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Abstract—In this paper, a stochastic model predictive control 
(SMPC) approach is proposed to schedule a hybrid energy system 
(HES) which composes a battery energy storage system (BESS) and 
a wind farm. The SMPC is used to control the charge and discharge 
of the BESS to minimize the operation costs and maximum the selling 
power revenue for the HES owner with considering wind production 
and electricity price forecast uncertainties. Case study is employed 
to assess the performance of the SMPC approach and simulation 
results show that this approach proposed in this paper is effective 
and feasible. 

I. INTRODUCTION

In recent years, as the increase of energy demand and the 
depletion of fossil resources, the share of wind power capacity 
installed is increasing throughout the world [1]. As one of the most 
fast-growing new electricity generation capacities, wind power has 
been considered as a free, clean, and sustainable energy resource. 
However, wind power production is high variability and 
intermittent, and it will introduce increasingly difficult when the 
wind power penetration level increases to significant percentages 
[2]. The traditional control of wind power is limited to curtailing 
it, or increase the use of reserve power [3]. One other technical 
feasible way is integrate energy storage system with the wind 
farms to mitigate the stochastic behavior of wind power.  

The hybrid energy system (HES) composes of wind farm and 
energy storage system can improve the power quality, system 
reliability, wind power availability and increase wind farm 
owner’s revenue [4]. Among various energy storage technologies, 
battery energy storage system (BESS) is a suitable choice to 
maximize wind farm owner’s benefit due to it has been utilized 
support reserves, defer network upgrades and achieve price 
arbitrage [5]. As a result, BESS is focused in this paper. 

During the recent years, various efforts have been made to 
control wind power farm dispatchable by using BESS. A game-
theoretic oriented analysis is implemented in [6] under the 
electricity market model of German. Stochastic programming 
framework is chosen to optimal operation of energy storage and 
determine reserve bids to keep profitability of the investment on 

storage units [7]. A wind power stabilization system is discussed 
in [8] by different kinds of storage devices. 

MPC method is widely used in industry as it has been 
recognized as an effective and practical control strategy that uses 
a prediction of system evolution to establish an updated control 
response. Authors in [9] and [10] presented MPC based 
approaches to smoothing wind power fluctuation with BESS. The 
objective is to minimize the deviation between the forecasted value 
and real production. In [5], sizing and control of BESS method is 
discussed to mitigating wind power intermittency and reducing the 
operation cost to the wind farm owner. A MPC based coordinated 
scheduling framework for variable wind generation and BESS is 
presented in [11], short-term forecast of wind generation and price 
information is considered to determine the net power injection to 
the electric power grid. However, as the penetration level of wind 
power is high, the traditional MPC methods based on point forecast 
cannot mitigate the wind fluctuation effectively enough.  

The objective of this paper is to discuss the control of BESS to 
mitigate the wind power intermittency and increase the revenue of 
wind farm owner using BESS and SMPC control method. SMPC 
method is more effective in reducing the operation cost and wind 
power intermittency than the traditional MPC methods and day 
ahead programming methods. 

The remainder of this paper is organized as follows: Section II 
provides the brief problem formulation; Section III introduces the 
SMPC policy and optimization model; Simulation and conclusions 
are shown in Section IV. 

II. PROBLEM FORMULATION

The basic structure of the HES considered in present paper is 
illustrated in Fig.1. The HES includes a wind farm and a BESS. 
The energy provided by the HES is sold to the electricity grid. The 
SMPC based control system should forecast the wind power 
production and electricity price and then calculate the appropriate 
amount of BESS charging/discharging power with considering the 
BESS constraints, wind power and electricity forecasts to 
maximize the wind farm owner’s revenue. The forecast 
uncertainties of wind power production and electricity price are 
presented by scenarios. 

The optimization of HES can be considered as an optimization 
problem for determining the optimal charging/discharging power 
of BESS. The mathematical formulations are shown as follows: 
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Fig. 1. Schematic diagram of the grid-connected HES 

For mitigating the intermittency of wind power to the 
electricity grid, the power provided by the HES must be scheduled 
before. The over produced power of the wind farm correspond to 
the scheduled value can be curtailed or stored, and in the opposite 
case, the inadequate power can be discharged by the BESS or 
purchased from the electricity market with higher price. 

The objective is to maximize the expected cost of the HES over 
the next T periods. The uncertain power production of wind and 
variable electricity price are modeled by different paths of scenario 
trees. 

;  (1) 
where  is an auxiliary variable, and ,  denotes 
the number of scenarios,  is the number of RERs generation 
scenarios,   is the number of electricity price scenarios.  is the 
control horizon,  is the probability of scenario ,  is the 
generation of wind farm at time  in scenario ,  is the basic 
price in electricity market at time  in scenario , and  is the time 
interval of two sequential time samplings.  

When the HES energy optimization scheme is applied, the total 
cost over the next  periods is calculated as in Eq. (1). The first 
term is the electricity buying cost from electricity grid; the second 
term is the revenue from electricity selling to the electricity grid. 
The power exchange between the HES and electricity grid can be 
indicated as: 

;  (2) 

where ,  are the discharge and charge power of the 
BESS at time  in scenario , respectively.  is the power 
interaction between the external grid and HES.  

As the penetration level of wind power grows high, reduce the 
negative impacts of wind production and keep the electricity grid 
reliability is vital. One of the most important measure is to set the 
purchasing price higher than the basic price in electricity market 
and the selling price lower the basic price in electricity market at 
same time [12]. Therefore, purchasing electricity price 

 and selling electricity price  can be 
denoted as Eq. (3). 

;  

;  
(3) 

where ,  are the purchasing and selling coefficients 
with the following setting:  and . , 

 are the purchasing and selling energy price at time  in 
scenario , respectively.  

The dynamic model and constraints of the BESS are: 

 (4) 

;  (5) 

;  (6) 

;  (7) 

;  (8) 

where is the BESS energy level at time in scenario , , 
 are the charge and discharge efficiency of BESS, respectively, 

 is the self-discharge loss of BESS, ,  are the 
discharge and charge status of the BESS, ,  are the 
minimum and maximum charge power, ,  are the 
minimum and maximum discharge power, respectively. 

Eq. (4)-(8) are the BESS dynamic model, capacity constraint, 
charging power limit, discharging power limit, operation status 
constraint, respectively. The BESS model in present paper can 
avoid introducing extra auxiliary variables and extra models to 
describe the hybrid dynamics of the energy storage as shown in 
[12] and can effectively control the minimum 
charging/discharging power and charging/discharging cycles. 

The power interaction between the HES and electricity grid and 
the wind power capacity constraint also should be satisfied. 

;  (9) 
;  (10) 

where  ,   are the minimum and 
maximum power can be exchanged between HES and 
external grid, respectively.  is the capacity of 
the wind farm. 

 

III. SMPC BASED OPTIMIZATION

As the penetration level of RERs grows high, the impaction 
of RERs forecast uncertainty is significant. Traditional day-ahead 
programming based energy control strategy and classical MPC 
formulations do not provide a systematic way to deal with model 
uncertainty and disturbances, which are often completely 
neglected in the prediction model [13]. Robust MPC schemes 
which consider the worst case are too conservative. The SMPC 
based control methods which can fully use the statistical 
information of the forecast error are concerned by more and more 
researchers. SMPC can be considered as a closed loop based 
method which is iteratively compute a sequence of decision 
variables over a future certain horizon with different wind 
production scenarios and then update the HES state. The detail 
process of this method is shown in Fig.2. 

Scenario generation Scenario reduction

Optimization 
solver

Wind generation 
forecast

Price forecast

Scenario SMPC based microgrid optimization 

Real-time energy 
dispatch

Electricity 
market

 
Fig. 2. SMPC based HES optimization 

A. Scenario generation and reduction
The uncertainty of wind production and electricity price can be 

illustrated as 

;  (11) 

;  (12) 

where ,  are the forecasted wind generation and 
basic electricity price at time  in scenario , respectively. 
According to [14] and [15], the forecast error of wind power 
production and electricity price can be described by Gaussian 
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distribution. Hence, the stochastic scenarios can be generated 
according to Eq. (11) and (12) with Lattice Monte Carlo 
Simulation over the control horizon. 

We note that the number of primitive scenarios generated by 
Lattice Monte Carlo Simulation is very huge, large computation 
burden will be produced if all be considered. Scenario-reduction 
techniques must be used to delete the common scenarios, only 
typical scenarios are enough to represent the stochastic nature of 
the HES. However, the efficiency of traditional simultaneous 
backward method is not very high, cannot satisfy the online control 
operation requirement of HES. Therefore, a new fast scenario 
reduction method is implemented in present paper: 

1) Generated   scenarios with LMCS method as 
initial set; 

2) Divide the   scenarios into   units uniformly, 
and consider  as the amount of saved scenarios in 
each unit, and   scenarios are finally saved, while 
meet ; 

3) Use simultaneous backward method to delete 
scenarios in each unit, and collect these save scenarios 
from each unit to compose a new scenario set, which 
has  scenarios; 

4) Use simultaneous backward method again to choose 
the final  scenarios from the new scenario set. 

B. SMPC based HES optimization 
For making the SMPC based HES optimization 

implemented effectively, some additional non-anticipativity 
should be satisfied in the root node. 

;  (13) 
;  (14) 
;  (15) 

 

IV. SIMULATION AND RESULTS 

A. Test description 
In order to verify the proposed control approach, extensive 

simulations for assessing different methods are carried out based 
on the actual wind farm and electricity price. The data of wind 
generation is collected and modified form ELIA [16], Belgium’s 
electricity transmission system operator, the maximum generation 
capacity is 20MW; the electricity price is based on the actual of 
New York [17], as shown in Fig.2.  

For reducing the negative impacts of wind intermittency and 
making the HES more dispatchable, the extra selling power price 
is ruled to lower than the extra purchasing price in real-time 
operation, therefore  and . The charge power 
rate is from 50kW to 500kW, energy level is 1MWh, the available 
depth of charge is 75%, the charge and discharge efficiency are 
both 0.95, and the self-discharge rate is 0.02kW/ . The operation 
cost of the battery energy storage is 0.6€ct/kWh, charge-to-
discharge operation cost and discharge-to-charge operation cost 
both are 1.1€ct, and the initial energy capacity of the battery is 
500kWh. The maximum power can be exchanged between the 
HES and electricity grid is 2MW. 

The sampling time duration is , and the control horizon 
is . The length of the simulation in this paper is over four days. 

 
Fig. 3. Scenarios of electricity price and wind power production in the first day 

B. Control strategies 
In order to analyze the superiority of the SMPC based energy 

control strategy, two other strategies are used.  
1) Deterministic MPC based strategy (D-MPC strategy): 

The control framework is the same as the SMPC 
strategy, however, it is an energy control strategy uses 
point forecasts of wind, solar, load, and electricity price 
[12]. The mismatch wind power between the  

2) Deterministic day-ahead programming based strategy 
(D-DA strategy): It is a traditional two-stage open-loop 
energy control strategy based on point forecasts of wind, 
solar, load, and electricity price [18]. The charge and 
discharge routines are determined in schedule stage, and 
the mismatch wind power between the schedule stage 
and actual data are compensated by the electricity grid. 
The energy dispatch in all the above four strategies have 

two stages: scheduling stage and real-time adjustment stage. 
In the scheduling stage, the control sequences of the 
controllable units in microgrid are determined based on 
forecasts to avoid the shortsightedness of real-time operation. 
However, due to the forecasts are imperfect for wind power 
production and electricity price, compensate measures should 
be employed at real-time to keep the power balance in actual 
operation. In real-time adjustment stage, the power 
compensate policy is determined and implemented [18] [19]. 

C. Results 
All simulations were run on an PC with Intel(R) Core(TM) 

i5-3470 CPU @3.2GHz and 8.00GB memory. The ILOG’s 
CPLEX v.12 optimization solver is utilized for solving the MIQP 
model.  

The operation routines of microgrid units with all the four 
strategies are demonstrated in this section. Two main discussions 
are implemented: 1) performance comparing between the 
deterministic based control strategies (D-DA, D-MPC) and 
stochastic based control strategies (SMPC); 2) performance 
comparing between the open loop based energy control strategies 
(D-DA) and close loop based energy control strategies (S-MPC, 
D-MPC). Other results also discussed, such as computation 
complexity of all the four strategies, different spinning reserve 
requirements for different strategies, and the operation cost. 
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Fig. 4. BESS power and capacity for D-DA strategy 

 
Fig. 5. Scheduled and actual wind power sold to the electricity grid for D-DA 
strategy 

 
Fig. 6. BESS power and capacity for D-MPC strategy 

 
Fig. 7. Scheduled and actual wind power sold to the electricity grid for D-MPC 
strategy 

 
Fig. 8. BESS power and capacity for SMPC strategy 

 

Fig. 9. Scheduled and actual wind power sold to the electricity grid for SMPC 
strategy 

TABLE I.  COMPARISON OF MICROGRID OPERATION STRATEGIES 

Strategies Total cost (105€) Correction cost 
(€) 

SMPC strategy -2.6322 280.56 

D-MPC strategy -2.5247 590.74 

D-DA strategy -1.6666 5930.5 

TABLE II.  MODEL STATISTICS AND COMPUTATION TIMES 

strategies Scenario 
reduction time 
(s) 

Average 
number of 
variables 

Average 
solving time 
(s) 

SMPC strategy 4.36 5760 7.35 

D-MPC strategy 0.31 144 1.68 

D-DA strategy 0.3 144 0.5 

The results of D-DA strategy are presented in Figs. 3-4. Due 
to the BESS for D-DA strategy does not take part in the real-time 
power balance adjustment, which result in the actual BESS 
operation power is the scheduled BESS operation power, as 
shown in Fig. 4. Also bring about severe fluctuation between the 
scheduled power interaction and actual power interaction between 
the HES and the electricity grid, as shown in Fig.5. Moreover, the 
open-loop nature of D-DA strategy make the correction cost in 
real-time operation stage is much larger than D-MPC and SMPC 
strategy, as shown in Tab.1. The total HES power selling revenue 
for D-DA strategy is the least in the three strategies. 

The results of D-MPC strategy are presented in Figs. 6-7. 
Due to the close loop nature of MPC strategy, the BESS operation 
power in schedule stage and actual power operation have not big 
difference, as shown in Fig.6. And there is no severe fluctuation 
between the scheduled power interaction and actual power 
interaction between the HES and the electricity grid, as shown in 
Fig.7. The fluctuation in Fig.6 is more intense is just because 
much more power purchased or sold in real-time stage 
optimization. Better performance of D-MPC strategy than D-DA 
strategy can be deduced according to the comparing between Figs 
6-7 and Figs. 8-9, and this results also can be proved by the results 
in Table 1. 

The results of SMPC strategy are presented in Figs. 8-9. 
Comparing the Figs 4-9, we could find that the performance of the 
SMPC strategy is the best in the three strategies. The fluctuation 
between the scheduled power interaction and actual power 
interaction between the HES and the electricity grid is the lowest, 
the differences of the BESS operation power between the schedule 
stage and actual operation is also the least. Moreover, the results in 
Tabl.1 shows that the HES power selling revenue for SMPC 
strategy is the highest, the revenue of SMPC increase 4.26% to the 
D-MPC strategy. Though the computation time of SMPC strategy 
is longer than D-MPC strategy, as shown in Table 2, this time is 
much shorter than the sampling time 0.5hour. 

V. CONCLUSIONS 
This present paper proposes a SMPC approach to maximum 

the revenue of a HES which include a wind farm and a battery 
energy storage system. The forecast error of the wind power 
production and electricity price are represented by scenarios 
generated by Lattice Monte Carlo Simulation method, and a new 
two stage scenario reduction method proposed in this paper. The 
operation optimization problem of the HES at each time sampling 

0 1 2 3 4
-500

0

500

days (d)

po
w

er
 (k

W
)

 

 

BESS power

0 1 2 3 4
200

400

600

800

1000

1200

days (d)

C
ap

ac
ity

 (k
W

h)

 

 
BESS Capacity

0 1 2 3 4
-500

0

500

1000

1500

2000

2500

days (d)

In
pu

t p
ow

er
 (k

W
)

 

 
actual power sold to the grid
scheduled power sold to the grid

0 1 2 3 4
-500

0

500

days (d)

po
w

er
 (k

W
)

 

 

actual BESS power
scheduled BESS power

0 1 2 3 4
200

400

600

800

1000

1200

days (d)

C
ap

ac
ity

 (k
W

h)

 

 actual BESS Capacity
scheduled BESS capacity

0 1 2 3 4
-500

0

500

1000

1500

2000

2500

days (d)

In
pu

t p
ow

er
 (k

W
)

 

 
actual power sold to the grid
scheduled power sold to the grid

0 1 2 3 4
-500

0

500

days (d)

po
w

er
 (k

W
)

 

 

actual BESS power
scheduled BESS power

0 1 2 3 4
200

400

600

800

1000

1200

days (d)

C
ap

ac
ity

 (k
W

h)

 

 actual BESS Capacity
scheduled BESS capacity

0 1 2 3 4
-500

0

500

1000

1500

2000

2500

days (d)

In
pu

t p
ow

er
 (k

W
)

 

 
actual power sold to the grid
scheduled power sold to the grid

1270



is modeled as a mixed integer linear programming problem, and 
a model predictive control based framework is used to mitigate 
the impaction of wind power production and electricity price 
forecast uncertainty. Two other strategies: D-MPC strategy and 
D-DA strategy are utilized to assessing the performance of the 
control strategy proposed in present paper. Simulation results 
show that the strategy proposed in this paper is superiority and 
feasible. 

Future work will be focused on applying the SMPC strategy to 
a more complicated microgrid with more actual condition. 
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