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Abstract- Environmental issues of thermal power plants and
depletion of natural energy resources are the main motivations
for applying renewable energy sources (RESs) in power systems.
Therefore, it is important to consider RESs when performing
combined economic and emission dispatch (CEED). In this study,
the variability and uncertainties concerned with RESs and load
demand are addressed with batteries installed in the power
system as energy storage systems and stochastic optimization
applied to solve the problem. A case study is presented to
demonstrate the economic and environmental benefits achieved
as a result.

NOMENCLATURE
A. Indices and Sets
b €SB Battery
le St Load
g eSS Thermal plant

pv € SPV Solar plant
tesT Time in minute
wESsW Wind plant

B.  System Parameters and Variables

AB() Effective ampere-hours throughput of battery

AB.Tot Total c.urr}ulaj[ive ampere-hours throughput of
battery in its life cycle

ECS(.) Emission cost of thermal plant

F() Time step objective function

FFL() Forward-looking objective function

fEQ) Cost function of battery

IO Cost function of thermal plant

FCE() Fuel cost of thermal plant

LLCB() Battery life loss cost

Nt Number of time steps considered in forward-

looking objective function
Nx Number of uncertain states of system

PS¢, pé Minimum and maximum power of thermal plant
PL() Load demand

PE() Power of thermal plant

PV () Power of wind plant

PPV () Power of solar plant

PB2G () Power of battery while doing B2G
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P28 () Power of battery while doing G2B
PB, pB Minimum and maximum power of battery
Price® Investment for purchasing a battery

RURS,RDR® Ramp up and ramp down rates of thermal plant
Minimum and maximum allowable state of

B

S0C7,50¢7 charge of battery

SWCEB() Battery switching cost

x () Predicted value for uncertain state of system

X0) Set of predicted values for uncertain states of
’ system

zf, 78, 2% Fuel cost coefficients of thermal plant

zE, 2L, 78 Emission coefficients of thermal plant

yE Emission cost factor

1B Effective weighting factor concerned with life

loss cost of battery
uErr Mean of prediction errors
ofrr Standard deviation of prediction errors

C. SA Algorithm Parameters and Variables

Number of trials for producing new solution at
every stage

sa Random value from a uniform distribution in
range of [0,1]

Binary variable as indicator of acceptance of

NSA

r

sA
Y0 new solution
pSAL) Adaptive probability for acceptance of new
’ solution
sa Coefficient for gradually decreasing
H temperature of molten metal
£54() Internal energy of molten metal
058 () Initial temperature of molten metal
654() Current temperature of molten metal

L INTRODUCTION

Due to the critical environmental issues caused by burning
fossil fuel in thermal power plants and emitting carbon into
the atmosphere, emission levels of thermal plants should be
considered in the generation scheduling problem. In other
words, optimizing the problem of combined emission and
economic dispatch (CEED) is a solution to address the above
problem. The CEED problem is formulated by converting the
emission level of thermal power plants into the emission cost
functions and merging them into the economic dispatch
problem [1]. In [2]-[3], the CEED problem considers ramp-
rate limits of thermal power plants. Since renewable energy
source (RESs) technologies are developing rapidly and receive
increasing attention [4], their presence must be considered in
the economic dispatch problem. Installing RESs in power
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system that convert the CEED problem into the CEED-RESs
problem can mitigate energy security and environmental
issues of power generation system. However, due to
dependency of output power of RESs to the intermittent
natural energy resources, RESs generation is variable and
there is a high uncertainty about it. In [5], the impact of
variability and uncertainty at multiple operational timescales
has been studied. Also, the effects of solar power variability
and forecast uncertainty on power system operation in the
Arizona Public Service system has been studied in [6].

The CEED-RESs problem cannot be solved with
deterministic ~ methods, since the problem involves
uncertainties. In [7], the economic dispatch problem in the
presence of RESs has been studied probabilistically
considering wind speed, solar irradiance and load demand as
random variables and applying non-linear constrained
optimization methods. In [8], a probabilistic method has been
applied to solve the economic dispatch problem which
considers the uncertainties of the generators reliability and
wind power using corresponding probability distribution
function. In [9], the economic dispatch problem which
considers wind power has been solved by an expectation
model assuming that the wind speed distribution satisfies the
Weibull distribution function. In [10], the authors have applied
best-fit participation factor methods in the economic dispatch
problem which considers variability of RESs power and load
demand. However, in the above mentioned studies, probability
distribution functions have been assumed as the models for
inherently unpredictable generation level of RESs or they have
been applied to address the uncertainties of the predicted data.
In addition, the environmental aspect of thermal power plants
has not been considered.

Cost and emission reductions in a smart grid by maximum
utilization of plug-in electric vehicles and RESs are presented
in [11]. Particle swarm optimization is utilized to solve the
stochastic optimization problem. A stochastic optimization
technique is also presented and applied to solve the CEED-
RESs problem in this paper. In this methodology, the
uncertain states of the system are forecasted and their
uncertainties are addressed by applying scenario-based
approaches and solving the problem stochastically. Herein, the
problem is optimized minute by minute to increase accuracy
of the predicted data and decrease the range of uncertainties in
the system states.

The rest of the paper is outlined as follows. In Section II,
the CEED-RESs problem is formulated. The proposed
methodology is introduced and described in Section III
Numerical studies carried out are explained in Section IV.
Finally, the conclusion is given in Section V.

II. CEED-RESS PROBLEM

A. Objective Function

The objective function of the CEED-RESs problem
comprises two types of cost functions that involve a set of
batteries as the energy storage systems and a set of thermal
power plants. Herein, generation level of every battery and
generation level of every power plant are considered as the
variables of the CEED-RESs problem.
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vte ST, ST ={1,-,Nt},s° ={1,~+,Ng},S® = {1,---, Nb}

1) Batteries’ cost function
As can be seen in (2), the cost function of a battery includes
life loss cost and switching cost.

fE@) = LLCE(t) + SWCE(t), vt e ST,vb e SE  (2)

The value of life loss cost of every battery is determined
based on the effective ampere-hours throughput of the battery
(AP) due to the battery-to-grid (B2G) and grid-to-battery
(G2B) actions, as can be seen in (3) [12]. Herein, A5-T¢ is the
total cumulative ampere-hours throughput of the battery in its
life cycle, Price® is the price of a battery, and value of A5, as
the effective weighting factor, is determined using the
introduced model in [12]. In the presented model, value of the
effective weighting factor has a nonlinear relationship with the
state of charge (SOC) of the battery.

2B x AB(t)
B_Tot
b

LLCE(t) = x Pricef,vt € ST,vbe S5 (3)

Moreover, value of the switching cost of every battery is
calculated using (4). This value of cost is considered whenever
the battery is changed from the generation state to the load
state or vice versa. In fact, this cost term prevent the battery
from unnecessary switching that is harmful to its life cycle.

SWCE(t) = X Pricef ©))

B_Tot

b
vt € ST,vb € S8

2) Thermal power plants’ cost function
The cost function of a thermal power plant includes fuel
cost and emission cost presented in (5).
i) = FC§(t) + EC{(t),vt € ST,vg eS¢  (5)
The fuel cost and emission cost of every thermal power

plant are considered quadratic polynomials presented in (6)
and (7), respectively.

2
FC§(t) = zfy x (BE (D)) + 2o x (B (D)) + 25, (6)
vte ST,vg € S¢
G E E G 2 E G
ECS(t) = y* x (zl,g x (PE®) +2£, % (PE(D))
+z§g),VteST,Vg € S¢ N

B.  Constraints

In the following the constraints of the problem that must be
held at every time step of the operation period are presented.

1) System power balance limit

Herein, power of every battery is considered positive if the
battery is doing B2G and this power is supposed to be
negative if the battery is doing G2B.
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2) Thermal power plants’ power limits
The maximum power and minimum power constraints of
every thermal power plant is presented in (9).

B <Py(t) <PF vt eST Vg €SC ©)

3) Thermal power plants’ ramp up/down rates limits

The ramp-up rate and ramp-down rate constraints of every
thermal power plant are presented in (10) and (11),
respectively.

(PE(t+1)—PF(t)) < RURS (10)
vt e ST,vg € S¢
(PF(®) —Pf(t+1)) < RDRS (11)

vt e ST,vg € S¢

4) Batteries’ power limits
As can be seen in (12), every battery can act as a load or
generator by doing G2B and B2G, respectively. The output
and input power limits of every battery in B2G and G2B
operations are presented in (13) and (14), respectively.

P2 ), PE()>0
AR MG vt € ST, Vb €SB (12
»(© {P;f”(t), PE(t) <0 12
PE < PP26(t) < PE,vt € ST,vb € SE (13)
—PF <PEP(t)< -PE,vteST,vbeSE  (14)

5) Batteries’ state of charge limits

In order to prolong the lifetime of the batteries, every
battery must not be discharged more than the allowable depth
of discharge (DOD). Moreover, every battery may have an
upper limit for its SOC. Thus, the allowable limits for SOC of
every battery are as (15).

SOCE <socf() <socs veesT,vbes?  (15)

I1I. PROPOSED METHODOLOGY

As can be seen in Fig. 1, based on the proposed
methodology that demonstrates its adaptability and dynamic
characteristic, at every time step, the problem is solved for the
updated optimization time horizon (t+1,---,t+ N71);
however, just dispatch signals of the next time step (t + 1) are
accepted as the decision signals. Therefore, the objective
function of the problem can be defined as (16), which is a
forward-looking objective function. As can be seen, the

forward-looking objective function is the sum of the time step
objective functions over the optimization time horizon.

Nt
FPL(t) = Z F(t +7),Vt € ST (16)
=1
«+——— Optimization time horizon ——»
Current time Target time
¢ [ e+ [ ez | [ e ]
t+1 I t+2 ” t+3 H Ht+1\2r+1|

t+2 [ e+3 [ +a ]| |[ e +2]

Fig. 1. Concept of the proposed adaptive and dynar.nic optimi.zation
technique.

A flowchart of the proposed methodology that uses
simulated annealing (SA) algorithm as its optimization tool is
illustrated in Fig. 2. As can be seen, at first, the system
parameters along with the forecasted system states are
received. Then, uncertainties of the predicted data are modeled
using a scenario-based approach. After that, the problem is
optimized stochastically by a SA algorithm. Next, values of
the problem variables just for the next time step are accepted
as the decision signals. This process is repeated for every time
step (minute) of a day over the operation period (1, ---,1440).

A. Forecasting uncertain states of the system
In this study, values of wind speed (v"), solar irradiance
(p™"), and load demand (P!) as the uncertain states of the
system are predicted for the next Nt time steps using a neural
network trained with Levenberg-Marquardt back-propagation
algorithm that exist in MATLAB. A set of the forecasted
values for the system’s uncertain states over the next Nt time
steps is presented in (17).
x] (©) X0 (©)
X' = ' : a7

x{(t + N7) x,{,x(t + N7)

vt € ST,x € (v, p*V,PL}, Nx = Nw + Npv + NI

In the following, the output power of wind and solar plants
are determined using the functions presented in [13]-[14].

1) Wind power plant
The output power of a wind power plant has a nonlinear
relationship with wind speed presented in (18) [13].

0 vl T (1) < ve v < v ()
w_f ci
v, t) — .
Y () = pr x D D" e wry < e (18)

v, — v
Ry vl < o (0) < ve°

vt € ST,vw € SV

Where UMM,/ S (.) is the forecasted value for the wind speed
(m/s), v< is the cut-in wind speed (m/s), vy, is the rated wind
speed (m/s), v<° is the cut-out wind speed (m/s), and Py is
the rated output power of the wind power plant (MW).
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System parameters

¥

Forecasting wind speed, solar irradiance, load demand
(system states) for the next NT time steps (t +1 ,.., t +N7)

Modeling uncertainties of the predicted wind speed, solar
irradiance, and load demand applying scenario-based approach

Optimizing the problem for the defined scenario by SA algorithm

<" All the ™-
scenarios have
heen considered?

L Stochastic Ol)timi.zation-l

Accepting values of the problem variables (dispatch signals)
as the decision signals just for the next time step (t + 1)

End of the
~ operation period?

(t=1440?)

The End

Fig. 2. Flowchart of the proposed methodology.

2) Solar power plant
The output power of a solar power plant is given as a
function of solar irradiance presented in (19) [14].

2
PV_f
(p pv (t)) PV
e ixgo 0S poy? () < pYy
PPV(t) o ppv ppV (19)
" oot (©)
O oo (©) > p3y
Ppv
vt € ST,vpv € SV
Where p;;,l,/ 7 (.) is the forecasted value for the solar irradiance

(W/m?), ppv is the solar irradiation in the standard
environment set as 1000 W/m’, pgv is a certain irradiation
point set as 150 W/m’, Pp’:,VJ is rated output power of the solar
power plant (MW).

B. Modeling uncertainties of the forecasted data

In this study, in order to address the uncertainties of the
predicted data, a scenario-based approach is applied [15].
Herein, in the validation and testing processes of the data
forecasting, the output data is compared with the target data
and values of prediction errors are measured (Fig. 3 (a)). Then
they are fitted on an appropriate probability density function
curve (Fig. 3 (b)). Herein, it was observed that the predication
errors can be fitted precisely on a Gaussian probability density
function with an appropriate mean (uf™) and standard
deviation (¢E7"). After that, the curve is divided into three
areas to define three distinct values for the prediction
inaccuracy with the probabilities about 0.1587, 0.6826 and
0.1587 related to uf™ — 205", pE", and w4+ 20577,
respectively. Therefore, at every time step, each uncertain
state of the system has three different values with different
probabilities. Based on this concept, several effective

scenarios are defined for the values of every uncertain state of
the system over the optimization time horizon, which are
graphically illustrated in Fig. 4.

Gaussian Distribution Function Divided into 3 Areas
& Data

Predicted Data

Target Data BT — 2B e uET + 205
(a) ®)
Fig. 3. (a): Prediction errors by comparing value of difference between target
and output data, (b): Gaussian probability density function related to the fitted

prediction errors of an uncertain state of the system.

X The defined scenarios for ~ every uncertain state
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Fig. 4. The defined scenarios for value of every uncertain state of the
system over the optimization time horizon.

C. 84 algorithm as the optimization tool

In this study, SA algorithm is applied to solve the
optimization problem. Other optimization algorithms could be
used in this problem such as particle swarm optimization..
Herein, value of the forward-looking objective function is
defined as the value of internal energy of molten metal (£54)
and then it is used to minimize the value of this energy. In the
following, different steps for applying SA algorithm are
presented and described.

Step 1: Primary data

Setting controlling parameters of the SA algorithm: These
parameters include 84,4, NS4, and 54,

Parameters of the system: Values of all the system
parameters and the predicted states of the system which
considers their uncertainties included in the defined scenario
are obtained.

Initial solution: A random solution for the problem
variables is generated as an initial solution.

Step 2: Generating an acceptable solution

Generating new solution: A random solution for the
problem variables is generated in the vicinity of the old one.

Checking problem constraints: All the problem constraints
are checked for the optimization time horizon and if they are
correct, the value of the internal energy of the molten metal is
measured and the next step is executed, otherwise, the process
is repeated form Step 2.

Checking SA acceptance criterion: The SA acceptance
criterion is presented in (20). Based on this principle, a
problem solution results in decreased internal energy of the
molten metal. This is always accepted; however, the solution
with increased value of the internal energy is accepted just by
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an adaptive probability presented in (21). The value of this
adaptive probability is decreased as the molten metal is
cooled.

1 et () < 4D
yit®) =41 eid (1) = 4(0), > pt ) (20)
0 est () = (D), ¥t <p*(®)

vt € ST, vk € S¥,8X = {1,---, Nk}

_ S 0= ®

piA)=e %© vteST,vkeSK (21)

Step 3: Checking number of iteration for the current
temperature

If the number of iterations in the current temperature are not
equal to the predefined value (N54), the process is repeated
from Step 2, otherwise, temperature of the molten metal is
decreased based on (22).

0:4,(t) = uS4 x 954(t), vt € ST,Vk € SK (22)

Step 4: Concluding

Checking temperature of the molten metal: Temperature of
the molten metal is measured and if the molten metal is
frozen, the optimization process is finished, otherwise, the
process is repeated from Step 2.

Introducing outcomes: The consequences include optimal
values for the problem variables.

1V. NUMERICAL STUDIES
A.  Initial Data

Fig. 5 illustrates the configuration of the system under a
study that includes wind and solar power plants, batteries as
the energy storage system, and thermal power plants. The
technical data of the thermal power plants includes their fuel
cost coefficients, emission coefficients, and power limits are
presented in Table I. Herein, values of ramp-up and ramp-
down rates of all the thermal power plants are considered
about 50 MW/min. Moreover, the thermal power plants are
considered to be steam-electric plants [16]. Also, the type of
the fuel consumed by the plants 1-4 and 7 (at buses 2, 3, 13,
19 and 27) are considered to be natural gas and types of the
fuels consumed by the plant 5 and plant 6 (at buses 22 and 23)
are considered sub-bituminous and residual oil (No. 6),
respectively [16]. The amount of emissionin Lbs/kW?h
released by a typical steam-electric plant for different types of
the fuel have been presented in [16]. Furthermore, the value of
penalty for emission is assumed about $10 per ton based on
the California Air Resources Board auction of greenhouse gas
emissions [17].

The rated output power of the wind and solar power plants
are 40 and 20 MW, respectively. The rated power and capacity
of every battery is assumed to be about 40 MW and 200
MWh, respectively. The minimum and maximum operational
powers of every battery are considered about 5 MW and 40
MW, respectively. Moreover, the minimum and maximum
allowable limits for SOC of every battery are considered about
30% and 100%, respectively. Herein, every battery has an
initial SOC about 50%. The value of investment for
purchasing a battery, and also value of total cumulative

ampere-hours throughput of every battery in its life cycle are
considered about $1,000,000 and 1000,000 ampere-hours,
respectively. Moreover, the system voltage level 400 kV.

[~ In '128

29

30

@ Thermal Plant
)r ‘Wind Plant

, Solar Plant

B Battery

Load ' '

Fig. 5. The configuration of the system under study.

TABLE 1
TECHNICAL DATA OF THE THERMAL POWER PLANTS

Plant 1 2 3 4 5 6 7

F

aig

: 0.690 | 0.689 | 0.689 | 0.899 | 0.913 | 0.992 | 0.983
($/MW2h)

F

%29 1650 | 19.70 | 22.26 | 27.74 | 25.92 | 27.27 | 27.79
($/MWh)

aj (%) 680 450 370 480 660 665 670

E

aig

! 0.122 | 0.122 | 0122 | 0.122 | 0.216 | 0.181 | 0.122
(Lbs/kWzh)

E

azg

: 1220 | 1220 | 1.220 | 1.220 | 2.160 | 1.810 | 1.220
(Lbs/kWh)
B} (MW) 20 15 10 20 10 10 10
PS (MW) 180 180 180 150 150 150 | 150

Herein, the operation period and the optimization time
horizon used in the forward-looking objective functions are
considered 1440 minutes and 10 minutes, respectively.
Moreover, in all the simulations, every time that SA algorithm
is executed, values of its controlling parameters include
054 101> NS4, and u54 are set about 100 centigrade, 90 times,
and 0.8, respectively. The forecasted demand levels at
different system buses are presented in Fig. 6. Also, Fig. 7
illustrates the forecasted power of wind and solar power plants
installed at bus 4 and 8.

B.  Problem Simulations
Optimizing the CEED-RESs problem and considering RESs
as the negative load results in about $2,452,900/day as the
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total operation cost and around 99,023 ton/day as the total
emission of the system. The generation levels of the thermal
power plants that have noticeable fluctuations are shown in
Fig. 8.

After optimizing the CEED-RESs problem with the
proposed technique, the results are $2,291,700/day and 89,859
tons/day as the total operation cost and total emissions of the
system, respectively. Herein, the value of savings for cost and
emission are $161,200/day and 9,164 tons/day, respectively.
Fig. 9 illustrates generation levels of the thermal power plants.
As can be observed, generation variability of the thermal
plants has been decreased considerably compared with the
results presented in Fig. 8. Moreover, Fig. 10 demonstrates
generation levels and SOC of every battery for every minute
of the operation period. As can be seen, the SOC level is
changed throughout the optimization procedure; however, it is
always in the defined upper and lower limits. Also, the final
SOC is equal to its initial value. The summary for the
simulation results of the CEED-RESs problem by considering
the RESs as the negative load and the simulation
consequences of the CEED-RESs problem by applying the
proposed technique are presented in Table II.

—Load 1 (Bus 2) — Load 4 (Bus 14) —Load 7 (Bus 29)
—Load 2 (Bus 3) — Load 5 (Bus 19)

—Load 3 (Bus 10) Load 6 (Bus 23)
150

140

130

120

Demand (MW)
S

i .
. . 1000 1500
Time (minute)

Fig. 6. The predicted demand level at different system buses.
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Fig. 7. The value of predicted power of solar and wind power plants installed
at bus 4 and 8, respectively.
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Fig. 8. The generation level of the thermal power plants in CEED problem.



—Plant1 (Bus 1) —— Plant 4 (Bus 19) — Plant 7 (Bus 27)
—Plant 2 (Bus 2) — Plant 5 (Bus 22)
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Fig. 9. The generation level of thermal power plants in CEED-RESs problem.
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Fig. 10. The generation level and SOC of every battery in CEED-RESs
problem.

TABLE II
SIMULATION RESULTS OF THE CEED-RESS PROBLEM
UNDER DIFFERENT CASES.

Emission | Operation | Emission Cost
Level Cost Saving Saving
(tons/day) ($/day) (tons/day) | ($/day)
CEED-RESs
considering RESs 99,023 2,452,900 - -
as negative load
CEED-RESs
optimized with the 89,859 2,291,700 9,164 161,200
proposed technique
V. CONCLUSION

In this study, a stochastic optimization approach for
combined economic and emission dispatch with renewables
was presented. Forecasting the uncertain states of the system,
modeling uncertainties of the prediction errors, and solving the
problem stochastically were the aspects of this new
methodology. It was observed that the economic and

environmental advantages of the renewables can be
maximized via stochastic optimization while satisfying the
system security constraints.
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