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Abstract— Population-Based Incremental Learning (PBIL) 
is one of the Evolutionary Algorithms that has received 
increasing attention in recent years due to its effectiveness. 
However, recent studies have shown that PBIL with fixed 
learning rate may suffer from loss of diversity which can lead to 
premature convergence. In this paper, PBIL with adaptive 
learning rate (APBIL) is used to overcome the issues of 
premature convergence. Frequency and time domain simulation 
results are presented to show the effectiveness of the APBIL 
algorithm. 

I. INTRODUCTION  

ITH the increase in power system interconnections, the 
problem of low frequency oscillations has become a 

great concern. These oscillations ranging from 0.2 to 3 Hz 
can restrict the power transfer and sometimes affect the 
security of the power system network [1]-[4]. Over the years, 
different devices such as Static Var Compensators, Power 
System Stabilizers (PSSs) have been used to mitigate low 
frequency oscillations [2], [5], [6]. Power System Stabilizers 
are the most cost effective devices that can be used to damp 
low frequency oscillations [2], [6]. 
Conventional PSSs (CPSS) are traditionally designed using 
classical control techniques such as eigenvalue analysis, 
phase compensation, pole placement, root locus, etc. [3]. 
However, CPSSs based on the classical control techniques 
cannot guarantee the stability of a power system network over 
a wide range of operating conditions. To robustly select the 
parameters of the PSS, Evolutionary Algorithms (EAs)  such 
as Genetic Algorithms (GAs), Differential Evolution (DE), 
have been proposed [2], [5]. Some of the issues with these 
algorithms are related to the optimal selection of genetic 
operators such as crossover, mutation, amplification factor, 
etc. Recently, Population-Based Incremental Learning 
(PBIL), has received increasing attention because of its 
effectiveness and easy implementation. PBIL is a technique 
that combines Genetic Algorithms (GAs) and simple 
Competitive Learning. In PBIL, the entire genetic population 
is represented through a probability vector rather than a 
myriad of chromosomes. Unlike GAs, there is no crossover 
operator in PBIL. PBIL does not maintain a population of 
individuals, but instead works with a probability vector (PV) 
[7]-[8]. During the search, the values in the probability vector 

are updated to represent those in high evaluation vectors. The 
probability update rule is similar to the weight update rule in 
a competitive learning network [7]. At each generation, the 
PV is used to sample new individuals through learning. This 
makes PBIL simpler and more efficient than GAs [7]-[20]. In 
general, a fixed learning rate is used in the update rule of the 
standard PBIL. The standard PBIL with fixed learning rate 
has been successfully applied to engineering optimization 
[13] and power system controller design, where it was shown 
that PBIL-PSS outperforms GA-PSS and the CPSS [9]-[12]. 
However, some authors [14], [15] have suggested that PBIL 
with fixed learning rate may suffer from loss of diversity 
which may lead to premature convergence. To overcome this 
problem, dual PBIL and adaptive learning rate (APBIL) were 
proposed in [15] and [16], respectively.  
   This paper extends previous work [17]-[22], whereby PBIL 
with adaptive learning (APBIL) is applied to PSS design for 
a multi-machine power system. Frequency and time domain 
simulations are presented to show the effectiveness of the 
APBIL algorithm. The results show that the APBIL-PSSs 
provide better damping to the system than the standard PBIL-
PSSs, albeit having slightly higher overshoots and 
undershoots during the first swing. 
 

II. OVERVIEW OF PBIL 

 Over the years, Evolutionary Algorithms (EAs) have been 
increasingly applied in solving various optimization 
problems. Some of the EAs are Genetic Algorithms [5], 
Differential Evolution [6], Estimation of Distribution 
Algorithms to which PBIL belongs [7]-[15] to name only a 
few. PBIL was first proposed by Shumeet Baluja in 1994 [7] 
and later developed in 1995 by Baluja and Caruana, and 
Green [8], [13]. PBIL is a combination of Genetic Algorithms 
and Competitive Learning for function optimization [7]-[15]. 
It uses a probability vector (PV) to generate sample solutions. 
At each generation, the PV is used to sample new individuals 
through learning. Learning consists of using the best solution 
to update the probability vector by pushing it towards 
generating good individuals in the population [7]-[15]. The 
probability update rule is similar to the weight update rule in 
a competitive learning network [7], [8]. At the beginning, the 
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values of the probability vector are set to 0.5 so that the 
probability of generating either 0 or 1 is equal [16]-[22]. Just 
like in GA, the mutation operator is used to maintain diversity 
in the trial solutions [18]-[20]. In this paper, a forgetting 
factor is used to relax the probability vector towards a neutral 
value of 0.5 [18]. 
 It should be mentioned that the PV is a function of the 

learning rate (LR) which is responsible for determining the 

speed at which the PV is shifted towards the best solution 

vector [20]. 

The summary of the PBIL used in this paper is given below 

[7]-[20]:  

� Step 1: Initialization of the probability vector 

(PV) so as to ensure uniformly-random bit 

strings. 

� Step 2: Generation of a population of uniformly-

random bit strings and comparing them element 

by element with the PV. Wherever an element of 

the PV is greater than the corresponding random 

element, a ‘1’ is generated, otherwise a ‘0’ is 

generated. 

� Step 3: Interpretation of each bit string as a 

solution to the problem and evaluation of its merit 

in order to identify the “Best”.  

� Step 4: Adjustment of the PV by slightly 

increasing PV(i) to favor the generation of bit 

strings which resemble “Best”, if Best(i) = 1 and 

decrease PV(i) if Best(i) = 0. 

� Step 5: Generation of a new population reflecting 

the modified distribution. Terminate if a 

satisfactory solution is found or else go to step 3. 

 

If the LR is set too high, the algorithm will not be able to 
explore the whole search space thoroughly and hence it suffers 
premature convergence. On the other hand, if the LR is too 
small, the algorithm may require more time to find the optimal 
solution, which may be time consuming. Therefore, there is a 
need to have a trade-off between exploration and exploitation, 
hence the research on the effect of learning rate is still ongoing 
[16]-[22]. In the next section, we will discuss the PBIL with 
adaptive learning rate. 

III. OVERVIEW OF APBIL 

As discussed previously, in the standard PBIL, the learning 
rate is fixed and this limits the capability of the algorithm. 
Another issue is that a lot of time has to be spent on choosing 
the most suitable LR, although there is no guarantee that it 
will be the optimal value to use. If the search space 
environment is ever changing, which is the case in powers 
systems, a fixed LR may not be adequate in obtaining the 
optimal control parameters [18].  

Unlike the standard PBIL, the APBIL attempts to change 
the learning rate during the optimization process. In 
developing the APBIL, it was assumed that diversity is needed 
at the start of the optimization process so that the algorithm is 
able to thoroughly explore the search space. Taking this into 
consideration, the value of the learning rate is chosen such that 
it is very small at the beginning of the run. This value is varied 

as the optimization process is carried out and increases 
according to the following equation: 

��(�) = �����
�(	)

�
��     (1) 

where 

��(�) is the learning rate at the ith generation 

����� is the final learning rate 


(�) is the ith generation 


��� is the maximum generation 

 

The optimization process is terminated after specific 

number of iterations (generations). In this case, the maximum 

generation was set to 400. Although the above equation is 

very simple, it has shown to improve the performance of the 

algorithm. 

 

IV. POWER SYSTEM MODEL AND OPERATING CONDITIONS 

The power system model used in this paper is the two-area, 

four-machine system which is shown in Fig. 1. In each of the 

two areas, there are two generators with ratings of 900MVA 

and 22kV each. For small signal stability analysis purposes, 

all the machines are modelled using sixth order machine 

model (e.g., sub-transient model). Each machine is equipped 

with a simple exciter modelled by a first order differential 

equation [3], [19]-[22].  

In carrying out the investigations, several operating 

conditions were considered. However, for simplicity, only 

three operating conditions are discussed here as listed in 

Table I.  

 

 
 Fig. 1 Two area multi-machine system [22] 

The operating conditions involve power transfer which varies 
between 100MW to 300MW from area 1 to area 2. These 
operating conditions were obtained by varying the loads at 
buses 4 and 14.  
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Table I: Selected Operating Conditions 

Case Real Power 
Flow[MW] 

1 100 

2 200 

3 300 

 

V. PROBLEM FORMULATION 

The system under study has three fundamental oscillatory 
modes. There are two local area modes, one in area 1 and the 
other in area 2. The local mode in area 1 is caused by 
generator 1 oscillating against generator 2 and the same is 
true for area 2, where generator 3 is oscillating against 
generator 4.  The third mode is the inter-area mode which is 
as a result of the generators in area 1 oscillating against the 
ones in area 2. Since the inter-area modes are the most 
difficult to control, only these modes will be discussed here. 
The inter-area modes are listed in Table II for the three 
operating conditions considered.  
 

Table II: Open-loop poles inter-area oscillations 

Case  Inter-area mode 

1 -0.007±j4.053(0.00173) 

2 0.024±j3.964(-0.00605) 

3 0.048±j3.791(-0.0127) 

Note: damping ratios are in brackets 
 
In this paper, APBIL and PBIL are used to optimize the 
parameters of the Power System Stabilizer (PSS) such that 
adequate damping is provided to the system for pre-specified 
operating conditions. The objective function considered is 
given below as follows:  
 

 � = max (min (�	,�)) (2) 

 
where:  

 �	,� is the damping ratio of the i-th eigenvalue corresponding 

to the j-th operating condition as given below 

�	,� =  ���,�
���,�����,��  

i =1, 2, 3… n  
j = 1, 2, 3 …m  
    

where, the eigenvalues are made up of �	,�  and �	,�  which 

represent the real part and the imaginary part (frequency of 
oscillation), respectively.  
 

VI. PSS DESIGN  

A. PSS Structure 
The structure of the PSS which parameters are to be 

optimized is as follows.  

 

 �(�) =  �� � ��!
1+��!

" �1 + ��#
1 + ��$

" �1 + ��%
1 + ��&

" 

 

(3) 

where ��  is the gain which is responsible for providing 

damping to the system. �!  is the washout time constant, 

which in this paper is set to 10sec. �#  -  �&  are the time 
constants of the lead lag compensators.  

It should be mentioned that the two controllers in area 1 
have the same PSS parameters and the ones in area 2 also 
have the same parameters.   

  

B. Application of PBIL to PSS Design 
Parameter settings of PBIL are as follows: 
 
Population: 100 
Generations: 400 
Learning rate: Fixed at 0.2   
Mutation (Forgetting Factor): 0.005 

C. Application of APBIL to PSS Design 
Parameters settings of the APBIL are as follows:  
 
Population: 100 
Generations: 400 
Learning rate: Adaptive, Varying from: 0.0005 to 0.2   
Mutation (Forgetting Factor): 0.005 

 
The objective function J is maximized subject to the 
following constraints:  

0 ≤ �� ≤30 

0 ≤ �#, �% ≤ 1 

0.01 ≤ �$,�& ≤ 0.3 

 
The optimized PSS parameters for both PBIL and APBIL are 
listed in Table III.  

  

Table III: Optimized PSS parameters 

PSSs Gen �� �# �$ �% �& 

PBIL 1 & 
2 

15.63 0.188 0.019 0.114 0.016 

3 & 
4 

15.79 0.05 0.016 0.057 0.017 

APBIL 1 & 
2 

15.72 0.10 0.025 0.06 0.01 

3 & 
4 

18.52 0.029 0.013 0.083 0.0164 

Note: Gen is short for generator. 

VII. SIMULATION RESULTS  

A. Time Domain Results  
The following figures Fig. 2 - Fig. 7 show the time domain 

simulations that were carried out by applying a 10% step 
disturbance to the reference voltages of the generators.  
Change in generator active power responses are plotted for 
different operating conditions as shown in Table I. Only the 
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results for generator 1 (G1) in area 1 and generator 3 (G3) in 
area 2 are shown in this paper.  

Fig. 2 - Fig. 4 show the responses of PBIL-PSS and APBIL-
PSS for G1. It can be seen that both controllers are able to 
damp the oscillations and improve the stability of the system 
under all the operating conditions considered. However, 
APBIL-PSS provides a better damping with quicker settling 
time than the PBIL-PSS. The settling time of APBIL is 3sec. 
compared to 5sec. for PBIL-PSS. APBIL-PSS also gives 
slightly higher overshoots and undershoots than PBIL-PSS 
during the first swing. This needs to be further investigated.  

It can be seen from Fig. 5 - Fig. 7 (plots for G3) that in terms 
of damping, APBIL-PSS outperforms PBIL-PSS with shorter 
settling time as in the previous Figures. 

 
Fig. 2 Change in active power of G1 for case 1 

 
Fig. 3 Change in active power of G1 for case 2 

 

 
Fig. 4 Change in active power of G1 for case 3 

 

 
Fig. 5 Change in active power of G3 for case 1 

 
Fig. 6 Change in active power of G3 for case 2 
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Fig. 7 Change in active power of G3 for case 3 

B. Frequency Domain Results 
Table IV shows the eigenvalues of the closed-loop system 

together with their damping ratios for the inter-area mode. 
Case 1 in Table II shows that when the system is equipped 
with PBIL-PSSs and APBIL-PSSs, the system’s damping is 
improved. However, APBIL displays a better performance 
having a higher damping ratio of 0.276 compared to 0.191 for 
PBIL. For cases 2- 3, it can be observed that when the system 
is equipped with PBIL-PSS and APBIL-PSS, the inter-area 
modes became stable. However, APBIL-PSSs provide better 
damping than PBIL-PSSs. In all cases, APBIL-PSSs 
outperformed the PBIL-PSSs. 
In the simulations, we do not include the conventional PSS 
and the Genetic Algorithms based PSS (GA-PSSs). This is 
because we have shown previously that PBIL with fixed 
learning rate outperforms GA and the CPSS [9]-[12]. 

 

Table IV: Closed loop Inter-area modes 

Case  PBIL APBIL 

1 -0.88±4.53i 

(0.191) 

-1.25±4.36i 

(0.276) 

2 -0.83±4.51i 

(0.181) 

-1.19±4.34i 

(0.265) 

3 -0.78±4.46i 

(0.172) 

-1.12±4.28i 

(0.254) 

Note: damping ratios are in brackets 

VIII. CONCLUSION 

Robust PSS parameters optimization using APBIL and PBIL 
has been investigated. The simulation results show that by 
varying the learning rate of PBIL, a better performance can 
be obtained. Time domain simulation results show that 
APBIL-PSSs outperform PBIL-PSSs albeit with slightly 
higher overshoots and undershoots during the first swing. 
These results are confirmed by frequency domain results. 
Further work is being carried out to improve the performance 
of APBIL.  
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