
Evolution of Non-Cryptographic Hash Function
Pairs for FPGA-Based Network Applications

Roland Dobai
Faculty of Information Technology

Brno University of Technology

Brno, Czech Republic

E-mail: dobai@fit.vutbr.cz

Jan Korenek
CESNET, z. s. p. o.

Zikova 4, 160 00 Prague

Czech Republic

E-mail: korenek@cesnet.cz

Abstract—High-speed computer networks require rapid packet
processing and flexibility which can be ensured by implementing
network applications in field programmable gate arrays (FPGAs).
Many network applications are based on fast lookup in hash
tables. It is important to use such hash functions for these tables
which utilize efficiently the limited memory resources of FPGAs.
Cuckoo hashing improves this utilization by using more hash
functions simultaneously. However, there is no known approach
for selecting those functions which together produce the best
results. Bio-inspired methods are used in this paper for evolving
hash function pairs for FPGA-based network applications. The
evolved hash functions are based on linear and non-linear
feedback shift registers and can be efficiently implemented in
FPGAs. The experiments were aimed at hashing of Internet
Protocol addresses and it was shown that evolved solutions can
achieve better table load factor in comparison with human-
created solutions.

I. INTRODUCTION

The continuously increasing demand for high throughput of

computer networks imposes challenges for implementing net-

work applications. Hardware-based acceleration is necessary

in order to meet the required throughput but high flexibility is

also necessary for addressing security issues discovered later.

Therefore, networking solutions based on field programmable

gate arrays (FPGAs) are becoming common [1], [2].

Many network applications are based on finding records in

tables, for example the packet from a given Internet Protocol

(IP) address should be dropped if the address is in the table

of blacklisted addresses.

Hash tables provide lookup of the records in constant time

if the table load factor is low, i.e. only a small portion of

the table contains records. However, the worst case lookup is

proportional to the number of records. The used hash function

determines how efficient will be the hashing in terms of lookup

time and table load factor. A low load factor implies that for

a given number of records much more memory need to be

allocated which is inefficient given the limited resources of

FPGAs.

Cuckoo hashing [3] improves the basic concept of hashing

by using more hash functions at the same time and guarantees

worst case constant lookup time which is very advantageous

for high-speed network applications [2], [4]. On the other

hand, it usually provides also higher load factor and therefore,

more efficient memory utilization.

Hash functions are optimized in order to work well in

various scenarios independently on the inputs. The optimiza-

tion criteria is usually based on the fact that they should

generate each output with equal probability (i.e. with uniform

distribution), and minimum change in the inputs should result

in a large change in the outputs [5]. However, to the best of our

knowledge, there is no known approach for developing two or

more hash functions which work the best together when used
for cuckoo hashing.

Current hash functions usually produce 32-, 64- and/or 128-

bit outputs. Even 32-bit outputs are too large for hash tables

in FPGAs because allocation of 232 = 4 G address space is
not possible in available FPGAs. Common hash tables in the

largest available FPGAs require 11–14 address bits [4]. There

are several solutions how to create a smaller hash value from

a 32-bit value. (1) It is possible to select the required number

of bits from the 32-bit value. The quality of the reduced hash

might be similar to the 32-bit one but there is still the problem

of making such selection that the resulting hash function would

work well together with another one for cuckoo hashing.

(2) The bits can be combined by XOR folding [6], i.e. some

of the bits combined together by applying logic operations of

exclusive disjunction (XOR). Similarly, here are also lots of

possibilities for consideration.

The main contributions of the work presented in this paper

are the follows.

1) Evolutionary algorithm (EA) is used for evolving hash

function pairs for FPGA-based network applications. The

evolved hash functions are based on linear and non-linear

feedback shift registers (LFSRs, NLFSRs) and therefore,

can be efficiently implemented in FPGAs. In contrast,

general purpose hash functions are usually not optimized

for FPGAs.

2) There is no known approach for selecting hash functions

which together produce the best results for cuckoo hash-

ing. Moreover, selecting bits from hash values produced

by conventional hash functions adds further difficulties to

the design process. Evaluation of all of the possibilities

is not practical due to the number of possibilities. The

2015 IEEE Symposium Series on Computational Intelligence

978-1-4799-7560-0/15 $31.00 © 2015 IEEE

DOI 10.1109/SSCI.2015.174

1214

y1(K1) y2(K2)

y1(K3)

T1

T2

T1’

T2’

K2

K3

K1

K2

K3

Figure 1. Principle of cuckoo hashing

proposed method finds better results than those produced

by human-created solutions in reasonable time.

The rest of the paper is organized as follows. Section II

describes cuckoo hashing. The related work is discussed in

Section III. Section IV presents the proposed method for

evolving hash function pairs for FPGA-based network appli-

cations. The proposed method is evaluated on the problem of

hashing IP addresses in Section V. Section VI concludes the

paper.

II. CUCKOO HASHING

Cuckoo hashing [3] uses two or more tables and functions.

The principle of hashing with two tables is shown in Figure 1

where T1 and T2 are tables; y1 is the hash function of T1; y2
the hash function of T2; andK1,K2 andK3 are keys. The key

is stored in a position which is directly given by the hashed

value for the given table. For example, key K2 is in position of

y1(K2) in table T1, and K3 is in position of y2(K3) in table
T2. If a key K is searched for, then the record is checked at

positions y1(K) in T1 and y2(K) in T2. This check can be
done in parallel which ensures constant lookup time.

Let us assume that key K1 needs to be inserted but the

place is already taken by K2 in T1, i.e. y1(K1) = y1(K2).
A common simple hash function would store both keys in the

same position (bucket) which would increase the lookup time.

Cuckoo hash is named after the common European bird known

for brood parasitism. As a cuckoo chick pushes out eggs or

youth of the host species from the nest, key K1 pushes out

K2 from T1 and will occupy its position. Key K2 is then

moved into the other table. The position for K2 is taken by

K3 because y2(K2) = y2(K3), therefore K2 pushes out K3

from T2. K3 is then inserted into T1 at position y1(K3). The
process of insertion ends because an empty place is found and

no further push-outs are necessary. The final contents of tables

T1 and T2 is shown as T1’ and T2’ in the figure, respectively.

All of the keys were inserted and are accessible in constant

time.

It is possible that during the insertion of K1 this same

key would be pushed-out later. In this case a collision exists,
i.e. the key cannot be inserted. Collisions can be resolved by

changing functions y1, y2 and rehashing all keys in T1 and T2;
and/or increasing the capacity of T1 and T2. The goal of the

work in this paper is to generate these new functions in order

that K1 could be inserted into the table in case of a collision

arose with the previous functions.

III. RELATED WORK

Bio-inspired methods work well in domains where the given

search problem cannot be well specified [7]. For example, one

can specify some characteristics (e.g. collision rate, table load

factor, output uniform distribution) based on which a hash

function can be considered good. However, it is not possible to

directly define in advance the Boolean function which will be

a good hash function. In such cases, bio-inspired methods can

produce better solutions than the best human-created ones [7].

Only non-cryptographic hash functions are considered in

this paper because they are simpler, faster for hash tables im-

plemented in FPGAs. Cryptographic hash functions have other

requirements mostly enforcing higher security standards [5].

Genetic programming (GP) [5], [8] and grammatical evo-

lution [9] were used successfully for evolving hash functions.

None of these can be effectively implemented in FPGAs be-

cause each candidate solution can have a different structure [5],

[9] or use operations such as modulo [8], and it would be

difficult to implement them in hardware. Cartesian genetic

programming (CGP) [10] which reflects well the structure

of FPGAs is more suitable for this purpose [11], however

the chromosome is much larger in comparison with the work

presented in this paper. A larger chromosome means a larger

problem-space for searching, i.e. the search could be slower. In

this paper LFSR and NLFSR are used which process the input

sequentially: one bit at a time. This means more steps while the

hash is computed but the circuit for hashing is more compacted

in comparison with CGP, therefore the encoding results in

shorter chromosome (genotype) and smaller problem-space.

It should be noted that these steps can be performed at high

frequency in FPGA because LFSRs and NLFSRs are relatively

simple and can be implemented in FPGA efficiently.

The optimization for hash function development is usually

done in order to maximize the avalanche effect [5], i.e. small

change in the inputs should result in large change in the

outputs, or minimize the collision rate [9].

To our best of knowledge, none of the existing approaches

consider evolution of hash function pairs which would work
well together for cuckoo hashing.

Furthermore, the goal of all of the previous methods is

evolving universal hash functions which would work well for

various scenarios. The method presented in this paper evolves

new hash functions in order to resolve collisions. Therefore,

the evolved functions are optimized for the given set of keys

and are not intended to be universal.

1215

aabe⊕ b
x0x1x2

input

LFSR polynomial

e

01

0e

Figure 2. Proposed Galois-type reconfigurable LFSR

IV. HASH FUNCTION PAIRS FOR FPGA-BASED NETWORK

APPLICATIONS

EA is employed for evolving hash function pairs where the

population of candidate solutions consists of the parent and its

offspring. A candidate solution is a hash function pair and is

represented as genotype. Each candidate solution is evaluated

and its fitness is determined. The fitness reflects how good is

the candidate solution for solving the problem. The genotype

and fitness function are described later in this paper.

The solution with the best fitness is selected. The other

solutions are discarded and a new generation of candidate so-

lutions is created based on the selected surviving solution. The

solution kept is copied and mutation is applied. A mutation

means a random change of a randomly selected part of the

genotype.

The new generation is evaluated, i.e. the fitness is de-

termined for all of the candidate solutions. This process is

repeated until a desired number of generations is created and

evaluated. The best solution from the last generation is the

result of the search.

A. Fitness

The keys are stored in the hash table until a collision arises.

The set of keys and the order in which they are processed are

always the same. The number of keys successfully inserted is

used as the fitness for the given candidate solution. A smaller

fitness indicates a candidate solution which is worse than a

candidate solution with a higher fitness.

B. Hash function pair implemented by LFSR

A candidate solution is a hash function pair encoded as

two LFSR polynomials, i.e. the genotype is two LFSR poly-

nomials. Each LFSR polynomial uploaded into the Galois-

type LFSR shown in Figure 2 implements a LFSR where

(x2, x1, x0) is the state stored in D-type flip-flops (FFs).
Galois-type LFSR contains logic gates between the D-FFs.

This type was used in order to have a more balanced distribu-

tion of the logic which results in a higher maximal operational

frequency in FPGA.

The feedback value e is created by merging the output of the
most significant state bit x2 with the input bit using operation

XOR. The LFSR polynomial configures the LFSR as follows.

A logic 0 turns off the feedback value e for the given FF stage

f

input

x′
0

. . .

x′
11

A

B

C
D

En

x0

. . .

x11

selA

x0
M0

x0x1x2. . .x11

XOR
XOR

MUX

Figure 3. Proposed Fibonacci-type reconfigurable NLFSR

because e ∧ 0 = 0. For example, value a propagates from x0

to x1 because a⊕(e∧0) = a. A logic 1 turns on the feedback
value for the stage. For example, value b gets from x1 to x2

mixed with the feedback value e as e⊕ b.

A hash computation is performed as follows. The size of

the LFSR is selected based on the required number of bits of

the hash value. The two LFSR polynomials configure the hash

functions. One of the LFSR is initialized to all zero state and

the other LFSR to all zero except x0 which is set to logic one.

This is done in order to have different seeds for the functions.

The seeds does not influence the results, therefore are left

unchanged during the evolution. Next, the input is applied to

the LFSR. A bit is processed in each clock cycle. The hash

value is the state of LFSR after all the input bits were sent

into the LFSR.

A mutation means one bit flipping of randomly selected

position of the LFSR polynomial, i.e. one feedback setup is

flipped.

C. Hash function pair implemented by NLFSR

NLFSRs were also evaluated in an attempt to improve

the results produced by LFSRs. Various other operations

were enabled between the FF stages. However, the space for

searching became so big and none of the runs produced better

results. Several limitations were introduced in order to limit the

problem-space. Firstly, Fibonacci-type NLFSR was adopted

which has only one feedback function and no logic gates

between the FF stages. This reduced the size of the genotype

and consequently the size of the problem also. Secondly,

the structure was modified for allowing one or two logic

conjunctions between two NLFSR state bits. The decision was

made on a list of maximum period NLFSRs [12] which have

similar structure.

The developed configurable NLFSR is shown in Figure 3

where x0, . . . , x11 are state bits, Mi enables/disables state bit

xi in the feedback function f for all i ∈ {0, . . . , 11}; selA,
selB, selC, selD selects by a multiplexer MUX one state bit

1216

for A, B, C, D, respectively; and En turns on/off the second,
optional logic conjunction in the feedback function.

The genotype consists of two parts for the two

hash functions. One part contains the following items:

(M0, . . . ,M11, selA, selB, selC, selD,En) where selA,
selB, selC, selD can be 0, . . . , 11 and the other items logic
one or zero. A mutation of the candidate solution means a

random change of one of these items.

The hash computation is performed similarly to the LFSR

but after the last bit is sent into the Fibonacci-type NLFSR

logic zeros are also sent-in until the last bit propagates trough

all the state bits.

V. EXPERIMENTAL RESULTS

The developed framework for evolution of hash function

pairs was implemented in C programming language. The

experiments were run on an Intel Xeon E5-2630 processor

as a single-threaded application.

A set of IP addresses from the firewall in CESNET network

(Czech national research and education network) was selected

and the experiments were aimed at finding a hash function pair

which is able to store most of these addresses in a 8 k table.

This experimental setup was inspired by real-life situations

where a collision arose and subsequently new hash functions

are required for rehashing the tables without collisions.

The 8 k table was divided into two 4 k tables and cuckoo

hashing employed. Therefore, the required two 12-bit hashing

functions were generated by 12-bit LFSRs and NLFSRs. Each

run consisted of the generation and evaluation of 80 000 can-

didate solutions (hash function pairs). Each candidate solution

was evaluated for measuring the number of records stored in

the tables without collision and this number was used as the

fitness of the solution.

The measurements were repeated several times and statisti-

cally evaluated based on 30 independent runs.

A. Parameter setup for the evolution

Firstly, an optimal value of the population λ was determined
for the used EA. The results considering constant number of

candidate solutions are shown in Figure 4. One can see that

the median value improves toward λ = 4 and the lower and
upper quartiles have similar tendency. The median in case of

λ = 8 is the highest but the variance is the worst. Therefore,
EA with 1 + 4 candidate solutions per generation was adopted

(1 parent and 4 offspring).

Figure 5 contains the achieved results for various number

of mutations. A low mutation rate results in lower values.

Mutation rate between 6 and 10 seems to be the optimal with

highest median values and lowest variations.

A similar tendency can be seen in Figure 6 for NLFSR-type

of hashing and it can be concluded that 7–9 mutations produce

the best results.

B. Comparison of the evolved solution with the best human-
created solutions

Table I compares the evolved solutions with human-created

1 2 3 4 5 6 7 8

4,700

4,720

4,740

4,760

4,780

4,800

Population

F
it
n
es
s

Figure 4. Influence of the population size — median, lower and upper quartile
computed based on 30 independent runs

1 2 3 4 5 6 7 8 9 10 11 12
4,300

4,400

4,500

4,600

4,700

4,800

Mutations

F
it
n
es
s

Figure 5. Influence of mutations — median, lower and upper quartile
computed based on 30 independent runs

solutions. Although cyclic redundancy check (CRC) is not a

hash function but it is related to LFSRs and is often used

as hash function in hardware implementations [4]. Therefore,

CRC32 was also included in the comparison. Only those hash

functions were used which generate 32-bit hash values and

can be seeded, so a pair of hash functions could be used with

different seeds. The 12 least significant bits were selected from

the 32-bit hash value and used for addressing. The results

for 32-bit hash values reduced into 12-bit value using XOR

folding [6] are marked in the table as “fold”. The median of

runs is marked as “med.”, the lower quartile as “25%” and the

upper quartile as “75%”.

Column marked as “set 1” contains the results with the IP

addresses used as training data during the evolution. It can

be concluded that the evolved hash function pairs allow more

1217

1 2 3 4 5 6 7 8 9 10 11 12
4,600

4,650

4,700

4,750

4,800

4,850

4,900

Mutations

F
it
n
es
s

Figure 6. Influence of mutations for NLFSR — median, lower and upper
quartile computed based on 30 independent runs

Table I
COMPARISON WITH COMMON FUNCTIONS USED FOR HASHING

Set 1 Set 2

Function Inserted Util. [%] Inserted Util. [%]

evolved NLFSR (med.) 4842 59.11 4697 57.34

evolved NLFSR (25%) 4816 58.79 3435 41.93

evolved NLFSR (75%) 4866 59.4 3498 42.7

evolved LFSR (med.) 4748 57.96 4378 53.44

evolved LFSR (25%) 4726 57.69 3838 46.85

evolved LFSR (75%) 4772 58.25 2840 34.67

CRC32 3674 44.85 3425 41.81

MurmurHash3 4199 51.26 3827 46.72

MurmurHash3 (fold) 3365 41.08 4364 53.27

SpookyHashV2 3528 43.07 3449 42.1

SpookyHashV2 (fold) 3759 45.89 4260 52

lookup3 4524 55.22 4047 49.4

lookup3 (fold) 4197 51.23 3718 45.39

fnv-1a 3787 46.23 2926 35.72

fnv-1a (fold) 3223 39.34 3557 43.42

insertions into the table and therefore, better table utilization.

One need to implement more conventional hash functions

without the proposed method and select from them based on

the achieved table utilization because it is not possible to

known in advance which one will be the best for the given

set of IP addresses. Hash function lookup3 achieved the best

results among the conventional hash functions for the given

set of IP addresses.

The advantage of the evolved solutions is that they are fine-

tuned for the given IP addresses. As the results demonstrate, all

of the evolved solutions produce better results than lookup3.

The differences are approximately 200–300 more records in

the table without collision. This would allow the insertion of

more records into the hash tables without increasing the table

size or replacing the FPGA device in case there are no memory

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

×104

4,400

4,500

4,600

4,700

4,800

4,900

5,000

Generations of candidate solutions

F
it
n
es
s
(i
n
se
rt
ed
re
co
rd
s
in
ta
b
le
)

evolved LFSR

evolved NLFSR

random LFSR

random NLFSR

optimal LFSR

lookup3

Figure 7. Comparison of inserted records in table — median values of 30
independent runs are shown

resources left.

The table evaluates the hashing functions with another

set of IP addresses (“set 2”). This time the XOR-folded

version of MurmurHash3 produces the best result among the

conventional solutions. The performance of the same evolved

solutions are worse but it is important to realize this is not the

intended use of the proposed method. However, the median

evolved NLFSR still achieved better results than all of the

conventional hash functions. The evolution should be repeated

in case the set of IP addresses changes and then the adapted

hash functions should achieve better results.

The results achieved for “set 1” are also shown in Figure 7.

The result of lookup3 is indicated in the figure which is the

best among the conventional solutions. The best achievable

(optimal) result for the proposed LFSR architecture is also

available. The optimal result was achieved by evaluating all

possible LFSR configurations. The computation of the optimal

solution for the NLFSR architecture was not possible in

reasonable computational time.

All of the searches produce very rapidly better results than

lookup3. Even random search is very successful but the EA

generates considerable better results.

C. Time required for evolving hash function pairs

The search for the optimal LFSR solution took 4359.17

seconds. Random search generated and evaluated 80 000

candidate solutions in 22.4 seconds and found better results

than the human-crated solutions. EA required 27.1 seconds

and produced even better results.

The number of possible solutions for the NLFSR architec-

ture is much higher, therefore it was not possible to evaluate

all of them and determine the optimal solution. The random

search concluded the search in 93.77 seconds and the results

were better in comparison with LFSR. The search based on

EA in architecture NLFSR finished in 171.85 seconds.

The experiments confirmed that it is possible to evolve

better hash function pairs in reasonable time in comparison

1218

with human-created solutions. The evolved solutions become

very rapidly better and can be further optimized based on the

available time.

D. An example evolved solution

The best evolved NLFSR solution was able to insert 4955

IP addresses into the hash table and achieve 60.49% table

utilization. This is even better than the optimal LFSR solution

with 4930 insertions and can be found in 25 times shorter

time. The feedback function of the first hashing NLFSR was

f1 = I⊕(x0∧x9)⊕(x0∧x10)⊕x1⊕x4⊕x5⊕x6⊕x7⊕x11

while the NLFSR was seeded with 0 and the second function

was

f2 = I ⊕ (x4 ∧ x6)⊕ (x7 ∧ x8)⊕ x2 ⊕ x6 ⊕ x9 ⊕ x11

with seed 1 where I is the input bit.
None of these two functions produces maximum period

NLFSR [12] so it is very improbable that an engineer would

find this solution. However, EA found out that these two

functions combined together produce better results for cuckoo

hashing in comparison with human-created solutions for the

given set of IP addresses.

VI. CONCLUSIONS

High-speed computer networks require rapid packet pro-

cessing and flexibility which can be ensured by implementing

network applications in FPGAs. Many network applications

are based on fast lookup in hash tables. It is important

to use such hash functions for these tables which utilize

efficiently the limited memory resources of FPGAs. Cuckoo

hashing improves this utilization by using more hash functions

simultaneously. However, there is no known approach for

finding those functions which together produce the best results.

Therefore, we proposed the evolution of hash function pairs

by EA for FPGA-based network applications. The evolved

hash functions are based on LFSRs and NLFSRs.

The experiments were aimed at hashing of IP addresses.

The EA developed hash function pairs optimized for best table

load factor for the given set of addresses and size of hash

table. It was shown that evolved solutions can achieve better

table load factor in comparison with the best human-created

non-cryptographic functions. The two 4 k hash tables were

able to store by several hundred more records. Alternatively,

without the proposed method the collisions could be resolved

by using larger tables (i.e. two 8 k) but of course only if

there would be available FPGA resources. However, the whole

system need to be redesigned if the tables are replaced. The

proposed method offers adaptive rehashing, therefore couple

of hundred more records can be stored in the tables without

redesign or replacement of the FPGA.

Currently, the experiments were performed in software-

based hardware simulator only but the proposed method is

intended to be implemented in FPGAs for high-speed com-

puter network solutions because new hash functions need to

be evolved rapidly in hardware. LFSRs and NLFSRs can be

implemented in hardware efficiently for both high speed and

low area in contrast with conventional hash functions used for

comparison. Those functions are usually available for software

only and hardware implementation would be less effective.

The evolutionary framework for FPGAs [13] can be used for

hash function development as well which would speed-up the

evolution. This will be confirmed in our future work.

ACKNOWLEDGMENTS

This work was supported by the Czech science founda-

tion under the project Advanced Methods for Evolutionary

Design of Complex Digital Circuits (14-04197S) and by the

Technology Agency of the Czech Republic under the project

TH01010229.

REFERENCES

[1] M. Attig and G. Brebner, “400 Gb/s programmable packet parsing on
a single FPGA,” in 2011 Seventh ACM/IEEE Symp. Architectures for
Networking and Communications Systems (ANCS), 2011, pp. 12–23,
doi: 10.1109/ANCS.2011.12.

[2] L. Kekely, V. Pus, and J. Korenek, “Software defined monitoring of
application protocols,” in 2014 Proceedings IEEE INFOCOM, 2014,
pp. 1725–1733, doi: 10.1109/INFOCOM.2014.6848110.

[3] R. Pagh and F. F. Rodler, “Cuckoo hashing,” in Algorithms - ESA 2001,
ser. Lecture Notes in Computer Science, vol. 2161, 2001, pp. 121–133,
doi: 10.1007/3-540-44676-1_10.

[4] L. Kekely, M. Zadnik, J. Matousek, and J. Korenek, “Fast lookup for
dynamic packet filtering in FPGA,” in 17th International Symposium
on Design and Diagnostics of Electronic Circuits & Systems, 2014, pp.
219–222, doi: 10.1109/DDECS.2014.6868793.

[5] C. Estebanez, Y. Saez, G. Recio, and P. Isasi, “Automatic design of
noncryptographic hash functions using genetic programming,” Com-
putational Intelligence, vol. 30, no. 4, pp. 798–831, 2014, doi:
10.1002/coin.12033.

[6] “FNV hash,” http://www.isthe.com/chongo/tech/comp/fnv/, [Online, ac-
cessed: 7. 2. 2015].

[7] L. Sekanina, “Evolvable hardware,” in Handbook of Natural Computing.
Springer Verlag, 2012, pp. 1657–1705, doi: 10.1007/978-3-540-92910-9.

[8] M. Safdari, “Evolving universal hash functions using genetic algo-
rithms,” in Proc. of the 11th Annual Conference Companion on Genetic
and Evolutionary Computation Conference: Late Breaking Papers, 2009,
pp. 2729–2732, doi: 10.1145/1570256.1570396.

[9] P. Berarducci, D. Jordan, D. Martin, and J. Seitzer, “GEVOSH: Using
grammatical evolution to generate hashing functions,” in Proc. of the
Fifteenth Midwest Artificial Intelligence and Cognitive Sciences Confer-
ence, 2004, pp. 31–39.

[10] J. F. Miller, Cartesian Genetic Programming. Springer Berlin Heidel-
berg, 2011, doi: 10.1007/978-3-642-17310-3.

[11] H. Widiger, R. Salomon, and D. Timmermann, “Packet classification
with evolvable hardware hash functions - an intrinsic approach,” in
2nd International Workshop on Biologically Inspired Approaches to
Advanced Information Technology, ser. Lecture Notes in Computer
Science, vol. 3853, 2006, pp. 64–79, doi: 10.1007/11613022_8.

[12] E. Dubrova, “A list of maximum period NLFSRs,” in Cryptology ePrint
Archive: Report 2012/166, 2012, http://eprint.iacr.org/2012/166 [Online,
accessed: 7. 1. 2015].

[13] R. Dobai and L. Sekanina, “Low-level flexible architecture with hybrid
reconfiguration for evolvable hardware,” ACM Trans. Reconfigurable
Technol. Syst., vol. 8, no. 3, 2015, art. no. 20, doi: 10.1145/2700414.

1219

