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Abstract—In this paper we present a multimodal
authentication (person identification) system based on
simultaneous recognition of face and speech data using
a novel bio-inspired architecture powered by the CM1K
chip. The CM1K chip has a constant recognition time
irrespective of the size of the knowledge base, which
gives massive time gains in learning and recognition
over software implementations of similar methods. We
demonstrate a system utilizing the CM1K chip as a neu-
ral network accelerator along with data pre-processing
done by a desktop PC. The system realized consumes
energy of the order: 668 μJ for learning and 487 μJ for
recognition, while operating at 25 MHz. The classifica-
tion test accuracy of the system is approximately 91%.

I. Introduction
Hardware implementation of neural networks and bio-

inspired evolvable systems has undergone rapid develop-
ment over the last few years. Unlike conventional Von-
Neumann architecture that is sequential in nature, arti-
ficial neural networks (ANNs) profit from massively par-
allel processing. Despite tremendous growth in the digital
computing power of general-purpose processors, dedicated
neural network hardware stands promising for certain
specialized real-time, data-intensive, asynchronous appli-
cations, such as image processing, speech synthesis and
analysis, pattern recognition, high energy physics and so
on [1]. Recent implementations range from purely digitized
neural networks, analog circuit based solvers to emerging
hybrid CMOS/non-CMOS designs involving non-volatile
memory (NVM) technologies such as MRAM, OXRAM,
etc.[2][3][4][5].
In this paper, we propose a neuromorphic hardware

based approach for person identification (authentication),
and compare its performance with standard software based
implementation. We implemented the authentication sys-
tem using an architecture built on the CM1K neuromor-
phic chip. Due to its inherent parallelism, the CM1K chip
performs recognition in constant time irrespective of the
size of the knowledge base. The CM1K has been used in
numerous applications such as pattern recognition, target
tracking and industrial automation.
We choose the case of person identification via simul-

taneous face and speech recognition, as it finds a variety
of applications in surveillance, authentication and secu-

rity systems. Compared to other biometric identification
techniques such as fingerprint analysis or iris detection
which require active cooperation of participants, face and
speech recognition are easier as they often do not require
the participants to cooperate [6]. Moreover exponentially
increasing database sizes call for faster and more power
efficient implementations of face and speech recognition
algorithms. Software implementations are impaired by the
current paradigm of Von Neumann computing resulting in
slower training and recognition times[7].
For a comprehensive analysis, we used existing face and

speech recognition algorithms utilizing techniques such as
dimensionality reduction and feature extraction to train
a fast and efficient classifier on the CM1K chip. For face
recognition, several pre-processing techniques like Wavelet
and Gabor Transforms were compared. Popular dimen-
sionality reduction techniques like PCA and LDA were
also implemented.
Section II explains basic features and working of the

neuromorphic CM1K chip. Section III describes implemen-
tation of the Speech Recognition technique we used and
results obtained. Section IV describes the implementation
of our Face Recognition technique, and the results. Section
V discusses the combined simultaneous Face and Speech
Recognition application and complete authentication ap-
plication results. Section VI presents the key conclusions.

II. CM1K Chip
A. Introduction
The CM1K chip developed by General Vision is

based on the ZISC (Zero Instruction Set Computing)
architecture[8]. Each chip consists of 1024 identical “neu-
rons” which are capable of storing and recognizing vectors
of length up to 256 bytes. All neurons operate in parallel
and collaborate with each other through a bi-directional
neuron bus. Each neuron incorporates information from
all the other neurons into its own learning logic and into
its response logic as shown in Fig. 2.
If several neurons recognize a pattern (or fire), their re-

sponses can be retrieved automatically in increasing order
of distance from the broadcast vector. This retrieval is
independent of the number of training points in the knowl-
edge base. Multiple CM1K chips can be daisy-chained to
increase the number of available neurons, without affecting978-1-4799-7560-0/15/$31 c©2015 IEEE
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the recognition or learn time. The information which can
be read from a firing neuron includes its distance, category
and neuron identifier as shown in Fig.1b. If the response
of several or all firing neurons is polled, this data can
be consolidated to make a more sophisticated decision
weighing the cost of the uncertainty.

(a) Structure of CM1K chip Neural Network [9].

(b) Block Diagram of CM1K chip recognition [7].

Fig. 1: CM1K chip structural and functional block dia-
gram.

Fig. 2: CM1K neuron response [10].

B. Learning Algorithm and Methodology
The CM1K chip architecture allows the neurons to

maintain multiple separate unrelated knowledge bases si-
multaneously by associating a context with each neuron.
When a vector is broadcast, only those neurons react
which have matching contexts with that of the vector. This
allows recognition across multiple unrelated knowledge
bases, e.g. speech and face image data of people to happen
simultaneously. The calculation of distance between the
stored (S) and broadcast vector (V ) can be calculated
using two norms: L1 (Manhattan distance) and Lsup,
where

DL1 =Σ|Vi −Si| (1)
DLsup =max |Vi −Si| (2)

The CM1K chip offers two different classifiers for neuron
learning and recognition: K-Nearest Neighbours algorithm
(k-NN) and Radial Basis Function (RBF). The decision
space mapping resulting from the two different classifiers
is shown in Fig.3.

Fig. 3: CM1K Neuron Decision Space Mapping Based on
learning algorithm. [11]

1) K-Nearest Neighbours algorithm: This method clas-
sifies objects based on the closest matches in the knowl-
edge base. Since the decision space mapping doesn’t get
continuously modified during learning, the knowledge base
is simply loaded to the neurons. The parallel architecture
of CM1K allows it to retrieve the top match in constant
time irrespective of the number of stored examples in the
knowledge base. As the components of the input vector are
broadcast one by one, the neurons update their distance
values simultaneously. The K nearest neighbours can then
be read successively from the Distance Register, and each
read takes a fixed time [10].

2) Radial Basis Function: This classifier allows the
formation of a complex non-linear decision space mapping
which uses radial basis functions as activation functions.
This requires a model generator internal to the neurons
which is used when the knowledge base is learned vector
by vector. Each neuron has its own influence field. When
a vector is broadcast to be recognised, only those neurons
fire for which the distance of the vector being broadcast
from their stored vector is less than their influence field. If
no neuron fires, the recognition status is ‘Unknown’. How-
ever, when multiple neurons fire, the recognition status is
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‘Identified’ if the firing neurons have the same category
value, and ‘Uncertain’ if all the firing neurons do not have
the same category value.[10].

III. Speech Recognition
For speech recognition, we used a subset of the data

from the CSTR VCTK (Center for Speech Technology
Research Voice Cloning Toolkit) Speech Corpus which
includes speech data uttered by 109 native speakers of
English with various accents [12].
As our speech recognition system was intended to be

text-dependent, ten instances of the word ‘rainbow’ (ut-
tered abundantly in the Rainbow Passage) were spliced
out from the original recording of each speaker to make
a custom dataset for 15 speakers. These signals were
then pre-processed into vectors of 256 elements before
training/testing on the CM1K chip.
A. Pre-processing
The features extracted from each signal were the Mel-

Frequency Cepstral Coefficients (MFCCs) [13] [14] [15].
The speech signals for this experiment (utterances of single
words) were small enough to be broken into sixteen 20-
40ms pieces, which contributed 16 MFCCs each. This
gave a 256-element vector for each data point. The steps
involved in this particular implementation were:
1. Fast Fourier Transform (FFT) with a Hamming
windowing function converted the waveform in n-
space to a distribution of the power amplitudes in
k-space (across different frequencies)

2. Converting the power frequency spectrum to a log
scaled (Mel-Frequency scale) spectrum. This mim-
ics the behavior of the human ear. By using an
implementation which employed the Mel triangular
filter-banks, this step was able to extract discrete
20-element spectra from each of the originally con-
tinuous power spectra:

Fig. 4: A typical 8000Hz Mel-frequency filterbank. The
equation characterizing the conversion of frequencies to
the Mel-frequency scale is: M(f) = 1125ln(1+ f

700 )[16].

3. Power magnitudes (on the y-axis of the power spec-
trum) were also log-scaled. Again, this was done to
mimic the response of the human ear.

4. Finally, a Discrete Cosine Transform of the scaled
spectra yielded the Mel-Frequency Cepstral Coeffi-
cients for each speech signal.

B. Word Recognition (RBF Neural Network)
In addition to identifying the speaker, we modified the

system so that it could also verify that the word being
spoken was indeed ‘rainbow’. This exploited the RBF
neural network capability of the hardware. For testing
the word recognition of the RBF neural network, three
utterances of the words ‘blue cheese’, ‘train station’, and
‘raindrop’ were appended to every speaker’s testing data-
set. These words were chosen to sound increasingly similar
to ‘rainbow’.
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Fig. 5: The pre-processing transformations of the first
utterance of ‘rainbow’ by the first speaker. The above
behavior is typical of all of the speech signals.

The final work-flow for the combined system (word and
speaker recognition) is outlined below:
1. A neural network was created for speaker categoriza-
tion. This was done in SR (Save and Restore) mode,
wherein the training vectors’ information is simply
written to the neurons without explicitly optimizing
the decision-space mapping.

2. The training set is used to train another binary-
output RBF neural network that can tell whether the
word spoken is ‘rainbow’ or something completely
different. Learning is done in iterative RBF mode.

3. Speaker recognition is done using the kNN classifier.
The classifier employed classified the testing vectors
by computing the mode of the nearest k neighbors.
The system was found to work best for k = 1, and
moderately well for k = 5.

4. For word recognition, the second network determines
whether or not the distance of the input vector from
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the network’s neurons is below a neuron-specific
threshold (determined during learning of these neu-
rons). If so, these neurons fire and the RBF classifier
returns the closest k firing neurons. If no neurons
fire, the feature vector being tested is classified as
‘not-rainbow’.

Fig. 6: A schematic of the working of the speaker + word
recognition system.

C. Results
Given the small number of vectors in the train-

ing/testing datasets, there is a possibility of overfitting.
To test this, 50 different random divisions of the procured
data into training and testing subsets was made and run
through the system. For every division, each speaker’s 10
utterances of ‘rainbow’ were divided such that the first 7
vectors went into the training set, while the remaining 3
were combined with the non-rainbow utterances to create
a test set. The performance statistics for the 50 runs were
determined for 15 speakers (see Tab.I). Mean accuracy was
around 88%.

TABLE I: Accuracy statistics for random runs with 15
speakers.

Mean 87.98
Standard Deviation 2.23

Minimum 83.33
Maximum 92.22

Accuracy decreased with increasing number of speakers
(Fig. 7). With increasing number of speakers the de-
cision space becomes more complex, thereby increasing
the amount of confusion. The timing curves (Fig. 8)
highlight the advantage of using CM1K. The hardware
implementation of the speaker recognition system (kNN
recognition mode) was compared against the ANN C++
library and an implementation of kNN classifier algorithm
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Fig. 7: Test accuracy vs number of speakers.

in MATLAB. Both software implementations were tested
on an Intel i7 4th Generation PC with 16 GB RAM
running Windows 7. The results clearly show that we
achieve a speedup of about 5 times in recognition even
while including the transport delay introduced by the use
of a non-optimal USB.
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Fig. 8: Timing performance for speaker recognition.
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Fig. 9: Word recognition timing performance.

Similar comparison of the word recognition time (Fig.
9) was done for the hardware and a native MATLAB
implementation. The ANN library was not included in this
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comparison, as the hardware implemented word recogni-
tion through RBF neural networks, while the ANN library
only implemented an approximate nearest neighbor algo-
rithm. Fig. 9, (recognition in RBF mode) clearly shows the
superiority of the CM1K in mapping and using complex
non-linear decision spaces efficiently.

IV. Face Recognition
We used the Yale Face Database A [17], [18] and ORL

(AT&T) Database [19], [20] for all simulations. The images
were divided into training and test sets randomly. Different
pre-processing techniques like Discrete Wavelet Transform
(DWT), Discrete Cosine Transform (DCT) and feature
extraction through Gabor filters were applied along with
dimensionality reduction techniques like Linear Discrimi-
nant Analysis (LDA) and Principal Component Analysis
(PCA). This allowed data compression which reduced
the number of neurons required for learning. Data pre-
processing is done on PC and then fed to CM1K for
training/classification. [21], [22], [23], [24], [25].

Fig. 10: Steps for Face Recognition.

A. Feature Extraction
We pre-processed the images using the following tech-

niques :
• Gabor Filters : A set of Gabor filters is used with
5 spatial frequencies and 8 distinct orientations, this
makes 40 different Gabor filters[26].

• Discrete Wavelet Transform & Discrete Cosine Trans-
form : We have used the wavelet from Daubechies
family, Db4 wavelet and after applying DWT upto
3 levels, we have applied DCT for further feature
extraction[7],[27].

• Dimensionality Reduction
– Linear Discriminant Analysis
– Eigenfaces

B. Experiment
The entire experiment flow in shown in Fig. 10. The Yale

database contains 165 grey scale images of 15 individuals,
each individual has 11 images. The images demonstrate
variations in lighting conditions and expressions, as shown
in Fig. 11(b). The images are manually cropped to 32 x
32 pixels (closed crop), with 256 grey levels per pixel. For
the simulations, we divided the dataset such that each
individual has 5 training images and 6 test images, chosen
randomly from the 11 images. 50 such random splits are
made.

(a) ORL Database.

(b) Yale A Database.

Fig. 11: Sample individual photos.

TABLE II: Accuracy and Timing of Yale A Dataset.

Training : Test Per Individual 5 : 6
Accuracy(%) 85.63

Standard Deviation(%) 2.13
Components 14

Pre-Process Time 0.00061 ms
Recognition Time 7.12 ms

with USB Transport
Recognition Time 0.003375 ms

On Hardware

The ORL face database contains 400 grey scale images
of 40 individuals, each individual has 10 images. The
images demonstrate variations in orientation of face, as
shown in Fig. 11(a). The size of each image is 112x92
which is scaled to 128x128 with 256 grey levels per pixel.
We performed the simulations by separating the data
into training sets and test sets through random selection.
Training set sizes of 3,4,5 and 6 per individual (where rest
of the images form the test set) were used. 10 such random
splits are made for each case.
Results for both datasets using different techniques are
shown in Tab II-IV and Fig.12-14.
An SVM classifier trained in libSVM gave comparable

classification accuracy (98.7% for 6 training images using
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TABLE III: Accuracy for ORL with varying training ratio
and techniques.

Training None DWT+DCT GABOR
3 88.7 ± 1.9 93.3 ± 1.2 91.7 ± 1.7
4 92.0 ± 1 95.2 ± 1.1 95.3 ± 0.9
5 94.9 ± 1.8 97.7 ± 0.7 97.3 ± 0.8
6 96.2 ± 1.6 98.1 ± 0.5 98.1 ± 1

DWT). The recognition times taken by the CM1K hard-
ware is compared to ANN C++ library, knnsearch and
fitcknn (both MATLAB functions) , over varying compo-
nent size (Fig. 14) of each image and varying training size
(Fig. 13). The software implementation were done on an
Intel i7 4th Generation PC running Windows 7, 16GB
RAM. Fig. 13-14 clearly indicate that the CM1K shows
superior recognition timings w.r.t both training size and
dimensionality. The increase in speed is approximately 5
times.

TABLE IV: Timing analysis for ORL with varying tech-
niques.

None DWT + DCT Gabor
Components 45 100 65

Pre-Process Time(ms) 0.0007 3.6025 71.1554
Recognition Time with 7.1424 7.1145 7.1167USB Transport (ms)

Recognition Time 0.0054 0.0088 0.0066On Hardware (ms)

3 4 5 6
88

90

92

94

96

98

100

Training Size →

P
er

ce
nt

ag
e 

A
cc

ur
ac

y 
→

 

 

PCA
DWT + DCT + PCA
Gabor + PCA

Fig. 12: Percentage accuracy.

V. Data Fusion : Face and Speech

A. Algorithm
The approach we used for data fusion is derived from

Bayesian inference concepts and the ideas behind comple-
mentary filters often used in basic robotic sensory data
fusion [28]. For each test case, every system determines
the distances and categories of the k-nearest neighbors to
construct a “confidence vector” v̄ for every test case, which
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Fig. 13: Time variation with training size.
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Fig. 14: Time variation with number of components.

denotes the confidence of the system in its categorisation
of the test case as belonging to a certain category.
To compute confidence vector, v̄, the validation set is

used to create a confusion matrix C, which is used to
calculate the conditional confidence.

vi|j = Prob(person = i | prediction = j)

= Ci,j∑
i′ Ci′,j

(3)

The confidence value for the ith category ,vi, is the product
of inverse distance weight, 1

dk
, of the K nearest neighbours

and the conditional confidence summed over all categories.

vi =
∑

j∈cat
αj ∗vi|j (4)

where

αj =
∑K

k=1
1

dk
δkj

∑K
k=1

1
dk

(5)

Where δkj is the Kroenecker Delta function, equal to 1
only when k = j, and 0 otherwise.
We then take the average of the confidence vector

outputs from each system and give a final confidence
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vector. The category with the highest value in this vector
is designated as the output of the system. In this way,
the final confidence vector always draws upon the more
confident system. The utility of this is that either system
can change the number of nearest neighbours it pulls to
optimise its own performance and still be able to output
a universally compatible confidence vector.
B. Experiment
Yale A Faces dataset and VCTK audio dataset (as

described in Section IV and III) are used to form a hybrid
model of person identification using face and speech data.
Both datasets have 15 individuals, and each individual
in one dataset is assigned to an individual in the other
dataset.

Fig. 15: Mapping of each individual from Yale A database
to an individual of the VCTK database for Face-Speech
Recognition.

As the Yale dataset has 11 images of each person while
the VCTK has 10 sample of audio, 10 images are chosen
randomly for each person for every simulation. Then, the
10 data vectors of each individual is split into 5 training,
2 validation and 3 test cases randomly for both face and
speech. Each input data consists of one face image and
one speech vector assigned to the same category.

The two models are fused using the algorithm described
above, and 50 simulations were run for different random
splits of the training, validation and test cases. For both
Face and Speech, the simulations are done for the 5 nearest
neighbors.
To run the simulation on the CM1K hardware, the two
datasets were loaded onto the hardware under different
contexts. Thus, when recognizing under the face context,
only the neurons associated with it fire. Similarly we can
expand the number of features to make the system more
robust as shown in Fig.2.
As can be seen from the Table.V and Fig. 16, the com-

bined accuracy shows a gain of about 6%, w.r.t individual
Face and Speech accuracies.
C. Energy Considerations
The chip operates at 25 MHz with a power dissipation

of 275 mW in the active state [9]. The learning time and
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Fig. 16: Accuracy results over 50 simulations.

TABLE V: Results of 50 random splits of Face-Speech
Recognition.

Face Speech Combined
Accuracy 86.75 85.24 91.02

Standard Dev. 3.01 3.93 3.33
Maximum 95.55 91.11 100.00
Minimum 75.56 80.00 82.22

recognition time were found to be approximately 2.43 ms
and 1.77 ms respectively. Thus energy dissipated for learn-
ing and classification is 668 μJ and 487 μJ respectively.

D. Limitations of current system and future directions
The current hardware suffers a considerable loss in ac-

tual speed of operation due to the slow USB transfer rates,
which can be increased considerably or even removed if
all the computation is done on and via hardware itself.
Also the CM1K chip is currently fabricated at the 130
nm node with MRAM used as the non-volatile storage.
Neuron density, power-efficiency and individual neuron
storage capacity can be easily improved by advancing the
CM1K design to more recent CMOS nodes (ex 45/28/14
nm). System capability and efficiency can be further en-
hanced by integrating emerging resistive memory (RRAM)
technologies for the on-chip non-volatile functionality. In-
tegration of RRAM would also open the possibility of
directly expanding the learning kernels as RRAM has been
widely shown to mimic synaptic emulation and a variety
of learning rules in advanced mixed-signal neuromorphic
hardware[2][3].

VI. Conclusion
In this paper, we demonstrated the implementation and

methodology of a fast, efficient/accurate and low power
authentication system using the CM1K chip. The size and
scope of current application is of proof-of-concept nature,
and can be improved further. Parallelism of the CM1K
hardware chip allows us to have significant increase in
the recognition time compared to standard software based
solutions. We have demonstrated Speech Recognition, var-
ious alterations of Face Recognition and finally combined
the two sets of data to realize a multimodal classifier on
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the CM1K chip to obtain a more robust and accurate
authentication system. We compared the recognition times
of the CM1K chip with that of various software libraries.
The results clearly show that the recognition times are
much faster even for small datasets (5 times) while still
maintaining accuracy comparable to the software solution.
The scalability of the CM1K chip and the constant

recognition times as opposed to the linearly increasing
recognition times of computers (w.r.t increasing size of
dataset) provides a huge advantage for real time compu-
tations, making them virtually independent of the dataset
size. Although the number of neurons certainly need to
be increased. The energy consumption values of the chip
for learning and classification were 667 μJ and 448 μJ
respectively. The CM1K chip, while promising, has ample
scope of further performance/functionality improvement
through advancing the CMOS design node and integration
of new emerging NVM technologies.
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