
Co-operative Vector-Evaluated Particle Swarm
Optimization for Multi-objective Optimization

Justin Maltese
Department of Computer Science

Brock University

St, Catharines, ON, Canada

jm10lh@brocku.ca

Beatrice M. Ombuki-Berman
Department of Computer Science

Brock University

St Catharines, ON, Canada

bombuki@brocku.ca

Andries. P. Engelbrecht
Department of Computer Science

University of Pretoria

Pretoria, South Africa

engel@cs.up.ac.za

Abstract—Vector-evaluated particle swarm optimization is a
particle swarm optimization variant which employs multiple
swarms to solve multi-objective optimization problems. Recently,
three variants of particle swarm optimization which utilize co-
operative principles were shown to improve performance in
single-objective environments. This work proposes co-operative
vector-evaluated particle swarm optimization algorithms, which
employ co-operative particle swarm optimization variants within
vector-evaluated particle swarm optimization swarms. Perfor-
mance of the proposed algorithms is compared with the standard
vector-evaluated particle swarm optimization algorithm using
various knowledge transfer strategies. A comparison of the
best performing co-operative vector-evaluated particle swarm
optimization variants is also made against well-known multi-
objective PSO algorithms. Each co-operative vector-evaluated
particle swarm optimization variant significantly outperforms
standard vector-evaluated particle swarm optimization with re-
spect to the hypervolume metric, with two of three variants
also yielding improved solution distribution. The results indicate
that co-operation is a powerful tool which enhances hypervolume
and solution distribution of the original vector-evaluated particle
swarm optimization algorithm, allowing co-operative vector-
evaluated particle swarm optimization variants to successfully
compete with top multi-objective PSO optimization algorithms.

I. INTRODUCTION

Many real-world optimization problems contain multiple
(often conflicting) objectives to be dealt with simultane-
ously. Problems of this nature are commonly referred to
as multi-objective problems (MOPs). One such algorithm
which tackles MOPs is the vector-evaluated particle swarm
optimization (VEPSO) algorithm [1], an extension of the
heuristic-based particle swarm optimization (PSO) algorithm
[2]. VEPSO utilizes a multi-swarm model, optimizing each
objective individually using a dedicated swarm. However, each
swarm also simultaneously optimizes the problem as a whole
by passing information to other swarms using a knowledge
transfer strategy (KTS).

In an attempt to improve performance of the original
VEPSO algorithm, several researchers have experimented with
modifying different aspects of VEPSO. Specifically, the fol-
lowing modifications have been made in previous work:

• Harrison et al. proposed additional KTSs [3] and
investigated scalability as the number of objectives
increases [4].

• Matthyssen et al. [5] addressed the issue of stagnation
within VEPSO.

• Helbig and Engelbrecht adapted VEPSO to solve dy-
namic MOPs [6] and introduced a variant of VEPSO
which utilized non-dominated solution guides [7].

One area which exhibits high potential for improvement
is the optimization algorithm used by the individual swarms
within VEPSO. Traditionally, each swarm uses the original
PSO algorithm to perform optimization. Recently the per-
formance of PSO has been improved for single-objective
optimization by applying concepts inspired from cooperative
systems [8]. These co-operative concepts deal with partition-
ing the search space into lower dimensional subspaces to
avoid performance deterioration as search space dimensionality
increases. This paper applies these co-operative principles
to each swarm within VEPSO, attempting to enhance the
performance of each individual PSO swarm and thus hopefully
improving the overall performance of the VEPSO algorithm.

The remainder of this paper is organized as follows: Sec-
tion II contains background information about multi-objective
optimization and algorithms such as PSO, VEPSO and CPSO.
Section III provides an explanation of how VEPSO with CPSO
swarms is implemented. Section IV describes the experimental
setup used in this study. Section V presents the results of
all experiments performed, including analysis and discussion
of observations. Finally, Section VI concludes the paper and
suggests avenues for future research.

II. BACKGROUND

This section provides an overview of all concepts pertain-
ing to this paper. Topics covered are multi-objective optimiza-
tion, PSO, CPSO variants, and VEPSO.

A. Multi-objective Optimization

Multi-objective optimization deals with simultaneously op-
timizing more than one objective. MOPs are especially chal-
lenging when objectives conflict with one another, requiring a
series of trade-offs during optimization. A typical MOP can
be formally expressed as

minimize �f(�x)

subject to �x ∈ [xmin, xmax]
nx
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where �f(�x) = f1(�x), f2(�x), ..., fnc
(�x)), �x = (x1, x2, ..., xnx

);
nx refers to the dimensionality of the search space and nc

represents the number of objectives. Solutions which cannot
improve any objective further without worsening any other
objective are extremely desirable for MOPs, referred to as
Pareto optimal solutions. The set of Pareto optimal solutions,
referred to as the Pareto front, is typically the end goal of a
multi-objective optimizer.

B. Particle Swarm Optimization

PSO [2] is a stochastic metaheuristic optimization al-
gorithm which simulates the flocking behavior of birds. A
swarm of particles is used for optimization purposes, where
each particle represents a candidate solution with respect to
the problem being optimized. Particles iteratively improve
solutions by moving towards the position of the best candidate
solution found by the particle’s neighbourhood and the best
candidate solution found by the particle itself. Initial particle
positions are generated randomly within the valid boundaries
of the search space.

The PSO algorithm utilizes two update equations, which
are:

S.�vi(t+ 1) = ωS.�vi(t) + c1�r1(S.�yi(t)− S.�xi(t))

+ c2�r2(S.�̂y(t)− S.�xi(t)) (1)

S.�xi(t+ 1) = S.�xi(t) + S.�vi(t+ 1) (2)

where S.�vi corresponds to the velocity of particle i in swarm
S, S.�x references the current position of particle i in swarm
S, S.�yi is the personal best position of particle i in swarm

S, S.�̂y represents the global best (GBest) position of swarm
S, �r1 and �r2 are vectors of random numbers sampled from a
uniform distribution in the range [0,1], ω is the inertia weight,
c1 is the cognitive weight and c2 is the social weight.

C. Co-operative Particle Swarm Optimization

The original PSO algorithm, along with many other
stochastic optimization algorithms, suffers from a problem
called the “curse of dimensionality” [9]. In general terms, the
curse of dimensionality implies that algorithmic performance
wanes as problem dimensionality increases. In an attempt to
overcome the curse of dimensionality problem, Van den Bergh
and Engelbrecht [10] proposed a new variant of PSO based on
concepts observed in co-operative systems, referred to as the
co-operative PSO (CPSO). This variant later became known
as co-operative split PSO (CPSO-S).

CPSO-S improves the PSO algorithm by partitioning the
search space into lower dimensional subspaces. This partioning
is performed by splitting the single swarm which is attempting
to optimize a vector of nx dimensions into nx subswarms
each optimizing a single dimension. In order to evaluate the
quality of candidate solutions, CPSO-S maintains a vector
whose components consists of the global best positions of each
subswarm respectively, referred to as a context vector [11].

Although CPSO-S was empirically determined to perform
well [12], it was found that the algorithm suffered performance
degradation in the case of dependent decision variables due
to being erroneously considered in isolation. To reduce the

impact of the variable dependence problem, Van den Bergh
and Engelbrecht [12] introduced a variant of CPSO-S named
CPSO-SK. CPSO-SK is similar to CPSO-S, however CPSO-SK

splits the nx-dimensional search space into k parts arbitrarily.
Each swarm therefore optimizes nx

k dimensions with the hope
that related dimensions are optimized together.

CPSO-S and CPSO-SK both experience a stagnation prob-
lem in the presence of deceptive functions, a problem not
present in the original PSO algorithm [10]. These algorithms
are susceptible to becoming stuck in pseudo-optima - locations
which are not locally or globally optimal. To address this
problem, the CPSO-HK hybrid algorithm [10] was proposed
which executes CPSO-SK and regular PSO sequentially. Note
that CPSO-HK uses a KTS to exchange information between
the CPSO-SK and PSO algorithm. Knowledge transfer is done
by simply injecting the best solution from CPSO-SK into the
PSO swarm and vice-versa.

D. Vector Evaluated Particle Swarm Optimization

Parsopoulos and Vrahatis [1] proposed the vector-evaluated
PSO (VEPSO) algorithm as a multi-objective extension to
the original PSO algorithm. To solve MOPs, VEPSO em-
ploys a multi-swarm model where each swarm is tasked
with optimizing a single objective. The problem as a whole
is optimized through the use of a KTS, as swarms pass
optimization information among themselves. VEPSO KTSs
each uniquely modify the choice of global guide for each
swarm, where a global guide is a particle whose dimensions

are used in equation (3) instead of �̂y. VEPSO KTSs introduced
in previous literature are the ring KTS [1], random KTS [13],
parent-centric crossover (PCX) archive KTS [3] and the PCX
GBest KTS [3].

VEPSO uses the concept of Pareto domination and saves
non-dominated solutions within a structure referred to as
the archive. A size limit is defined for the archive prior to
optimization. Previous work [14] has demonstrated that larger
archive sizes increase accuracy while smaller archive sizes
yield better stability. Particle fitness is evaluated as a vector of
sub-objective fitnesses rather than a single scalar value.

III. CO-OPERATIVE VECTOR-EVALUATED PARTICLE

SWARM OPTIMIZATION

This section proposes the co-operative VEPSO (CVEPSO)
algorithm and its variants. Implementation details such as
knowledge transfer and archive addition/maintenance are ad-
dressed.

A. Co-operation Incorporation

Co-operative principles are incorporated into VEPSO to
produce CVEPSO by simply replacing the standard PSO used
by each swarm of VEPSO with a CPSO variant. The following
algorithms are proposed as variants of CVEPSO:

• CVEPSO-S: VEPSO which utilizes CPSO-S sub-
swarms.

• CVEPSO-SK: VEPSO which utilizes CPSO-SK sub-
swarms.

• CVEPSO-HK: VEPSO which utilizes CPSO-HK sub-
swarms.
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B. Knowledge Transfer

Using a CVEPSO variant does not affect the knowledge
transfer method. Knowledge flow between swarms (with re-
spect to the chosen KTS) remains the same irrespective of
whether PSO or a CPSO variant is used. The ring, random and
PCX GBest KTSs require a “global best” particle to determine
the global guides. Because there is no global best position in
the CPSO variants, these KTSs use the context vector instead
of a global best particle. Figure 1 exemplifies knowledge flow
of the random KTS via utilization of the context vector.

C. Archive Addition and Maintenance

Whenever a context vector of a CVEPSO swarm is
non-dominated with reference to all current solutions in the
archive, that context vector is added into the archive. If a
non-dominated context vector is found while the archive is
full, the context vector is added to the archive and a removal
strategy is executed to return the archive to its size limit. It is
desirable to select removal strategies which promote solution
diversity within the archive, however, random strategies are
also possible.

IV. EXPERIMENTAL SETUP

This section details the methods and components used
in performing experimentation. Topics covered include per-
formance measures, statistical analysis methods, algorithm
parameters and benchmark functions.

A. Performance Measures

The performance measures used in this work aim to provide
a fair assessment of each algorithm without assuming a known
Pareto front. Each measure used is based solely on the obtained
approximation front, as described below.

Hypervolume: The hypervolume indicator [15] is a scalar
metric which measures the hypervolume of the objective
space that is weakly dominated by an approximation set. To
maximize hypervolume, the solution set must solely consist
of Pareto-optimal points. Hypervolume calculation has been
shown to be an NP-hard problem [16], taking exponential time
in the number of objectives.

Solution Distribution: Introduced in [17], the solution
distribution metric measures the spacing density of a given
set of solutions. Minimizing the solution distribution metric
corresponds to a more desirable solution spread.

B. Statistical Methods

The Mann-Whitney-Wilcoxon rank sum test [18] was used
in a pairwise fashion to check for statistical significance in all
experiments. In the case of a statistically significant difference,
the algorithm with the higher mean over 30 independent runs
was given a win and the algorithm with the lower mean was
given a loss. A confidence level of 95% was used for each
test.

Fig. 1. Visualization of the random KTS knowledge transfer flow using
context vectors. The example illustrates CVEPSO for a three objective
problem.

C. Particle Swarm Optimization Parameters

Each PSO swarm was created with 50 particles. The
initial velocity of these particles was set to zero. To ensure
convergent weight values [19], ω was set to 0.729844, c1 was
set to 1.496180 and c2 was set to 1.496180. Particles were
re-initialized randomly within the legal bounds of the search
space in the case where a boundary constraint was violated.

D. Co-operative Particle Swarm Optimization Parameters

To ensure an unbiased comparison between PSO and
the CPSO-S and CPSO-SK variants, each CVEPSO swarm
was assigned the same number of particles, i.e 50, before
performing splitting into sub-swarms. When the sub-swarm
split was performed based on the CPSO variant, the particles
were divided as evenly as possible across all sub-swarms. This
ensured an identical number of fitness function evaluations
for each algorithm. The weight values, initial velocity val-
ues, boundary clamping techniques and synchronous update
methodologies were identical to those of PSO, described in
Section IV.D.

The k value of CPSO-SK was set to 6 for all experiments,
motivated by previous work in [12] and validated empirically.
The CPSO-SK swarm within CPSO-HK also used a k value of
6.

E. Vector Evaluated Particle Swarm Optimization Parameters

The number of swarms used in the VEPSO and CVEPSO
algorithms were equal to the number of objectives required
for a given optimization problem. The size limit of the archive
was set to 250 solutions. When inserting a solution into a full
archive, a solution was removed according to a distance-based
strategy, promoting archive diversity. Distance-based removal
selected the two solutions with the smallest distance between
each other and removed one of them randomly.
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F. Benchmark Suites

Various benchmark suites exist to test the performance of
multi-objective optimizers. One such suite, the Walking Fish
Group (WFG) suite [20], provides a set of problems that are
defined in terms of a vector of parameters. Various transition
and shape functions are applied to the WFG problem set to
produce complex Pareto fronts. The WFG functions provide
a wide variety of shapes and modalities, incorporating unique
difficulties such as deception, degeneracy and disconnection.

Each WFG function in this work uses an identical pa-
rameter set, consisting of three objectives and a total of
24 decision parameters. The decision parameters contain 20
position-related parameters and four distance-related param-
eters. A complete overview of WFG suite problems can be
found in [20], [21].

V. EXPERIMENTAL RESULTS AND DISCUSSION

This section presents and discusses results obtained from
the experiments performed. Section V.A consists of experi-
ments comparing the performance of each CVEPSO variant
using four distinct KTSs. In Section V.B, experiments com-
paring the performance of the two best CVEPSO variants
combinations against other well known multi-objective PSO
algorithms are presented and discussed.

A. Algorithm Performance

The performance of each algorithm was compared with the
objective of establishing which algorithms, if any, performed
significantly better over each of the functions.

1) Ring Knowledge Transfer Strategy: The performance
of the VEPSO, CVEPSO-S, CVEPSO-SK and CVEPSO-HK

algorithms was compared over the nine WFG functions using
the ring KTS. Table II presents the results of these experiments
for both the hypervolume and distribution metric, while Table
III displays the minimum, maximum and mean rank over all
functions for each algorithm in Table II.

VEPSO yielded extremely poor hypervolume performance
in comparison to the other algorithms, because VEPSO
recorded one or more losses over each function. Thus, it can
be deduced that at least one CVEPSO variant produced a
better hypervolume over VEPSO for each WFG function when
the ring KTS was used. Concerning the performance of the
CVEPSO variants, CVEPSO-SK outperformed CVEPSO-HK

for the hypervolume metric. However, both algorithms ex-
perienced considerably worse hypervolume rankings over the
WFG functions on average in comparison to CVEPSO-S.

With regards to the distribution metric, CVEPSO-SK

obtained the lowest mean rank. CVEPSO-HK distributed
non-dominated solutions better than CVEPSO-SK, but worse
than CVEPSO-S and VEPSO on average. Note that CVEPSO
distributed non-dominated solutions significantly better than all
three CVEPSO variants for WFG1 and WFG3. Thus it cannot
be concluded that any one of the CVEPSO variants produced
a better non-dominated solution spread than VEPSO for any
function.

Overall, notable observations were that CVEPSO-S was
undoubtedly the top performing algorithm. CVEPSO-S was

TABLE I. MANN-WHITNEY WINS AND LOSSES FOR RING KTS

WFG Function
Algorithm Metric Result 1 2 3 4 5 6 7 8 9

VEPSO Hypervolume

Wins 0 0 0 0 0 0 0 0 1
Losses 3 3 3 3 2 3 3 3 1
Difference -3 -3 -3 -3 -2 -3 -3 -3 0
Rank 4 4 4 4 3 4 4 4 2

Distribution

Wins 3 1 2 1 2 1 0 2 0
Losses 0 1 0 1 1 1 1 1 1
Difference +3 0 +2 0 +1 0 -1 +1 -1
Rank 1 2 1 2 2 2 2 2 3

CVEPSO-S Hypervolume

Wins 1 2 3 3 3 3 3 3 3
Losses 2 0 0 0 0 0 0 0 0
Difference -1 +2 +3 +3 +3 +3 +3 +3 +3
Rank 3 1 1 1 1 1 1 1 1

Distribution

Wins 0 3 2 3 3 3 3 3 2
Losses 3 0 0 0 0 0 0 0 0
Difference -3 +3 +2 +3 +3 +3 +3 +3 +2
Rank 4 1 1 1 1 1 1 1 1

CVEPSO-SK Hypervolume

Wins 2 2 2 2 2 2 2 2 1
Losses 0 0 1 1 1 1 1 1 1
Difference +2 +2 +1 +1 +1 +1 +1 +1 0
Rank 1 1 2 2 2 2 2 2 2

Distribution

Wins 1 1 0 0 1 0 0 0 0
Losses 2 1 3 3 2 3 1 2 2
Difference -1 0 -3 -3 -1 -3 -1 -2 -2
Rank 3 2 4 4 3 4 2 3 4

CVEPSO-HK Hypervolume

Wins 2 1 1 1 0 1 1 1 0
Losses 0 2 2 2 2 2 2 2 3
Difference +2 -1 -1 -1 -2 -1 -1 -1 -3
Rank 1 3 3 3 3 3 3 3 4

Distribution

Wins 2 0 1 1 0 1 0 0 1
Losses 1 3 2 1 3 1 1 2 0
Difference +1 -3 -1 0 -3 0 -1 -2 +1
Rank 2 4 3 2 4 2 2 3 2

TABLE II. ALGORITHM RANK SUMMARY FOR RING KTS

Algorithm
Metric Measure VEPSO CVEPSO-S CVEPSO-SK CVEPSO-HK

Hypervolume

Mean 3.667 1.222 1.778 2.889

Maximum 4 3 2 4

Minimum 2 1 1 1

Distribution

Mean 1.889 1.333 3.222 2.667

Maximum 3 4 4 4

Minimum 1 1 2 2

ranked first for eight of nine functions with respect to both
metrics. VEPSO tended to produce a poor hypervolume with a
desirable solution spread, while CVEPSO-SK was the opposite.

2) Random Knowledge Transfer Strategy: Table IV sum-
marizes results obtained using the random KTS. Table V
presents a data summary of the rank over all functions for
each algorithm.

Table IV shows that VEPSO again produced subpar per-
formance in comparison to the CVEPSO variants with respect
to hypervolume. The CVEPSO-SK algorithm ranked better
than both CVEPSO-HK and VEPSO on average, ranking first
overall for three out of nine functions and second for the
remaining WFG functions. CVEPSO-S produced significantly
better hypervolumes over all other algorithms and yielded the
best mean rank as seen in Table V.

Concerning the distribution metric, VEPSO performed no-
tably consistently, as it was ranked second for seven of nine
functions. This observation suggests that VEPSO produced a
better non-dominated solution spread than CVEPSO-SK and
CVEPSO-HK, yet worse than CVEPSO-S. CVEPSO-SK did
not distribute non-dominated solutions well, performing worse
than all other algorithms for WFG4 and WFG6.

Another observation present in Table IV is that the
CVEPSO-S algorithm again ranked better for every function
except WFG1, where performance degradation was severe. It is
observed that WFG1 is the only function with a strictly convex
shape, suggesting that CVEPSO-S has severe difficulty when
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TABLE III. MANN-WHITNEY WINS AND LOSSES FOR RANDOM KTS

WFG Function
Algorithm Metric Result 1 2 3 4 5 6 7 8 9

VEPSO Hypervolume

Wins 1 0 0 0 0 0 0 0 1

Losses 2 3 3 3 3 3 3 2 2

Difference -1 -3 -3 -3 -3 -3 -3 -2 -1

Rank 3 4 4 4 4 4 4 3 3

Distribution

Wins 1 1 2 1 1 1 0 2 0

Losses 1 2 1 1 1 1 1 1 0

Difference 0 -1 +1 0 0 0 -1 +1 0

Rank 3 3 2 2 2 2 2 2 2

CVEPSO-S Hypervolume

Wins 0 2 3 3 3 3 2 3 3

Losses 3 0 0 0 0 0 0 0 0

Difference -3 +2 +3 +3 +3 +3 +2 +3 +3

Rank 4 1 1 1 1 1 1 1 1

Distribution

Wins 0 3 3 3 3 3 3 3 2

Losses 3 0 0 0 0 0 0 0 0

Difference -3 +3 +3 +3 +3 +3 +3 +3 +2

Rank 4 1 1 1 1 1 1 1 1

CVEPSO-SK Hypervolume

Wins 3 2 2 2 2 2 2 2 2

Losses 0 0 1 1 1 1 0 1 1

Difference +3 +2 +1 +1 +1 +1 +2 +1 +1

Rank 1 1 2 2 2 2 1 2 2

Distribution

Wins 1 2 0 0 1 0 0 0 0

Losses 0 1 2 3 1 3 1 2 1

Difference +1 +1 -2 -3 0 -3 -1 -2 -1

Rank 2 2 3 4 2 4 2 3 3

CVEPSO-HK Hypervolume

Wins 2 1 1 1 1 1 1 0 0

Losses 1 2 2 2 2 2 2 2 3

Difference +1 -1 -1 -1 -1 -1 -1 -2 -3

Rank 2 3 3 3 3 3 3 3 4

Distribution

Wins 2 0 0 1 0 1 0 0 0

Losses 0 3 2 1 3 1 1 2 1

Difference +2 -3 -2 0 -3 0 -1 -2 -1

Rank 1 4 3 2 4 2 2 3 3

TABLE IV. ALGORITHM RANK SUMMARY FOR RANDOM KTS

Algorithm
Metric Measure VEPSO CVEPSO-S CVEPSO-SK CVEPSO-HK

Hypervolume

Mean 3.667 1.333 1.667 3.000

Maximum 4 4 2 4

Minimum 3 1 1 2

Distribution

Mean 2.222 1.333 2.778 2.667

Maximum 3 4 4 4

Minimum 2 1 2 1

presented with this type of landscape. Note that CVEPSO-HK

performed worse than the other co-operative algorithms for
the deceptive WFG5 and WFG9 functions with respect to both
metrics. This is an interesting observation, since the CPSO-HK

algorithm was designed primarily to improve performance of
CPSO-S and CPSO-SK in the presence of deception yet does
not seem to do so for the WFG functions.

3) PCX GBest Knowledge Transfer Strategy: Table VI
shows results for the algorithms using the PCX GBest KTS,
with Table VII displaying the mean, maximum and minimum
algorithm ranks over all functions in Table VI. Observations
drawn from the results of these experiments are nearly identical
to those of the ring and random KTSs.

In terms of hypervolume, CVEPSO-HK had an exact mean
rank of three, performing better than CVEPSO but worse than
both CVEPSO-S and CVEPSO-SK. It is observed from Table
VII that CVEPSO-SK had a worse mean rank than CVEPSO-S.
However, it should be noted that CVEPSO-SK was able to
outperform CVEPSO-S for WFG1, WFG2 and WFG7.

Table VII also presents the non-dominated solution distri-
bution results of each algorithm. Similar to previous obser-
vations for the ring and random KTSs, VEPSO distributed

TABLE V. MANN-WHITNEY WINS AND LOSSES FOR PCX GBEST

KTS

WFG Function
Algorithm Metric Result 1 2 3 4 5 6 7 8 9

VEPSO Hypervolume

Wins 0 0 0 0 0 0 0 0 1

Losses 2 3 3 3 3 3 3 3 2

Difference -2 -3 -3 -3 -3 -3 -3 -3 -1

Rank 3 4 4 4 4 4 4 4 3

Distribution

Wins 2 1 2 0 2 0 1 2 0

Losses 0 2 1 1 1 1 1 1 0

Difference +2 -1 +1 -1 +1 -1 0 +1 0

Rank 1 3 2 3 2 2 2 2 2

CVEPSO-S Hypervolume

Wins 0 2 3 3 3 3 2 3 3

Losses 2 1 0 0 0 0 0 0 0

Difference -2 +1 +3 +3 +3 +3 +2 +3 +3

Rank 3 2 1 1 1 1 1 1 1

Distribution

Wins 0 3 3 3 3 3 3 3 1

Losses 3 0 0 0 0 0 0 0 0

Difference -3 +3 +3 +3 +3 +3 +3 +3 +1

Rank 4 1 1 1 1 1 1 1 1

CVEPSO-SK Hypervolume

Wins 3 3 2 2 2 2 2 2 2

Losses 0 0 1 1 1 1 0 1 1

Difference +3 +3 +1 +1 +1 +1 +2 +1 +1

Rank 1 1 2 2 2 2 1 2 2

Distribution

Wins 1 2 0 0 1 0 0 0 0

Losses 2 1 2 2 2 1 1 3 1

Difference -1 +1 -2 -2 -1 -1 -1 -3 -1

Rank 3 2 3 4 3 2 3 4 4

CVEPSO-HK Hypervolume

Wins 2 1 1 1 1 1 1 1 0

Losses 1 2 2 2 2 2 2 2 3

Difference +1 -1 -1 -1 -1 -1 -1 -1 -3

Rank 2 3 3 3 3 3 3 3 4

Distribution

Wins 2 0 0 1 0 0 0 1 0

Losses 0 3 2 1 3 1 2 2 0

Difference +2 -3 -2 0 -3 -1 -2 -1 0

Rank 1 4 3 2 4 2 4 3 2

TABLE VI. ALGORITHM RANK SUMMARY FOR PCX GBEST KTS

Algorithm
Metric Measure VEPSO CVEPSO-S CVEPSO-SK CVEPSO-HK

Hypervolume

Mean 3.778 1.333 1.667 3.000

Maximum 4 3 2 4

Minimum 3 1 1 2

Distribution

Mean 2.111 1.333 3.111 2.778

Maximum 3 4 4 4

Minimum 1 1 2 1

its non-dominated solutions better than CVEPSO-SK and
CVEPSO-HK. CVEPSO-S again obtained a better distribution
of non-dominated solutions than all other algorithms on aver-
age over the WFG functions.

With regards to overall performance, CVEPSO-S was
dominant over all other algorithms. The algorithm consis-
tently ranked first, struggling only with WFG1. CVEPSO-HK

earned its best rankings on strictly convex functions such as
WFG1 for both metrics, outperforming both CVEPSO-S and
CVEPSO-SK.

4) PCX Archive Knowledge Transfer Strategy: Perfor-
mance while using the PCX Archive KTS was tested for each
algorithm, detailed in Table VIII. Table IX presents the mean,
maximum and minimum rank over all WFG functions for each
algorithm.

Table VIII reveals that VEPSO again experienced subpar
hypervolume performance in comparison to the other algo-
rithms. The algorithm had a negative difference score for all
functions, consistently yielding more losses than wins. Since
this observation was present for all other KTSs thus far, it is
concluded that CPSO and its variants yield greater hypervol-
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TABLE VII. MANN-WHITNEY WINS AND LOSSES FOR PCX ARCHIVE

KTS

WFG Function
Algorithm Metric Result 1 2 3 4 5 6 7 8 9

VEPSO Hypervolume

Wins 1 0 0 0 0 0 0 0 0

Losses 2 3 2 3 2 2 3 2 2

Difference -1 -3 -2 -3 -2 -2 -3 -2 -2

Rank 3 4 3 4 3 3 4 3 3

Distribution

Wins 1 2 1 0 0 1 0 0 1

Losses 0 0 1 1 1 0 1 1 0

Difference +1 +2 0 -1 -1 +1 -1 -1 +1

Rank 2 1 2 2 2 1 2 2 1

CVEPSO-S Hypervolume

Wins 0 2 3 3 3 3 3 3 3

Losses 3 0 0 0 0 0 0 0 0

Difference -3 +2 +3 +3 +3 +3 +3 +3 +3

Rank 4 1 1 1 1 1 1 1 1

Distribution

Wins 0 0 3 3 3 1 3 3 1

Losses 3 0 0 0 0 0 0 0 1

Difference -3 0 +3 +3 +3 +1 +3 +3 0

Rank 4 2 1 1 1 1 1 1 3

CVEPSO-SK Hypervolume

Wins 3 2 2 2 2 2 2 2 2

Losses 0 0 1 1 1 1 1 1 1

Difference +3 +2 +1 +1 +1 +1 +1 +1 +1

Rank 1 1 2 2 2 2 2 2 2

Distribution

Wins 1 0 0 0 0 0 0 0 0

Losses 1 2 3 1 1 3 1 1 2

Difference 0 -2 -3 -1 -1 -3 -1 -1 -2

Rank 3 4 4 2 2 4 2 2 4

CVEPSO-HK Hypervolume

Wins 2 1 0 1 0 0 1 0 0

Losses 1 2 2 2 2 2 2 2 2

Difference +1 -1 -2 -1 -2 -2 -1 -2 -2

Rank 2 3 3 3 3 3 3 3 3

Distribution

Wins 2 1 1 0 0 1 0 0 1

Losses 0 1 1 1 1 0 1 1 0

Difference +2 0 0 -1 -1 +1 -1 -1 +1

Rank 1 2 2 2 2 1 2 2 1

TABLE VIII. ALGORITHM RANK SUMMARY FOR PCX ARCHIVE KTS

Algorithm
Metric Measure VEPSO CVEPSO-S CVEPSO-SK CVEPSO-HK

Hypervolume

Mean 3.333 1.333 1.778 2.889

Maximum 4 4 2 3

Minimum 3 1 1 2

Distribution

Mean 1.667 1.667 3.000 1.667

Maximum 2 4 4 2

Minimum 1 1 2 1

ume performance over VEPSO in general, independent of the
KTS used.

One noticeable difference from previous results is present
with respect to the non-dominated solution distribution per-
formances of CVEPSO-HK. The algorithm yielded a very
desirable non-dominated solution distribution for all functions,
ranking first and second consistently. From this, it can be
stated that CVEPSO-HK works well with the PCX Archive
KTS. Another observation is that CVEPSO-S did not dom-
inate the distribution metric for the PCX Archive KTS as
it did for the other KTSs. CVEPSO-S achieved the same
mean non-dominated solution distribution rank as VEPSO and
CVEPSO-HK.

Overall, CVEPSO-S ranked best with respect to both
non-dominated solution distribution and hypervolume for
all KTSs. VEPSO typically experienced significantly lower
hypervolume for all KTSs in comparison to CVEPSO-SK

and CVEPSO-HK. However, because CVEPSO-SK and
CVEPSO-HK produced a worse non-dominated solution spread
in comparison to VEPSO, the utilization of these algorithms
is seen as more of a trade-off than a strict improvement. This

does not apply for CVEPSO-S, as its consistent domination of
both metrics over VEPSO allows one to conclude that it is a
definite improvement over VEPSO.

B. Comparison to other Algorithms

While it has been concluded that the CVEPSO vari-
ants improve VEPSO performance, it is necessary to com-
pare the performance of the CVEPSO variants with that
of other well-known multi-objective PSO optimization algo-
rithms. The two best CVEPSO variants found in Section V.A,
CVEPSO-S and CVEPSO-SK, were compared with optimized
multi-objective PSO (oMOPSO) [22] and speed constrained
multi-objective PSO (SMPSO) [23]. The PCX GBest KTS is
used for knowledge transfer purposes as it was empirically
found to work best for the chosen CVEPSO variants. Ex-
periments were performed over all of the WFG functions for
both three and five objectives. An equal number of function
iterations were used across all algorithms to avoid any bias.

1) Performance in 3-D Objective Space: Table XVI
presents the results for each algorithm for the three-objective
instances of the benchmark functions. Table XVII presents
the mean, maximum and minimum algorithm ranks for the
experiments performed in Table XVI.

Both oMOPSO and SMPSO exhibited better hypervolume
performance on average over the WFG functions compared to
CVEPSO-S and CVEPSO-SK. CVEPSO-S had a slightly worse
mean algorithm rank in comparison to SMPSO, observable in
Table XVI. However, CVEPSO-S performed best for WFG4,
WFG5 and WFG6, each of which are functions with a simple
concave shape. Together, these functions contain all modalities
present within the WFG suite, which are unimodal, multimodal
and deceptive. Each of these modalities are contained within
other WFG functions which CVEPSO-S performed poorly on,
suggesting that CVEPSO-S is fairly insensitive to function
modality. CVEPSO-SK experienced the worst hypervolume
performance overall, as it was never the best performing
algorithm for any of the functions.

The distribution performance of CVEPSO-SK was espe-
cially bad, as the algorithm ranked worst for every function
other than WFG1. This is not surprising, as CVEPSO-SK was
selected as a top CVEPSO-KTS combination for its superb
hypervolume performance rather than its distribution rankings
in Section V.A. oMOPSO distributed very well, yielding the
best rankings on average over the WFG functions followed by
SMPSO. However, both oMOPSO and SMPSO were outper-
formed by CVEPSO-S for WFG4, WFG5, WFG6, WFG8 and
WFG9 with reference to the solution distribution metric.

These observations lead to the conclusion that the
CVEPSO-S algorithm exhibits the potential to compete with
both oMOPSO and SMPSO in 3-D objective space, especially
with regards to the distribution metric in which it outperformed
both algorithms on five of nine functions. This conclusion is
not valid for CVEPSO-SK, as it was completely dominated by
oMOPSO and SMPSO when three objectives were present.

2) Performance in 5-D Objective Space: Table XVIII sum-
marizes the performance of each algorithm with regards to the
five-objective instances of the benchmark functions. Table XIX
presents the mean, maximum and minimum algorithm rank
over the nine WFG functions in 5-D objective space.
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TABLE IX. MANN-WHITNEY WINS AND LOSSES IN 3-D OBJECTIVE

SPACE

WFG Function
Algorithm Metric Result 1 2 3 4 5 6 7 8 9

CVEPSO-S Hypervolume

Wins 0 0 1 3 3 2 1 1 1

Losses 3 3 2 0 0 0 1 2 2

Difference -3 -3 -1 +3 +3 +2 0 -1 -1

Rank 4 4 3 1 1 1 3 3 3

Distribution

Wins 0 1 1 3 3 2 3 3 1

Losses 3 2 2 0 0 0 0 0 2

Difference -3 -1 -1 +3 +3 +2 +3 +3 -1

Rank 4 3 3 1 1 1 1 1 3

CVEPSO-SK Hypervolume

Wins 1 1 0 1 0 0 1 0 0

Losses 2 2 3 1 3 3 0 3 3

Difference -1 -1 -3 0 -3 -3 +1 -3 -3

Rank 3 3 4 2 4 4 2 4 4

Distribution

Wins 1 0 0 0 0 0 0 0 0

Losses 2 3 3 3 3 3 3 3 3

Difference -1 -3 -3 -3 -3 -3 -3 -3 -3

Rank 3 4 4 4 4 4 4 4 4

oMOPSO Hypervolume

Wins 2 3 3 1 1 2 2 2 3

Losses 0 0 0 1 1 0 0 1 0

Difference +2 +3 +3 0 0 +2 +2 +1 +3

Rank 1 1 1 2 2 1 1 2 1

Distribution

Wins 3 2 2 2 1 2 1 1 2

Losses 0 0 0 1 1 0 1 1 0

Difference +3 +2 +2 +1 0 +2 0 0 +2

Rank 1 1 1 2 2 1 2 2 1

SMPSO Hypervolume

Wins 2 2 2 0 1 1 0 3 2

Losses 0 1 1 3 1 2 3 0 1

Difference +2 +1 +1 -3 0 -1 -3 +3 +1

Rank 1 2 2 4 2 3 4 1 2

Distribution

Wins 2 2 2 1 1 1 1 1 2

Losses 1 0 0 2 1 2 1 1 0

Difference +1 +2 +2 -1 0 -1 0 0 +2

Rank 2 1 1 3 2 3 2 2 1

TABLE X. ALGORITHM RANK SUMMARY FOR 3-D OBJECTIVE SPACE

Algorithm
Metric Measure CVEPSO-S CVEPSO-SK oMOPSO SMPSO

Hypervolume

Mean 2.556 3.333 1.333 2.333

Maximum 4 4 2 4

Minimum 1 2 1 1

Distribution

Mean 2.000 3.889 1.444 1.889

Maximum 4 4 2 3

Minimum 1 3 1 1

The hypervolume performance of CVEPSO-SK was greatly
improved in comparison to when only three objectives
were used. This suggests that CVEPSO-SK scales very well
with respect to the hypervolume metric. Both CVEPSO-SK

and CVEPSO-S yielded better hypervolume scalability than
SMPSO and oMOPSO. oMOPSO scaled worst, as its mean
hypervolume rank more than doubled in comparison to its 3-D
objective space performance. Note that SMPSO scaled much
better than oMOPSO with respect to hypervolume.

The dominant hypervolume performance of CVEPSO-SK

was offset by its poor non-dominated solution distribution
performance. CVEPSO-SK ranked worst for six out of nine
functions, yielding a worse non-dominated solution distribu-
tion than CVEPSO-S, oMOPSO and SMPSO for nearly every
function. CVEPSO-S yielded the best distribution rankings
on average over the WFG functions, seen in Table XIX.
CVEPSO-S earned more wins than losses on seven out of nine
functions, scaling well with regards to the distribution metric.
oMOPSO and SMPSO both had worse mean distribution
rankings in comparison to CVEPSO-S.

Overall, CVEPSO-S scaled very well in comparison to

TABLE XI. MANN-WHITNEY WINS AND LOSSES IN 5-D OBJECTIVE

SPACE

WFG Function
Algorithm Metric Result 1 2 3 4 5 6 7 8 9

CVEPSO-S Hypervolume

Wins 0 0 0 2 2 2 2 2 3

Losses 3 3 3 1 1 0 1 1 0

Difference -3 -3 -3 +1 +1 +2 +1 +1 +3

Rank 4 4 4 2 2 1 2 2 1

Distribution

Wins 0 1 2 3 3 3 1 3 3

Losses 3 2 1 0 0 0 0 0 0

Difference -3 -1 +1 +3 +3 +3 +1 +3 +3

Rank 4 3 2 1 1 1 2 1 1

CVEPSO-SK Hypervolume

Wins 1 3 1 3 3 2 3 3 0

Losses 2 0 2 0 0 0 0 0 2

Difference -1 +3 -1 +3 +3 +2 +3 +3 0

Rank 3 1 3 1 1 1 1 1 2

Distribution

Wins 1 0 3 0 0 0 0 0 0

Losses 2 3 0 3 3 3 3 3 3

Difference -1 -3 +3 -3 -3 -3 -3 -3 -3

Rank 3 4 1 4 4 4 4 4 4

oMOPSO Hypervolume

Wins 2 1 2 0 1 0 0 1 1

Losses 0 1 0 3 2 3 3 2 2

Difference +2 0 +2 -3 -1 -3 -3 -1 -1

Rank 1 2 1 4 3 4 4 3 3

Distribution

Wins 3 2 0 1 1 2 2 1 1

Losses 0 0 2 1 2 1 0 1 1

Difference +3 +2 -2 0 -1 +1 +2 0 0

Rank 1 1 3 2 3 2 1 2 2

SMPSO Hypervolume

Wins 2 1 2 1 0 1 1 0 1

Losses 0 1 0 2 3 2 2 3 1

Difference +2 0 +2 -1 -3 -1 -1 -3 0

Rank 1 2 1 3 4 3 3 4 2

Distribution

Wins 2 2 0 1 2 1 1 1 1

Losses 1 0 2 1 1 2 1 1 1

Difference +1 +2 -2 0 +1 -1 0 0 0

Rank 2 1 3 2 2 3 3 2 2

TABLE XII. ALGORITHM RANK SUMMARY FOR 5-D OBJECTIVE

SPACE

Algorithm
Metric Measure CVEPSO-S CVEPSO-SK oMOPSO SMPSO

Hypervolume

Mean 2.444 1.556 2.778 2.556

Maximum 4 3 4 4

Minimum 1 1 1 1

Distribution

Mean 1.778 3.556 1.889 2.222

Maximum 4 4 3 3

Minimum 1 1 1 1

oMOPSO and SMPSO. It was only outperformed by oMOPSO
and SMPSO in the presence of complex function shapes such
as those of WFG1, WFG2 and WFG3. When presented with
simpler concave shapes such as WFG4, WFG5, WFG6, WFG7,
WFG8 and WFG9, CVEPSO-S outperformed oMOPSO and
SMPSO every time. CVEPSO-SK exhibits great potential due
to its dominant hypervolume performance, however the utiliza-
tion of CVEPSO-SK is seen as a tradeoff due to its generally
poor non-dominated solution distribution. Situations in which
one prioritizes hypervolume over non-dominated solution dis-
tribution would be the most efficient use of CVEPSO-SK.

VI. CONCLUSION

This work analyzed the performance of different forms
of co-operation within VEPSO. Variants of VEPSO which
utilized co-operative PSO algorithms were proposed, formally
referred to as CVEPSO-S, CVEPSO-SK and CVEPSO-HK.
These algorithms were analyzed and compared to VEPSO.
The best performing CVEPSO variants were then compared
to well-known multi-objective PSO optimization algorithms.
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Results indicated that co-operation is a powerful addition to
VEPSO. The standard VEPSO was outperformed in terms of
hypervolume by CVEPSO-S, CVEPSO-SK and CVEPSO-HK

for all the KTSs with respect to the hypervolume metric.
VEPSO obtained equal or better distribution in comparison
to CVEPSO-SK and CVEPSO-HK. CVEPSO-S was domi-
nant over VEPSO in both metrics, as it consistently earned
higher rankings. Concerning CVEPSO variant selection, it
is clear that CVEPSO-S and CVEPSO-SK performed better
than CVEPSO-HK. It was concluded that CVEPSO-HK did
not improve performance over CVEPSO-S or CVEPSO-SK in
deceptive environments. Performance was repeatedly observed
to be worse than CVEPSO-S and CVEPSO-SK.

The two best performing CVEPSO variants, CVEPSO-S
and CVEPSO-SK, were compared to two well known
multi-objective PSO optimization algorithms. CVEPSO-SK

scaled exceptionally well in terms of hypervolume but poorly
in terms of solution distribution. It was concluded that
CVEPSO-SK is desirable when one desires higher hypervol-
ume with little regard for solution distribution. CVEPSO-S
exhibited a balance between hypervolume and solution distri-
bution, performing equally as well or better than oMOPSO
and SMPSO for all functions except the few with complex
shapes. Both algorithms were found to be very competitive
with the well known oMOPSO and SMPSO algorithms, as
they often performed equally or better. Previous work [4] has
indicated that VEPSO stagnates and does not scale well with
these algorithms, thus incorporating co-operation improves
performance considerably and allows the algorithm to contend
with several top multi-objective PSO algorithms.

There are many opportunities for future work in this
area. Further research into the scalability of CVEPSO-SK and
CVEPSO-S is encouraged, specifically when the number of ob-
jectives becomes very large. Another potential area of interest
is the sensitivity to dimensionality of VEPSO. Performance
of VEPSO while using co-operative variants over a varying
number of decision dimensions can be observed with the intent
of determining the corresponding sensitivity to decision-space
dimensionality in comparison to VEPSO.
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