. Experiment Application Scenarios

The application scenarios dictate the traffic flow across the

network through definition of the following parameters:

• Number of different tasks

• Ratio of task allocations

• Size of packets generated by each task

• Rate of packets generation by each task

• Number of packets from other tasks that the node has to

receive before sending out a packet (causality)

1201

1 2

3
Fig. 3. Application graph for the first scenario. This represents a simple
balanced processing application where each node produces data at the same
fixed rate which is only consumed by one task. This creates a balanced traffic
profile across the network, perturbed only by the network topology.

1

2

3

2 2 2

Fig. 4. Application graph for the second scenario. A data pipeline with a
parallel stage is represented here whereby there are four times as many task
two nodes as task one or three nodes. This can represent a typical many-core
streaming application with a stage that is massively parallel, however all data
rates are kept the same as in the previous, balanced application graph shown
in Figure 3. This scenario effectively increases the load on routing to task
three nodes.

These parameters allow many different application graphs

to be applied to and tested on the many-core array. For

these experiments we shall represent two simple, time-trigged

applications where each task dispatches constant sized packets

at a constant rate. All that we shall change between the

topologies is the ratio of task types. Three different tasks were

chosen as this scales equally to the 36-core array and is the

smallest number of tasks that can offer the one-to-many-to-one

model that scenario two investigates. Figure 3 illustrates the

application graph for scenario one. In this scenario there are an

equal number of tasks one, two and three distributed randomly

across the array (i.e. 12 nodes of each task). Each of these

tasks dispatch a new packet of 50B every 5ms, this results

in a traffic flow that saturates the network as the minimum

traversal time (from one node to its neighbour) for a 50B

packet is 4ms on the array. Scenario two imbalances this by

employing a 1:4:1 task ratio across the network, as illustrated

by Figure 4. This represents a typical many-core application

where a specific task is shared amongst many nodes as it may

be computationally expensive and can gain from parallelisation

or as part of a N-modular redundancy voting scheme.

B. Routing Performance

The average packet traversal times for each task for 100

runs of the experiment for the first task scenario are shown in

Figure 5. It is clear from the bias of the box plots towards the

minimum traversal time that many packets are sent directly to

a neighbour node; this is to be expected to some degree when

using only three tasks in the application graph, and each task

only has one of the two other tasks as its possible target. With

four neighbours, the chances of having the target task as a

neighbour is quite high. Additional to this bias we also see a

large spread of outliers in the Round Robin case, this is due to

Round Robin treating a busy port in exactly the same way as

a quiet port i.e. a port with 5 packets queuing would have the

same routing priority as a port with 30 packets queuing. This

results in packets waiting at busy ports for long periods of

time, something which the FIFO fill level monitor manages to

balance by allowing the router to clear busy ports first. Some

deviation away from the optimal packet latency is still seen

as congested routes are not avoided, but it is clearly seen in

Figure 5 that the extreme outliers are no longer present. The

Hunger scheme improves on this by effectively utilising that

little bit of information shared between nodes to avoid hotspots

and capably balance the network traffic overall. This has the

result of bringing the medians of all tasks closer to their best

case and producing a much smaller distribution of the results

regardless of the differing network topologies.

Despite the different application profile for scenario two,

we would expect a comparable behaviour for each of the

schemes. Indeed as can be seen in Figure 6, it is again clear

that the Hunger scheme can drastically improve the network

performance. The effect of the different task model is also

obvious from all the schemes. Packets from task one have a

high ratio of task two nodes to finish at and so this distribution

is relatively tight. The opposite is seen for packets sent by task

two, as many task two nodes have to send to a smaller ratio of

task three nodes. Depending on the topology this could result

in a task three bottleneck where only a few task three nodes

are very busy sinking packets dispatched by all the task two

nodes. Due to the fairness of Round Robin we can see that the

distribution for task three has a small spread, this is smaller

than task one due to “knock-on” effects of the traffic from task

two nodes: as the traffic from task two nodes struggle to arrive

at their task three destinations, consequently we get a delay

for receiving incoming task one packets as well. The FIFO

fill strategy sacrifices this task three performance to improve

the upper bounds of task two packets, albeit the Hunger

model again uses its extra information to far greater effect

to eliminate the extreme outliers and reduce the distribution

of packet traversal times by ensuring that packets are well

distributed across to all task three nodes. The “knock-on”

effects for task one nodes are mitigated through the dynamic

routing of task two packets to different task three nodes as the

hotspot task three nodes become saturated and thus no longer

“hungry”. This experiment highlights another power of such

decentralised strategies as they exhibit their behaviour across

1202

Fig. 5. Average packet traversal times for the first task scenario. As the number of nodes of each task in this application is equal and all tasks share the same
packet generation parameters, we expect no significant variation in performance between tasks. The only difference between runs is the randomly generated
network topology which, due to the selection of parameters that provide a congested network, can have a severe impact on the network’s behaviour. It is
clear that the Neighbour Hunger model is far more effective at mitigating the congestion and sub-optimal topologies, with both a smaller range and very
few outliers with no extreme values. The skew of all of the distributions towards their lower quartile is due to many packets reaching their destination in an
optimal time, with only three tasks it is very likely that a node will have a neighbour as its packet target and so can complete the transfer in a single network
hop.

many different operating situations, an important feature as

implementation specific attributes such as task graphs tend to

vary significantly between applications.

C. Routing Performance Under Fault Injection

We can now explore the fault tolerance properties of the

Neighbour Hunger model. As discussed in Section II the

hungry flag can be exploited to exhibit fault tolerant behaviour

and Figure 7 shows the average packet latency for up to

five faulty nodes randomly introduced into the system before

running the experiment. As the task allocation topology was

kept constant we only expect differences in packet latency to

be due to where the fault occurs (i.e. at a routing bottleneck

or not). It is important to note that no packets are lost in this

scheme; Round Robin for example would continue to route

packets to faulty nodes despite their defective status.

For one or two faults in the system we see the expected

slight increase in packet traversal time, with two faults starting

to introduce more outliers into the results. What is then

interesting is that the distribution then stays fairly regular

despite increasing faults in the system, this is likely due to

the emergent fault tolerance of the Hunger scheme exploiting

the uniform layout of the nodes i.e. an alternative destination

node is not that much further away from the source node than

the now faulty node. Indeed when the results of the second

scenario are considered in Figure 8 we see the imbalance in

the application graph has a drastic effect on packet latency,

but it is worth noting that the medians are still scaling quite

closely to their lower quartiles. The location of the injected

fault is even more significant when it is considered that a task

three node could be removed from the system, causing even

more strain on task three resources that the Hunger scheme can

only mitigate so far. Indeed this is a good example of where

dynamic task allocation could be used in addition in a fault

tolerant system as a further means to “intelligent” congestion

relief at the node level.

V. CONCLUSIONS

The results presented have shown that the Social Insects

can provide effective inspiration for self-optimisation of many-

core systems in a fully decentralised fashion. An in-hardware

simulation of two different application scenarios yielded a

very similar emergent behavioural pattern, suggesting that

this approach can be applied to a wide range of applica-

tions without requiring any NoC topology pre-analysis or

constraints. It is anticipated that these routing models will

enable adaptive routing schemes to be used towards devel-

opment of a truly flexible many-core usage model, whereby

tasks can be added dynamically into the many-core system

and the self-optimisation will allow the system to maintain

homoeostasis through online adaptation. The power of the

emergent behaviour has been demonstrated by showing that a

1203

Fig. 6. The average traversal times for the second scenario shows a slightly different pattern due to the imbalance between tasks. As shown in Figure 4, task
1 has a relatively large number of task 2 nodes to send its packets to, whilst task 2 suffers from the inverse when the parallel tasks are all bought to task 3
nodes. The Hunger scheme however ensures that the load is better shared amongst all of the task 3 nodes and so exhibits a substantial improvement over the
other schemes when routing packets from task 2 nodes. It is interesting to note that the FIFO Fill level scheme shows a greater range for packets sent from
task 3 nodes, this is due to the large number of packets from task 2 in the network and the preference of the scheme to service the bottleneck buffers flooded
with task 2 nodes, in turn bringing the range of task 2 packet latencies down slightly at the expense of task 3 packets.

Fig. 7. Results of a fault injection experiment with the first application
scenario. A constant topology had up to five random faults introduced before
the experiment is then run for 5000 packets. The is repeated 25 times and the
average packet traversal time for all tasks of each run is plotted.

fault tolerance scheme can be achieved by simple exploitation

of the monitors that are attached to the system. This suggests

that the sense-think-act model is a successful approach/tool

for the implementation of scalable yet adaptively fault tolerant

many-core systems.

VI. DISCUSSION AND FURTHER WORK

Autonomous adaptive “intelligent” routing was the main fo-

cus of this investigation, however, the results suggest, and the

metaphor adopted ensures, that by simply including additional

sensory inputs it would be possible to enhance the behaviour of

each agent. The local “sense-think-act” model for each agent

has been demonstrated to be very powerful when viewed as an

emergent behaviour at the system level. Therefore, future work

shall look at how this model can be extended by applicable

behaviours from the social insects. Indeed the polytheistic

nature of the social insects is an obvious starting point for

experimenting with dynamic task allocation and swapping.

The outliers in the experiments have shown how important

the NoC topology is to effective routing and therefore is the

next extension to the many-core self optimisation. With the

right sensory inputs (for example ring oscillators, FIFO fill

monitors), there is significant scope for extending the same

intelligent task allocation in a way to also offer fault prediction

as well as fault tolerance. This would allow a many-core

system to autonomously optimise core task allocation whilst

taking the temperature or degradation state of the device into

1204

Fig. 8. Fault injection experiment results for the second application scenario.
Due to the unbalanced nature of the second application model the location
of a fault has a greater impact on the network performance (e.g. the case of
a faulty task three node), and thus may account for some of the variation in
scaling of the medians as the selection of faulty nodes is random.

account at runtime, as opposed to the complex analysis and

simulation that is currently required to solve these issues.

When these experiments are considered in terms of the

information exploited, we see a range between no information

used in routing decision (Round Robin), local node knowledge

used in routing decision (FIFO fill level) and neighbour knowl-

edge used in decision (Hunger). By exploring the information

exchange mechanisms used within social insect colonies we

may find some other interesting paradigms for information

sharing and exploitation across the array of nodes. For example

these experiments could be expanded by adding a notion of

packet priority to the system and the routers are responsible

for deciding whether to change a packet’s priority, for example

a router could decide to increase the priority of a packet as

it ages; this would reduce both the severity of outliers and

the spread of the distribution and if combined with a deadline

could be a technique for providing social insect inspired soft-

realtime aspects to many-core systems. This would be an

example of a decision at a single node (decision to increase

the priority) affecting the behaviour of other, unknown nodes

that process this packet at some later point in the many-core

system.

REFERENCES

[1] L. Benini and G. D. Micheli, “Networks on chips: a new SoC paradigm,”
Computer, 2002.

[2] A. Hemani, A. Jantsch, S. Kumar, and A. Postula, “Network on chip: An
architecture for billion transistor era,” Proceeding of the IEEE NorChip
Conference. Vol. 31., 2000.

[3] H. G. Lee, N. Chang, U. Y. Ogras, and R. Marculescu, “On-chip
communication architecture exploration,” ACM Transactions on Design
Automation of Electronic Systems, vol. 12, no. 3, pp. 23–es, Aug. 2007.

[4] K. Srinivasan, K. Chatha, and G. Konjevod, “Linear programming based
techniques for synthesis of network-on-chip architectures,” in IEEE
International Conference on Computer Design: VLSI in Computers and
Processors, 2004. ICCD 2004. Proceedings. IEEE, 2004, pp. 422–429.

[5] U. Ogras and R. Marculescu, “Energy- and Performance-Driven NoC
Communication Architecture Synthesis Using a Decomposition Ap-
proach,” in Design, Automation and Test in Europe. IEEE, 2005, pp.
352–357.

[6] G. Tempesti, “Graceful Design,” International Innovation
Issue 140, pp. 76 – 78, 2014. [Online]. Available:
http://www.internationalinnovation.com/graceful-design/

[7] E. S. Shin, V. J. Mooney, and G. F. Riley, “Round-robin arbiter design
and generation,” in Proceedings of the 15th international symposium on
System Synthesis - ISSS ’02. New York, New York, USA: ACM Press,
Oct. 2002, p. 243.

[8] M. Samie, G. Dragffy, and T. Pipe, “UNITRONICS: A novel bio-
inspired fault tolerant cellular system,” in 2011 NASA/ESA Conference
on Adaptive Hardware and Systems (AHS). IEEE, Jun. 2011, pp. 58–65.

[9] M. Dorigo and L. Gambardella, “Ant colonies for the travelling salesman
problem,” BioSystems, 1997.

[10] T. Stützle and M. Dorigo, “ACO algorithms for the traveling sales-
man problem,” Evolutionary Algorithms in Engineering and Computer
Science: Recent Advances in Genetic Algorithms, Evolution Strategies,
Evolutionary Programming, Genetic Programming and Industrial Ap-
plications, 1999.

[11] L. Chittka and J. Niven, “Are bigger brains better?” Current biology :
CB, vol. 19, no. 21, pp. R995–R1008, Nov. 2009.

[12] S. Beshers and J. Fewell, “Models of division of labor in social insects,”
Annual review of entomology, 2001.

[13] J. H. Sudd, An introduction to the behavior of ants. St. Martin’s Press,
1967.

[14] A. Greensted and A. Tyrrell, “RISA: A Hardware Platform for Evolu-
tionary Design,” in 2007 IEEE Workshop on Evolvable and Adaptive
Hardware (WEAH2007). IEEE, 2007, pp. 1–7.

1205

