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Abstract—Optimisation problems with more than one objec-
tive, of which at least at least one changes over time and at
least two are in conflict with one another, are referred to as
dynamic multi-objective optimisation problems (DMOOPs). The
dynamic vector evaluated particle swarm optimisation (DVEPSO)
algorithm is a co-operative particle swarm optimisation (PSO)-
based algorithm and each of its sub-swarms solves only one
objective function. The sub-swarms then share knowledge with
one another through the particles’ velocity update. The default
DVEPSO algorithm uses global best (gbest) PSOs as its sub-
swarms. The guaranteed convergence PSO (GCPSO) algorithm
prevents stagnation by forcing the global best particle to search
within a defined region for a better solution. Using GCPSO results
in proven convergence to at least a local optimum. Therefore, it is
guaranteed that DVEPSO will converge to at least a local Pareto-
optimal front (POF). This study investigates the effect of using
GCPSOs as sub-swarms of DVEPSO. The results indicate that the
GCPSO version of DVEPSO outperforms the gbest PSO DVEPSO
on type I DMOOPs and in slowly changing environments.

I. INTRODUCTION

Optimisation problems with more than one objective where
at least two objectives are in conflict with one another, are
referred to as multi-objective optimisation problems (MOOPs).
If at least one of the objectives of the MOOP changes over
time, it is called a dynamic multi-objective optimisation prob-
lem (DMOOP). A multi-objective algorithm (MOA) solving a
static MOOP has to find a set of trade-off solutions that are as
close as possible to the optimal set of trade-off solutions, and
that contains a diverse set solutions. In addition to these two
goals, when a dynamic MOA (DMOA) is solving a DMOOP
it has to track the changing set of optimal solutions over time.
Therefore, the ability of a DMOA to converge to the set of
optimal solutions is important.

The dynamic vector evaluated particle swarm optimisa-
tion (DVEPSO) algorithm is a co-operative particle swarm
optimisation (PSO)-based algorithm. Each sub-swarm solves
only one objective and then the sub-swarms share knowledge
amongst each other. Each sub-swarm’s search is guided by a
global guide and local guides. The global guide is a global
best (gbest) position, i.e. the best position found so far by
either the sub-swarm itself or another sub-swarm. A local
guide is normally the personal best (pbest) position, i.e. the
best position found so far by a particle.

One of the issues faced by PSO is that stagnation can occur

if all particles’ position, pbest position and gbest position are
the same for a number of iterations [1]. In this situation, the
particles’ velocity update depends entirely on the value of
inertia component (momentum) term of the velocity update.
If the value of the inertia weight is less than one, this will
cause this term to eventually become zero, causing stagnation.
However, stagnation can be prevented by forcing the gbest to
change if this situation occurs. The guaranteed convergence
PSO (GCPSO) [2], [3] forces the gbest to search for a better
position within a confined region, consequently preventing
stagnation. The goal of this study is to investigate whether
using GCPSO as the sub-swarms of DVEPSO will improve
the performance of DVEPSO when solving DMOOPs.

The rest of the paper’s layout is as follows: Background
information that is required for the rest of the paper, namely
GCPSO and multi-objective optimisation (MOO), is discussed
in Section II. Section III discusses the default DVEPSO con-
figuration. The experimental setup for this study is discussed
in Section IV. The DMOAs used in this study, the benchmark
functions that the algorithms are evaluated on, the performance
measures used to measure the algorithms’ performance and
the statistical analysis approach used to analyse the data are
discussed. Section V presents and discusses the results of the
study. Finally, the conclusions are presented in Section VI.

II. BACKGROUND

This section discusses GCPSO and MOO.

A. Guranteed Convergence Particle Swarm Optimisation Al-
gorithm

GCPSO [2], [3] forces the gbest to search for a better
position within a confined region. Let τ represent the index
of the gbest (ŷ) such that yτ = ŷ. Then the velocity update of
ŷ is defined as:

vτ (t+ 1) = −xτ (t) + ωvτ (t) + ρ(t)(1− 2r2(t)) (1)

where x is the position of the particle, v is the velocity of the
particle, and ρ is a scaling factor, defined as follows:

ρ(t+ 1) =

⎧⎨
⎩
2ρ(t), if #successes(t) > εs
0.5ρ(t), if #failures(t) > εf
ρ(t), otherwise.

(2)

Only the gbest’s velocity is updated using Equation (1). All
other particles use the standard PSO velocity update. The term
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−xτ (t) in Equation (2), resets the gbest’s position to ŷ(t). The
the current search direction is represented by the term ωvτ (t)
and is therefore added to the velocity. A random sample
from the sampling space with lengths 2ρ(t) is generated by
the term ρ(t)(1 − 2r2(t)). GCPSO is forced to perform a
random search in an area that surrounds ŷ(t) by the scaling
term, ρ(t)(1 − 2r2(t)). The diameter of the search area is
controlled by ρ(t) that is defined as specified in Equation (2).
In Equation (2), #successes and #failures refer to the number
of consecutive successes or failures respectively. A failure is
defined as the case where the gbest does not improve, i.e.
f(ŷ(t)) ≤ f(ŷ(t + 1)). The threshold parameters, εf and εs,
adhere to the following conditions:

#successes(t+ 1) > #successes(t),then

#failures(t+ 1) = 0

#failures(t+ 1) > #failures(t),then

#successes(t+ 1) = 0

(3)

B. Multi-objective Optimisation

The conflicts between a MOOP’s objectives result in a
MOOP not having a single optimum, since an improvement
in one objective leads to worse values for at least one other
objective. Therefore, when an algorithm solves MOOPs, it has
to find a set of trade-off solutions thare are as close as possible
to the set of optimal trade-off solutions and that contains a
diverse set of solutions. The set of optimal trade-off solutions
is referred to as the Pareto-optimal set (POS) in the decision
variable space and as the Pareto-optimal front (POF) in the
objective space.

III. DYNAMIC VECTOR-EVALUATED PARTICLE SWARM

OPTIMISATION ALGORITHM

The vector evaluated particle swarm optimisation (VEPSO)
algorithm, a co-operative MOO PSO-based algorithm, was
introduced by Parsopoulos et al. [4] to solve static MOOPs.
Each sub-swarm solves only one objective function and the
gained knowledge of the various sub-swarms is shared with
one another through the global best position used in the
velocity update of the particles.

VEPSO was extended for dynamic multi-objective opti-
misation (DMOO) by Greeff and Engelbrecht [5] and called
DVEPSO. The default configuration of DVEPSO used in this
study works as follows:

• Each sub-swarm is a gbest PSO. Each particle has a
local guide and a global guide that guide its search
through the search space. The particle’s local guide is
its pbest (best position found so far by the particle)
and the global guide is selected through a knowledge
transfer strategy [6], [7] from one of the sub-swarms
called the random knowledge sharing topology [6].
First, a sub-swarm is selected (selected sub-swarm can
be another sub-swarm or the sub-swarm itself). The
gbest of the selected sub-swarm is then selected from
the sub-swarm using tournament selection.

• The particle’s new position is selected as the particle’s
new pbest if its new position leads to a better objective

function value than its current pbest position. When
comparing positions for the pbest update, only the
objective function being optimised by the sub-swarm
is taken into consideration and no Pareto-dominance
relations are used.

• The particle’s new position is selected as the new gbest
if the particle’s new position dominates the current
gbest position. However, if a particle’s new position
is non-dominated with regards to the sub-swarm’s
current gbest position, one of these two positions
is randomly selected as the sub-swarm’s new gbest
position.

• A specified number of particles (called sentry parti-
cles) [8] are randomly selected and re-evaluated after
the algorithm performed the specific iteration, but
before the next iteration starts. If the sentry particle’s
fitness value differs after re-evaluation with more than
a specificed value, the sub-swarm is notified that
a change in the environment has occurred. Once a
change has been detected, the algorithm needs to re-
spond appropriately to the change to address diversity
loss and outdated memory.

• After a change in the environment has occurred,
30% of the particles of the sub-swarm whose ob-
jective function changed is randomly re-initialised.
After re-initialisation, each particle’s objective func-
tion value and its pbest’s objective function value are
re-evaluated. If the particle’s current position results
in a better objective function value than the current
pbest, the pbest position is set to the particle’s current
position. Once all the particles have been re-evaluated,
the sub-swarm’s gbest is re-evaluated using a similar
approach. In addition, the non-dominated solutions in
the archive are also re-evaluated and the solutions that
have become dominated are removed from the archive.

• When the archive is has reached its maximum capac-
ity, a solution is removed from a crowded region in
the archive. Crowded regions in the archive are deter-
mined by calculating each archive solution’s minimum
distance to the other solutions in the archive. The
archive solution with the smallest minimum distance
is then selected for removal from the archive.

IV. EXPERIMENTAL SETUP

This section discusses the experimental setup of the exper-
iments conducted for this study. The DVEPSO configurations
that were evaluated on the selected benchmark functions are
discussed in Section IV-A. Sections IV-B and IV-C discuss
the benchmark functions and performance measures used to
evaluate the performance of the algorithms respectively. The
approach that was followed to analyse the performance of the
various DVEPSO configurations is discussed in Section IV-D.
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A. Dynamic Vector Evaluated Particle Swarm Optimisation
Algorithm Configurations

The following DVEPSO configurations were used in the
study:

• Default DVEPSO using gbest PSO as discussed in
Section III.

• DVEPSO using GCPSO for its sub-swarms. Van den
Bergh and Engelbrecht [3] recommend to use εs = 15
and εf = 5 in high-dimensional search spaces, since
the algorithm is then quicker to punish poor ρ values
than it is to reward successful ρ values. Therefore, for
this study the following ρ-εs-εf were used:

◦ 0.5-3-1, 1.0-3-1, 1.5-3-1, 2.0-3-1
◦ 0.5-6-2, 1.0-6-2, 1.5-6-2, 2.0-6-2
◦ 0.5-9-3, 1.0-9-3, 1.5-9-3, 2.0-9-3

Therefore, 12 GCPSO DVEPSO configurations were
used in this study.

Each algorithm was executed on each benchmark function for
20 environments or changes for 30 independent runs each. For
all DVEPSO configurations sub-swarm sizes of 20 particles
were used. The inertia weight and c1, c2 were set to values
that lead to convergent behaviour [2], namely 0.72, 1.49, and
1.49 respectively. The source code of DVEPSO is available in
the opensource library CIlib [9].

B. Benchmark Functions

Based on the analysis of DMOOPs in [10], nine benchmark
functions were selected to compare the performance of the
DVEPSO configurations. These benchmark functions are of
various DMOOP types [11] and were selected based on the
characteristics of their POF and POS and the specific difficul-
ties they present to a DMOA. These functions include:

• a modified version of DIMP2 [12] with a concave POF
(referred to as DIMP2 in the rest of the paper). DIMP2
is a type I DMOOP and each decision variable has its
own rate of change.

• dMOP2dec [13], a type II DMOOP where both the
POF and POS change over time and the POF changes
from concave to convex and vice versa. Furthermore,
the POF is deceptive, i.e. dMOP2dec has at least two
optima, but the search space favours the deceptive
local POF.

• dMOP3 [14], a type I DMOOP where the POS
changes over time and the POF remains static. The
variable that controls the spread of the solutions also
changes over time.

• FDA4 [11], a type I DMOOP with 3 objective func-
tions.

• FDA5iso [13], a 3-objective type II DMOOP where
the spread of solutions in the POF changes over time.
In addition, FDA5iso has an isolated POF, i.e. the
majority of the fitness landscape is fairly flat and
no useful information is provided with regards to the
location of the POF.

• FDA5dec [13], a type II DMOOP with 3 objectives,
where the spread of solutions in the POF varies over
time. Furthermore, its POF is deceptive.

• HE2 [15], a type III problem where the POF changes
over time, but the POS remains static. It addition, it
has a discontinuous or disconnected POF, i.e. the POF
has disconnected pieces, but each piece is continuous.

• HE7 [16], [10], a type III DMOOP with a non-linear
POS and each decision variable has a different POS.

C. Performance Measures

An analysis of performance measures in [16], [17], [18]
lead to the selection of the following two performance mea-
sures for this study:

• the alternative accuracy measure (accalt) [19] that
measures the difference between the hypervol-
ume [20], [21] of the found or approximated POF and
the hypervolume of the true POF. A low acc value
indicates good performance. This measure is referred
to as acc in this paper.

• stability (stab) [19] that quantifies the effect of
changes in the environment on acc of the DMOA.
It measures the difference in acc of two consecutive
executive environments, i.e. whether the acc remains
relatively stable for the various environments. A low
stab value indicates good performance. It is referred
to as stab in this paper.

The hypervolume value required for these measures was
calculated according to [22]. The reference vector used for
the hypervolume calculations was the worst objective function
value for each dimension.

D. Statistical Analysis

For each DMOOP, for each environment, and for each
performance measure, the following process was followed for
the statistical analysis of the results [23]:

1) For each time step just before a change in the envi-
ronment occurred, the average performance measure
value over 30 runs was calculated for each algorithm.
Therefore, for each algorithm and for each environ-
ment there were 30 performance measure values.

2) A Kruskal-Wallis test was performed on these perfor-
mance measure values obtained by all the DVEPSO
configurations to determine whether there was a
statistical significant difference between the perfor-
mance of these algorithms.

3) If the Kruskal-Wallis test indicated that there was a
statistical significant difference between the perfor-
mance measure values, a pair-wise Mann-Whitney U
test was performed for each pair of DMOAs.

4) If the Mann-Whitney U test indicated a statistical
significant difference, wins and losses were awarded
based on the average performance measure value of
each time step just before a change in the environment
occurred as follows:
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• At each time step just before a change in
the environment occurred, the average per-
formance measure values of the two DMOAs
were compared.

• The DMOA with the best performance mea-
sure value was awarded a win and the other
DMOA was awarded a loss.

• In order to prevent skewed results, the number
of wins and losses were normalised for each
DMOOP.

A confidence level of 95% was used for all statistical tests.

V. RESULTS

This section presents the results obtained by the various
DVEPSO configurations. It should be noted that DVEPSO has
been extensively evaluated against other DMOAs on a wide
range of benchmark functions and environment types [23],
[16]. Therefore, in this paper the effect of using GCPSOs
as sub-swarms is investigated by comparing various DVEPSO
configurations’ (refer to Section IV-A) performances against
one another.

A. Overall Performance

This section discusses the results that were obtained over
all the environments, all the performance measures and all
the benchmark functions. The overall wins and losses are
presented in Table I. In all tables in this section, Dd refers
to the default DVEPSO configuration and GCr,s refers to a
GCPSO configuration that uses GCPSOs for the sub-swarms
with ρ = r, εs = s, εf = εs/3.

The results indicate that Dd performed the best, obtaining
many more wins than losses. GC1.0,9 obtained the second best
rank and the worst performing algorithm was GC2.0,9.

Table II presents the average acc values obtained by the
various DVEPSO algorithms for each benchmark function. The
results indicate that Dd performed the best for HE2, HE7
and FDA5iso. GC1.5,3 performed the best for DIMP2 and
GC1.5,6 was the best performing algorithm for dMOP2dec.
GC0.5,6 performed the best forfor dMOP3. For FDA4 GC1.5,6

obtained the best acc average. Therefore, Dd obtained the best
acc average for 3 benchmarks, GC1.5,6 for 2 benchmarks, and
GC0.5,6 and GC1.5,3 for 1 benchmark.

B. Performance per Measure

The wins and losses that were obtained per measure, over
all benchmarks and all environments, are discussed in this
section. Table III presents the wins and losses obtained for each
performance measure. For acc a similar trend was observed as
for the overall performance. Once again, the Dd obtained the
best rank for acc and GC1.0,9 obtained the second best rank.
Dd performed the best for stab and was the only algorithm
that obtained more wins than losses for stab.

C. Performance per Environment

Table IV presents the wins and losses over all benchmark
functions and all performance measures for each of the envi-
ronments.

Dd performed the best in all environments, except slowly
changing environments (nt = 10, τt = 25) where it ranked
11th out of 13 algorithms. For slowly changing environments
GC1.0,9 performed the best. Furthermore, from the GCPSO
configurations, GC1.0,9 performed the best overall, since it
obtained a top 3 rank in three of the four environments and a
rank of 5 out of 13 for the fourth environment. GC1.0,9 was
also the only algorithm that obtained more wins than losses in
all environments.

D. Performance per DMOOP Type

This section discusses the performance of the algorithms
for each DMOOP type.

The wins and losses obtained for type I DMOOPs are
presented in Table VI. The type I DMOOPs are dMOP3, FDA4
and DIMP2. GC1.0,9 performed the best acc. Dd performed
poorly for acc, obtaining the worst rank and being award much
more losses than wins. However, the opposite is true for these
two algorithms for stab. GC0.5,6 obtained good results for both
acc and stab, being ranked third and fourth respectively for
these measures.

Table VIII presents the wins and losses for type II
DMOOPs. The type II DMOOPs are dMOP2dec, FDA5iso and
FDA5dec. For type II DMOOPs Dd performed the best for both
acc and stab. However, there is not a huge difference in the
number of wins between the various algorithms for type II
DMOOPs.

The wins and losses for type III DMOOPs are presented
in Table IX. The type III DMOOPs are HE2 and HE7. Dd

outperformed the other algorithms for acc, obtaining many
more wins than losses. The worst performing algorithm was
GC1.0,6. GC1.0,9 obtained the second best rank for acc and also
obtained more wins than losses. Only three algorithms were
awarded more wins than losses for acc, namley Dd, GC1.0,9

and GC0.5,9.

E. Discussion of Results

Figures 1 and 2 illustrate the approximated POFs found by
the algorithms. The GCPSO approaches found a much better
spread of solutions for these functions, which resulted in better
hypervolume and acc values.

VI. CONCLUSIONS

This study investigated the effect of using guaranteed con-
vergence PSO (GCPSO) for the sub-swarms of dynamic vector
evaluated particle swarm optimisation (DVEPSO). GCPSO
forces the gbest to search for a better solution within a confined
region and thereby avoid stagnation. The results indicated that
the GCPSO configurations of DVEPSO outperformed the de-
fault DVEPSO configuration in slowly changing environments
and on type I dynamic multi-objective optimisation problems
(DMOOPs), where the Pareto-optimal front (POF) remains
static but the Pareto-optimal set (POS) changes over time.

Future work will include investigating the effect of the
parameters that determine the search area of the gbest on a
larger set of benchmarks and a larger set of environments. In
addition, a study will be conducted where a heterogoneous
DVEPSO will be evaluated on a wide range of DMOOPs.
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Fig. 1: Approximated POFs found by Dd and GC0.5,6 and true POF for dMOP3 with nt = 10 and τt = 25
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Fig. 2: Approximated POFs found by Dd and GC1.5,6 for FDA4 with nt = 10 and τt = 25
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TABLE I: Overall wins for the various DVEPSO configurations

Results DMOO Algorithm
Dd GC0.5;3 GC0.5;6 GC0.5;9 GC1.0;3 GC1.0;6 GC1.0;9 GC1.5;3 GC1.5;6 GC1.5;9 GC2.0;3 GC2.0;6 GC2.0;9

Wins 197.5 20.65 26.45 26.9 21.45 15.2 44.6 24.55 26.1 24.7 28.25 26.4 30.35
Losses 110.7 32.25 34.5 27.0 31.45 36.5 22.0 34.3 38.75 31.15 30.65 26.5 54.55

Diff 86.8 -11.6 -8.05 -0.1 -10.0 -21.3 22.6 -9.75 -12.65 -6.45 -2.4 -0.1 -24.2
Rank 1.0 10.0 7.0 3.0 9.0 12.0 2.0 8.0 11.0 6.0 5.0 3.0 13.0

TABLE II: Average acc value for various DVEPSO configurations

DMOOP DMOO Algorithm
Dd GC0.5;3 GC0.5;6 GC0.5;9 GC1.0;3 GC1.0;6 GC1.0;9 GC1.5;3 GC1.5;6 GC1.5;9 GC2.0;3 GC2.0;6 GC2.0;9

DIMP2 0.493 0.436 0.431 0.450 0.443 0.459 0.449 0.425 0.433 0.430 0.435 0.443 0.431
dMOP2dec 0.067 0.066 0.067 0.068 0.067 0.067 0.066 0.066 0.065 0.067 0.068 0.067 0.067

dMOP3 1.480 1.249 1.180 1.232 1.242 1.289 1.232 1.179 1.233 1.216 1.206 1.245 1.279
HE2 4.325 4.405 4.527 4.522 4.470 4.498 4.435 4.493 4.413 4.454 4.486 4.491 4.362
HE7 2.786 4.813 4.648 4.078 4.938 4.148 4.613 4.590 4.590 4.872 4.692 4.085 5.061

FDA4 34.969 17.666 16.456 16.877 16.100 17.318 16.689 17.915 15.846 17.723 17.899 15.866 17.260
FDA5iso 39.054 45.221 45.655 46.774 45.409 45.648 46.137 46.509 46.217 45.818 45.537 46.016 46.019

TABLE III: Overall wins and losses per performance measure for various DVEPSO configurations

Measure Results DMOO Algorithm
Dd GC0.5;3 GC0.5;6 GC0.5;9 GC1.0;3 GC1.0;6 GC1.0;9 GC1.5;3 GC1.5;6 GC1.5;9 GC2.0;3 GC2.0;6 GC2.0;9

acc Wins 140.25 20.55 26.45 26.75 21.2 15.2 44.3 23.6 25.75 24.35 28.1 26.3 30.1
acc Losses 107.75 27.45 30.55 22.25 26.8 32.8 16.7 29.4 33.25 25.65 25.9 21.7 49.9
acc Diff 32.5 -6.9 -4.1 4.5 -5.6 -17.6 27.6 -5.8 -7.5 -1.3 2.2 4.6 -19.8
acc Rank 1.0 10.0 7.0 4.0 8.0 12.0 2.0 9.0 11.0 6.0 5.0 3.0 13.0
stab Wins 57.25 0.1 0.0 0.15 0.25 0.0 0.3 0.95 0.35 0.35 0.15 0.1 0.25
stab Losses 2.95 4.8 3.95 4.75 4.65 3.7 5.3 4.9 5.5 5.5 4.75 4.8 4.65
stab Diff 54.3 -4.7 -3.95 -4.6 -4.4 -3.7 -5.0 -3.95 -5.15 -5.15 -4.6 -4.7 -4.4
stab Rank 1.0 9.0 3.0 7.0 5.0 2.0 11.0 4.0 12.0 12.0 7.0 9.0 5.0

TABLE IV: Overall wins and losses per environment for various DVEPSO configurations

nt-τt Results DMOO Algorithm
Dd GC0.5;3 GC0.5;6 GC0.5;9 GC1.0;3 GC1.0;6 GC1.0;9 GC1.5;3 GC1.5;6 GC1.5;9 GC2.0;3 GC2.0;6 GC2.0;9

10-10 Wins 38.9 4.35 6.55 5.05 5.85 3.35 5.55 5.1 11.85 4.25 3.2 8.25 14.65
10-10 Losses 30.0 5.25 11.05 6.55 7.75 8.2 4.95 10.45 4.7 5.3 8.4 4.35 9.95
10-10 Diff 8.9 -0.9 -4.5 -1.5 -1.9 -4.85 0.6 -5.35 7.15 -1.05 -5.2 3.9 4.7
10-10 Rank 1.0 6.0 10.0 8.0 9.0 11.0 5.0 13.0 2.0 7.0 12.0 4.0 3.0
10-25 Wins 33.35 4.3 3.3 8.1 3.95 1.95 12.2 1.3 4.9 4.85 7.7 4.85 5.25
10-25 Losses 36.75 5.3 5.3 4.5 3.65 5.6 4.35 3.3 4.7 3.75 3.9 3.75 10.35
10-25 Diff -3.4 -1.0 -2.0 3.6 0.3 -3.65 7.85 -2.0 0.2 1.1 3.8 1.1 -5.1
10-25 Rank 11.0 8.0 9.0 3.0 6.0 12.0 1.0 9.0 7.0 4.0 2.0 4.0 13.0
10-5 Wins 47.7 2.15 14.7 10.1 4.45 6.95 15.1 1.6 6.95 6.85 10.95 6.45 5.7
10-5 Losses 24.95 14.4 4.9 5.45 11.15 5.6 4.4 13.95 9.6 10.7 5.6 9.1 18.85
10-5 Diff 22.75 -12.25 9.8 4.65 -6.7 1.35 10.7 -12.35 -2.65 -3.85 5.35 -2.65 -13.15
10-5 Rank 1.0 11.0 3.0 5.0 10.0 6.0 2.0 12.0 7.0 9.0 4.0 7.0 13.0
1-10 Wins 77.55 9.85 1.9 3.65 7.2 2.95 11.75 16.55 2.4 8.75 6.4 6.85 4.75
1-10 Losses 19.0 7.3 13.25 10.5 8.9 17.1 8.3 6.6 19.75 11.4 12.75 9.3 15.4
1-10 Diff 58.55 2.55 -11.35 -6.85 -1.7 -14.15 3.45 9.95 -17.35 -2.65 -6.35 -2.45 -10.65
1-10 Rank 1.0 4.0 11.0 9.0 5.0 12.0 3.0 2.0 13.0 7.0 8.0 6.0 10.0

TABLE V: Overall wins and losses per performance measure for various DVEPSO configurations solving type I DMOOPs

TABLE VI: Overall wins and losses per performance measure for various DVEPSO configurations

Measure Results DMOO Algorithm
Dd GC0.5;3 GC0.5;6 GC0.5;9 GC1.0;3 GC1.0;6 GC1.0;9 GC1.5;3 GC1.5;6 GC1.5;9 GC2.0;3 GC2.0;6 GC2.0;9

acc Wins 14.8 15.65 17.65 12.65 18.1 12.7 20.35 17.8 18.15 17.6 21.0 19.85 16.7
acc Losses 97.2 11.35 8.35 5.35 5.9 11.3 2.65 12.2 16.85 11.4 9.0 5.15 23.3
acc Diff -82.4 4.3 9.3 7.3 12.2 1.4 17.7 5.6 1.3 6.2 12.0 14.7 -6.6
acc Rank 13.0 9.0 5.0 6.0 3.0 10.0 1.0 8.0 11.0 7.0 4.0 2.0 12.0
stab Wins 21.65 0.1 0.0 0.15 0.25 0.0 0.3 0.1 0.35 0.35 0.15 0.1 0.25
stab Losses 2.1 1.8 0.95 1.75 1.65 0.95 2.55 1.8 2.5 2.5 1.75 1.8 1.65
stab Diff 19.55 -1.7 -0.95 -1.6 -1.4 -0.95 -2.25 -1.7 -2.15 -2.15 -1.6 -1.7 -1.4
stab Rank 1.0 8.0 2.0 6.0 4.0 2.0 13.0 8.0 11.0 11.0 6.0 8.0 4.0
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TABLE VII: Overall wins and losses per performance measure for various DVEPSO configurations solving type II DMOOPs

TABLE VIII: Overall wins and losses per performance measure for various DVEPSO configurations

Measure Results DMOO Algorithm
Dd GC0.5;3 GC0.5;6 GC0.5;9 GC1.0;3 GC1.0;6 GC1.0;9 GC1.5;3 GC1.5;6 GC1.5;9 GC2.0;3 GC2.0;6 GC2.0;9

acc Wins 60.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
acc Losses 0.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
acc Diff 60.0 -5.0 -5.0 -5.0 -5.0 -5.0 -5.0 -5.0 -5.0 -5.0 -5.0 -5.0 -5.0
acc Rank 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
stab Wins 35.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
stab Losses 0.0 3.0 3.0 3.0 3.0 2.75 2.75 3.0 3.0 3.0 3.0 3.0 3.0
stab Diff 35.5 -3.0 -3.0 -3.0 -3.0 -2.75 -2.75 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0
stab Rank 1.0 4.0 4.0 4.0 4.0 2.0 2.0 4.0 4.0 4.0 4.0 4.0 4.0

TABLE IX: Overall wins and losses per performance measure for various DVEPSO configurations solving type III DMOOPs

Measure Results DMOO Algorithm
Dd GC0.5;3 GC0.5;6 GC0.5;9 GC1.0;3 GC1.0;6 GC1.0;9 GC1.5;3 GC1.5;6 GC1.5;9 GC2.0;3 GC2.0;6 GC2.0;9

acc Wins 65.45 4.9 8.8 14.1 3.1 2.5 23.95 5.8 7.6 6.75 7.1 6.45 13.4
acc Losses 10.55 11.1 17.2 11.9 15.9 16.5 9.05 12.2 11.4 9.25 11.9 11.55 21.6
acc Diff 54.9 -6.2 -8.4 2.2 -12.8 -14.0 14.9 -6.4 -3.8 -2.5 -4.8 -5.1 -8.2
acc Rank 1.0 8.0 11.0 3.0 12.0 13.0 2.0 9.0 5.0 4.0 6.0 7.0 10.0
stab Wins 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.85 0.0 0.0 0.0 0.0 0.0
stab Losses 0.85 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0
stab Diff -0.75 0.0 0.0 0.0 0.0 0.0 0.0 0.75 0.0 0.0 0.0 0.0 0.0
stab Rank 13.0 2.0 2.0 2.0 2.0 2.0 2.0 1.0 2.0 2.0 2.0 2.0 2.0

The heterogeneous DVEPSO will contain particles with dif-
ferent behaviours within one sub-swarm, of which one of the
behaviours will be using the GCPSO position and velocity
updates.

Once a robust DVEPSO algorithm has been developed
taking the results of the aforementioned studies into account,
DVEPSO will be evaluated against state-of-the-art dynamic
MOAs (DMOAs) that were recently proposed [24].
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[19] M. Cámara, J. Ortega, and F. de Toro, “A single front genetic algorithm
for parallel multi-objective optimization in dynamic environments,”
Neurocomputing, vol. 72, no. 16–18, pp. 3570–3579, 2007.

1292



[20] E. Zitzler and L. Thiele, “Multiobjective optimization using evolution-
ary algorithms a comparative case study,” vol. 1498, pp. 292–301,
1998.

[21] ——, “Multiobjective evolutionary algorithms: a comparative case study
and the strength pareto approach,” IEEE Transactions on Evolutionary
Computation, vol. 3, no. 4, pp. 257–271, nov 1999.

[22] C. Fonseca, L. Paquete, and M. Lopez-Ibanez, “An improved
dimension-sweep algorithm for the hypervolume indicator,” in Proceed-
ings of Congress on Evolutionary Computation, july 2006, pp. 1157–

1163.

[23] M. Helbig and A. Engelbrecht, “Analysing the performance of dynamic
multi-objective optimisation algorithms,” in Proceedings of the IEEE
Congress on Evolutionary Computation, Cancún, Mexico, June 2013,
pp. 1531–1539.

[24] ——, “Results of the IEEE CEC 2015 DMOO
Competition,” To be published. [Online]. Available:
https://sites.google.com/site/cec2015dmoocomp/

1293


