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Abstract—EpiNet is a novel computational model which is
able to perform dynamic topological modification autonomously
throughout execution. This approach is inspired by the function-
ality of eukaryotic gene regulation, specifically that of chromatin
modification which is able to modify its structure dynamically,
altering the structure of gene regulatory networks. In this work
we utilise the dynamic properties of epiNet when applied to two
different methods of edge detection, and analyse these networks
and their dynamical properties via structural and dynamical
systems analysis.

I. INTRODUCTION

Over millions of years, biological systems have evolved so-

lutions to complex problems such as locomotion, homoeostasis

and information processing. Biological systems tend to have

significant advantages when it comes to adaptability, robust-

ness and evolvability [1], [2], [3], [4] when compared to their

computational counterparts. Hence, it has been the goal of

computer scientists and engineers to capture the underlying

biological mechanisms in silico in an attempt to capture their

specific behaviours, but also their advantageous underlying

traits.

Since the beginnings of computer science, there have

been many successful attempts at capturing biological models

within a computation framework. This field, known as bio-

inspired computation has given rise over recent years to

algorithms which have been shown to perform objectively

better than their biological counterparts. In certain instances

this is even the case when performing complex tasks such as

object recognition [5] against human beings. Indeed, many of

the computational algorithms which are now state of the art

are built upon these bio-inspired principles [6], [7], [8], [9].

Currently, modelling biological systems in silico in perfect

detail is not possible due to both computational deficits and

gaps in the understanding of biological processes at various

levels of abstraction. Because of this, the design of bio-inspired

algorithms fall on a spectrum. At each end of the spectrum

there are generally two approaches present. The first approach

is to capture as much detail from the biological system as

possible to best promote the possibility of emergent properties.

The second is to omit a vast amount of the biological realism

to capure only what is necessary for the desired outcome.

DNA

Histone Octamer

Accessible DNA

Fig. 1. DNA being wound around histone octamers over 1.67 turns into a
chromatin fiber

Each of these perspectives has their positives and often the

more simplistic models remain functional and are capable of

capturing real-world complex dynamics [10], [11].The work in

this paper falls towards the more detailed side of the spectrum.

In this work we present a novel model of artificial gene

regulatory network, built upon previous models [12], [13],

[14] which takes into account the dynamic nature of protein

networks, their interactions and their relationships with dy-

namic epigenetic structures. This model is applied to the task

of edge detection where we feel the dynamical behaviour of

the networks can be well utilised.

II. BACKGROUND

A. Epigenetics

Epigenetics refers to mechanisms which result in changes

in gene expression without altering the underlying DNA [15],

[16]. From both a logical and physical perspective, epigenetics

can be considered to be acting on a different level of abstrac-

tion compared to genes. A gene can be considered to be a

section of DNA which is typically used as an encoding for

the primary structure of a protein [17], [16], [18]. Proteins are

molecular machines which are responsible for a significant

amount of the biochemical interactions within living organ-

isms.

In Figure 1 a general eukaryotic arrangement of DNA is

shown. Within the cell nucleus, DNA is wrapped around a

histone octamer over 1.67 turns. This combination of DNA

and histones is referred to as chromatin which forms one of

the major epigenetic structures.
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Fig. 2. The filters for both the Sobel and Kirsch operators which are
responsible for determining gradient changes across 3*3 grids of pixels

Chromatin is principally responsible for controlling physical

access to DNA. The dynamically varying structure of chro-

matin allows DNA to move relatively to it so that cellular

machinery (e.g. transcription factors) can access it. Controlling

this movement means controlling which genes are actively

being transcribed at any given moment. This process underpins

the philosophy of the model described in this paper, being that

there exists a ’bank’ of genes (the genome) which is inactive

by default. Then, chromatin reorganises itself relative to the

DNA in order to change which genes are accessible to the

cellular machinery at any given time.

B. Edge Detection

Edge detection is a method of finding points within an image

which contains sharp changes in brightness. Less formally, it

is the process of mathematically creating borders within an

image which relate to object differentiation [19]. There are

many methods in which to do this, however some of the most

popular are the methods which utilise discrete differentiation

operators. Of these, two of the most common are the Sobel

and Kirsch operators [20] (Figure 2).

This work uses both the Sobel and Kirsch operators to

perform edge detection. The models are identical apart from

the differences in the filters used which deduce the gradient

difference.

For each pixel in the image, the 8 nearest neighbour pixels

(3*3 grid) are then used along with the filters to approxi-

mate the derivatives or changes over those pixels. The Sobel

operator uses 2 filters to achieve this, whereas the Kirsch

operator uses 8. The additional Kirsch filters are more tuned

to picking up gradient differences over multiple directions,

where the Sobel filter generally operates in just the vertical

and horizontal. Each pixel is analysed from left to right in the

image.

III. THE MODEL

The model developed in this paper (which from this point

forward will be refereed to as epiNet), builds upon a range

of previous work [21], [12], [13], [22], [14], [23]. Indeed, the

most fundamental part of epiNet, the artificial gene is derived

from ([24], and remains unchanged). The gene in this sense

is a computational structure which takes inputs and processes

them using a sigmoid function (Figure 3) producing a single

output. Many of these genes are structured together to form

an artificial gene regulatory network where certain genes map

a task on to the network (input genes) certain genes process

1

Inputs Outputs

Sigmoid Function

0

Fig. 3. The structure of the artificial gene which takes multiple inputs,
processes these inputs using the sigmoid function and produces an output

the information and certain genes provide an output for the

network [24].

There have been several approaches to building epigenetic

structures into, or on top of, existing artificial gene regulatory

networks [21], [12], [13], [23]. In these models, genes are

generally always active unless made inactive by an epigenetic

analogue. Additionally, the epigenetic analogues are static and

fixed in place and augment a small subsection of the network.

With epiNet, we place an emphasis on separating genetic struc-

ture from their product; protein networks. Moreover, epiNet

captures the dynamic properties of chromatin remodelling to

allow for the dynamic control of transcription over all genes

within the network and subsections thereof.

The main structure in this model is a genetic structure,

consisting of a number of genes (30-100) which exist on a 1-

dimensional linear scale (Figure 1) between [0,1]. These genes

are static and are not directly executed. Execution of the genes

occurs when genes are copied from the genetic structure to the

protein network. The protein network functions in a similar

way to the networks in [24], where it is the structure which

directly interacts with an external environment (task) and is

executable. However, which genes are copied from the genetic

structure to the protein network is controlled by the epigenetic

molecule.

The epigenetic molecule(s) within epiNet straddles the

genome, existing in the same 1-dimensional space. Each

epigenetic molecule has a position in this 1-dimensional space

and a size (Figure 1). The size is fixed, but the position is

a variable. At each time step, whichever genes exist within

the space occupied (the molecules position ± its size) by the

the epigenetic molecule are then copied from the genome

to the protein network. At each time step, the epigenetic

molecule takes selected inputs from the protein network, and

processes them using a sigmoid function (identical to the genes

(see Figure 3)) and this output then becomes the epigenetic

molecules new position. Hence, the position of the epigenetic

molecule on the genome is the product of the structure and

state of the protein network. Only one epigenetic analogue is

implemented upon initialisation, however multiple epigenetic

molecules can be incorporated to the network throughout

the optimisation process . After each execution the protein

networks expression values are mapped back to the genome.

This serves to give the protein network and genome a relative

memory of its previous state. Following execution, all the

proteins within the protein network are removed and will

become repopulated according to the position of the epigenetic

molecule on the next step. An external task can interface with

epiNet by modifying protein expression within the protein
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Fig. 4. A single iteration of epiNet. The genes which are directly below
the genome are copied into the protein network. The protein network can
then take inputs from the tasks and is executed to produce an output(s). The
epigenetic analogue is connected to the protein network and post execution,
it takes inputs from the protein network and processes them using a sigmoid
function. The result then becomes the next position of the epigenetic analogue.

Variable Type Range

Gene Expression Real 0;1
Positional Identifier Real 0;1
Positional Proximity Real 0;0.25

Weight Real -1;1
Sigmoid Offset Real -1;1
Sigmoid Slope Int 0;20
Input Identifier Real 0;1

Output Identifier Real 0;1

TABLE I
RANGES OF THE VARIABLES WITHIN EACH GENE OR PROTIEN WITHIN THE

NETWORK

network.

IV. FUTURE HARDWARE IMPLEMENTATION

Within this body of work, there has been an interest in

implementing the epiNet on a Field-programmable gate array

(FPGA). FPGAs are a type of integrated circuit which can

be configured using a hardware description language such as

VHDL [25]. VHDL is used to describe the digital functions

of an FPGA where one of the main strengths is parallelism. It

is the strength of parallelism which is attractive to this body

of work as it could significantly sped up edge detection per-

formance. In addition, having epiNet on an embedded system

would allow for greater versatility amongst applications. With

the current epiNet existing only within an object orientated

Variable Type Range

Input Identifier Real 0;1
Input Proximity Real 0;0.25

Weight Real -1;1
Sigmoid Offset Real -1;1
Sigmoid Slope Int 0;20

Transcriptional Proximity Real 0;0.25

TABLE II
RANGES OF THE VARIABLES WITHIN EACH EPIGENETIC MOLECULE

Fig. 5. The two images which will be used for training the network to
perform edge detection. The picture of Lena contains 512*512 pixels and
will be edge detected using the Kirsch operators and a threshold of 250. The
picture of the bike contains 720 * 753 pixels and will be edge detected using
the Sobel operators and a threshold of 100. The network will be trained on
both of these images.

Fig. 6. The inputs (x-axis) against the outputs (y-axis) for the sigmoid
function

language, there are many issues that need to be solved before

spinet can function optimally on an FPGA.

A focus within this work is to remove high precision

variables and functions from the networks which are notori-

ously computationally inefficient to work with in FPGAs. This

includes the variables found within each gene and epigenetic

analogue (tables I and II) and the sigmoid function (Equation

1). In addition, the sigmoid function is a differentiable real

function which is executed for every single protein within the

protein network and every epigenetic molecule at every time

step, hence it is particularly important that this function can

execute as fast as possible. In this instance, we are going

to assume that a suitable reduction in precision will take

floating point numbers and replace them with doubles fixed

to 2 decimal places.

For the sigmoid function (Equation 1) we can calculate that

the bounds of the equation (where - sx - b returns either 0 or

1) are -5.29 , 5.29 (Figure 6). To 2 decimal places, all values

for the sigmoid function can be calculated, approximated and

stored within a table containing 1024 elements. As well as

being more FPGA friendly, this is significantly faster.

f(n) = (1 + e−sx−b)−1 (1)

Preliminary testing it was found that transforming the sig-

moid function into a lookup table improved execution times

of the network by around 40%. Hence, with the immediate

benefits of reduced time to completion, the sigmoid function
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Fig. 7. The results from performing edge detection on Lena (Kirsch ,
threshold 250) and the bike (Sobel, threshold 100)

will be replaced with the lookup table throughout experimen-

tation and analysis, with a view towards hardware friendly

implementation.

V. METHODOLOGY

There are three points we wish to address with this investi-

gation:

• What are the dynamic properties of epiNet when applied

to edge detection and how does this affect network

behaviour?

• How well can epiNet perform edge detection based on

two mathematically different models within the same

network?

• To understand the functionality of epiNet using a sig-

moid lookup table rather than a high precision sigmoid

function.

To address the first question we train the epiNet using a

training set consisting of two images, Lena and the motorbike

(Figure 5). The image of Lena uses the edge detection method

utilising Kirsch filters with a threshold of 250. The image of

the motorbike uses the edge detection method utilising Sobel

filters with a threshold of 100 (Figure 7). The differences be-

tween these two methods can be seen in Figure 8. The purpose

behind using these two images is because firstly, Lena is very

commonly used in edge detection to assess functionality. This

is because there are many varying features within the images,

ranging from sharp edges to weak edges around the hair. The

motorbike was chosen to provide a contrast to Lena, where

generally hard edges are more common and pronounced.

Prior to execution of epiNet, two key parameters that have to

be set. The number of genes in the network and the number of

epigenetic molecules. In this instance the genome will consist

of 30 genes, and only a single epigenetic molecule to begin

with. Throughout evolution, the amount of genes within the

network and the amount of epigenetic molecules can vary

during to the optimisation process.

The networks were evolved using a multi-objective genetic

algorithm NSGA-II. The population size was 200, with a

crossover rate of 0.5 and a mutation rate of 0.05. NSGA-II

will run for 50 generations. At each crossover operation 0.4%

of each network is crossed over, not the whole network. This

is done to minimise disruption. The mutation operator can

add and remove genes as well as modifying variables within

individual genes and epigenetic molecules. 40 individual runs

Fig. 8. The differences between the two images if the methods of edge
detection are swapped (Lena using Sobel and the bike using Kirsch). The
differences between the algorithms produce 15070 pixel differences for Lena
and 24070 for the bike. The differences are denoted by red pixels and where
the algorithms agree are denoted via blue pixels.
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Fig. 9. The results of every population member at the 50th generation for
each of the 40 runs with the optimum behaviour marked by the red dot. One
of the most interesting things shown here is that the networks don’t have a
propensity towards being adept at one tasks over the other. This is especially
the case for the fitter. It can be seen that there are generally two areas of dense
solutions which correspond to poor performance and good performance. It is
likely that these are local minima within the search space

of the experiment will be completed overall. The fitness of

each network is calculated as the number of correctly classified

pixels (according to each mathematical method) for each

image. This will create a 2-dimensional fitness landscape.

VI. RESULTS

The results show that epiNet was able to find solutions

performing the two different types of edge detection and can

be seen in Figure 9. The fitter solutions are able to achieve

around 93% accuracy compared to Kirsch edge detection on

Lena, and around 91% when compared to Sobel edge detection

on the bike (Figure 10). From the results shown the epiNet

is capable of capturing the inherent properties required to

perform edge detection.

The results show that there is a certain amount of pooling

within certain regions of in Figure 9. The fist one of these,

where solutions are weak denotes the behaviour of a single

non dynamic output from the network, for example always

returning 0. This sets all of the pixels to a certain value, which

returns a score around the range of the pooling. The other main

area of pooling is the the fitter side of the map, where ever

solution in this space is able to perform edge detection well

and where NSGA-II is guiding the solutions.
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Fig. 10. The results from a single networks interpretation which correctly
classified 242071 pixels of the Lena image (93%) and 294178 pixels of the
bike image (91%)
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Fig. 11. A histogram plot of the non-permanently active genes within epiNet
(The network analysed in this histogram is the same as the one used in Figure
10). The network contained 30 genes, 19 of which were either permanently
active or jointly active. This permanently active or jointly active genes have
been removed to better show the contrast between the non-permanently and
non jointly active genes. This histogram depicts which of the non permanent
and non jointly active genes are being used when applied to the different
pictures (Lena = red, bike = blue)

A. Dynamical Systems Analysis

One of the goals of this work is to understand how the

behaviour of the dynamics within epiNet when applied to tasks

which require different properties to solve, and the dynamics

required to achieve that. The first step taken to understand

this is to discover the dynamical differences within epiNet

during edge detection for the different pictures. The histogram

in Figure 11 shows that depending on which picture is being

sampled by the network, has a significant effect on what genes

are being used. That is, epiNet is changing its topology and

structure depending upon what task it currently faces.

Generally amongst all the evolved solutions there was an

approximate trend in the structure of the networks. This trend

consisted of two epigenetic analogues within the network,

where one was dynamic and the other was generally static,

but with a slight deviation at a few points during the edge

detection process. To understand the interactions within the

network and its behaviour we analyse a network (the same

from Figure 10) and remove each of the epigenetic analogues

one at a time and assess the difference. The results show

that one of the molecules is vital to function and removing

it perturbs the network unto an unrecoverable static state.

However, upon removal of the other molecule, the network

Fig. 12. A large sum of the networks solved the edge detection task by using
2 epigenetic analogues. In the network used in Figure 10. One of these was
vital for performance, and the other although not vital (as in, the network
could produce meaningful results without it) was responsible for correctly
classifying around 10% of the pixels. These images show the difference
between the non-vital epigenetic molecule being included vs knocked out.
Blue pixels show the performance when the network had the epigenetic knock-
out, red the full functioning network

Fig. 13. An illustration of how a pertubation can affect the dynamical state
of the epiNet. This is done by using noise in the form of 6 vertical lines of
2 pixels in width spaced over 4 pixel gaps. The results of the perturbations
can be more closely seen in Figure 14

still functions, yet mis-classifies approximately 10% of the

pixels over each images. Interestingly, the epigenetic analogue

which is responsible for the majority of the classification is

the dynamic one suggesting that a wide range of genes may

be needed to optimally perform edge detection.

From these results we can make some general statements

about the function of the network. The network has learnt

to partition itself where specific genes can become active

according to specific behaviours which are required to solve

certain aspects the task. More broadly, it means that certain

genes and certain behaviours can be autonomously selected

depending on the current task in hand.

To generate a level of understanding about the dynamical

properties of the network when it comes to non-structure based

perturbations, perturbations were introduced to the training

images and the networks recovery is analysed (Figures 13 and

14). What can be seen is that epiNet does not immediately

recover for these perturbations and takes around 1 - 3 iterations
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Fig. 14. A close up of the images from Figure 13. It can be seen that the
noise has a knock on effect for between 1 and 3 steps (scanning left to right).
This provides evidence to suggest that they dynamical behaviour of epiNet is
altered by the perturbations and takes time to recover. During this recovery
it can be seen to incorrectly classify certain pixels.

of the network to do so. However, it is to be noted that

throughout all the image-based perturbation analysis epiNet

was always able to autonomously recover to a functional state.

B. Generality

The training of epiNet consisted of using two different

images, each using a different method of edge detection. It is

therefore difficult to objectively specify how well the network

is performing on new, unseen images as there are technically

two correct ways of determining fitness (Sobel and Kirsch). In

this instance we attempt to show that epiNets are capable of

performing edge detection of unseen images without negative

impacts on the dynamics of the network. The images which

show this can be seen in Figures 15 and 16.

VII. CONCLUSION

In this work we have shown that the epiNet is capable

of dynamically performing edge detection based around two

different edge detection methods. EpiNet utilised its internal

dynamics to autonomously select specific set of genes accord-

ing to its current state and inputs. This dynamical behaviour

partitioned the genome into different types of behaviours

required to perform edge detection.

In addition, the sigmoid function, which has been at the core

of many bio-inspired networks preceding this was replaces by

a lower precision lookup table which served to both increase

speed without noticeably limiting performance.

In future work the focus should be upon increasing the

efficiency of all the networks so that a larger number of

generations can be used when optimising the networks. In

addition, due to the subjective nature of edge detection (in that

the objective is very specific and individual for a given task),

Fig. 15. The networks output when applied to an unseen image of a tree.

a better method may be to utilise edge detected images from

visual effects studios to ascertain if epiNets can learn user

defined edge detection, and how this can help reduce work

load. Additionally, if the networks are successfully ported to

FPGAs it would be good to understand their performance

when applied to video steams rather than individual images.
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