
High-Dimensional Multi-objective Optimization
Using Co-operative Vector-Evaluated Particle Swarm

Optimization With Random Variable Grouping

Justin Maltese
Department of Computer Science

Brock University

St, Catharines, ON, Canada

jm10lh@brocku.ca

Andries. P. Engelbrecht
Department of Computer Science

University of Pretoria

Pretoria, South Africa

engel@cs.up.ac.za

Beatrice M. Ombuki-Berman
Department of Computer Science

Brock University

St Catharines, ON, Canada

bombuki@brocku.ca

Abstract—Vector-evaluated particle swarm optimization
(VEPSO) is a particle swarm optimization (PSO) variant
which employs multiple swarms to solve multi-objective
optimization problems (MOPs). Each swarm optimizes a single
objective and information is passed between swarms using
a knowledge transfer strategy (KTS). The recently proposed
co-operative VEPSO (CVEPSO) algorithm has been shown
to improve the performance of VEPSO by decomposing the
search space into subspaces of lower dimensionality. However,
the effectiveness of CVEPSO is heavily dependent on the
strategy used to group variables together, because isolating
dependent variables leads to performance degradation. This
paper explores the use of a random grouping technique within
CVEPSO to increase the probability of allocating interacting
variables to the same subcomponent. The results demonstrate
that random grouping significantly improves performance
of the CVEPSO algorithm, especially in high-dimensional
environments. Additionally, CVEPSO with random grouping is
shown to perform competitively with other top multi-objective
optimization algorithms.

I. INTRODUCTION

Particle swarm optimization (PSO) is a stochastic opti-
mization algorithm modelled after the behaviours observed in
bird flocks. Although the original PSO was designed solely
for problems with one objective, it has been adapted for
application to multi-objective problems (MOPs) [1], [2], [3].
One of the first applications of PSO to MOPs was proposed by
Parsopoulous and Vrahatis [2] as the vector-evaluated particle
swarm optimization (VEPSO) algorithm. VEPSO employs
multiple swarms to solve MOPs by assigning a single swarm
to optimize each objective. The problem is also optimized as
a whole, as information is passed between swarms using a
knowledge transfer strategy (KTS).

The co-operative VEPSO (CVEPSO) algorithm, introduced
in [4], utilizes a co-operative coevolution (CC) method to
improve the performance of VEPSO. CC approaches consist
of a divide-and-conquer optimization approach, partitioning
the decision vector into groups of variables which can then
be optimized in a co-operative fashion. The CVEPSO-S,
CVEPSO-SK and CVEPSO-HK variants were developed in [4],
each based on a unique co-operative PSO (CPSO) approach
developed by van den Bergh and Engelbrecht [5].

While each CVEPSO variant has been shown to perform
well [4], success is limited by the static variable grouping
methods used. Dependent variables have a low probability of
being grouped together, thus leading to performance degra-
dation. Optimizing interacting variables together is highly
desirable, however since variable relationships are not known
a priori this is a non-trivial task.

Yang et al. [6], [7] used a dynamic partitioning strategy
based on a random grouping technique to address the in-
terdependent variable problem. A differential evolution (DE)
model was combined with this strategy and performance was
evaluated on high-dimensional problems possessing a single
objective. It was shown that random grouping elevates the
probability that dependent variables will be grouped together.
Li and Yao [8] applied the random grouping technique to
the CPSO algorithm, evaluating performance against existing
CPSO algorithms which incorporate static grouping strategies
[5]. CPSO performed significantly better when utilizing a
random grouping strategy, especially on functions with 500
or more dimensions.

This paper investigates whether the conclusions found by
Li and Yao in [8] can be generalized to MOPs. Specifically,
does random grouping serve as a better decomposition strategy
for CVEPSO than those found in [4]? If so, is the performance
gain more pronounced when faced with problems containing a
higher number of dimensions? Another objective is to observe
whether random grouping degrades performance for problems
that are separable. To accomplish this, the performance of
CVEPSO with random grouping is compared to the existing
CVEPSO variants. Experiments are performed using nine di-
verse MOPs. CVEPSO with random grouping is also compared
with well-known multi-objective PSO optimization algorithms.

The remainder of this paper is organized as follows: Sec-
tion II contains background information about multi-objective
optimization and algorithms such as PSO, VEPSO and CPSO.
Section III provides an explanation of how random grouping
is applied to the CVEPSO algorithm. Section IV describes the
experimental setup used in this study. Section V presents the
results of all experiments performed, including an analysis and
a discussion of the observations. Finally, Section VI concludes
the paper and suggests avenues for future research.

2015 IEEE Symposium Series on Computational Intelligence

978-1-4799-7560-0/15 $31.00 © 2015 IEEE

DOI 10.1109/SSCI.2015.186

1302

II. BACKGROUND

This section presents introductory background information
pertaining to concepts used within this work. Topics covered
include multi-objective optimization, PSO, CPSO, VEPSO and
CVEPSO.

A. Multi-objective Optimization

Frequently, real-world optimization problems require si-
multaneous optimization of multiple distinct objectives. It is
common for these objectives to conflict directly, presenting
a challenging task for optimizers when dealing with such
problems. A formal definition of a MOP is

minimize �f(�x)

subject to �x ∈ [xmin, xmax]
nx

where �f(�x) = f1(�x), f2(�x), ..., fnc(�x)), �x = (x1, x2, ..., xnx);
nc refers to the number of objectives and nx is the search
space dimensionality.

Within the context of multi-objective optimization, the term
Pareto optimal is used to refer to solutions which cannot
improve any objective further without worsening any other ob-
jective. Obtaining the set of Pareto optimal solutions, referred
to as the Pareto front, is the end goal of a multi-objective
optimization algorithm. Solutions which do not belong to
the Pareto front are undesirable due to the fact that one or
more objectives can be further optimized without degrading
other objectives. The Pareto front is commonly analyzed by a
decision maker with domain knowledge, as solutions belonging
to the Pareto front contain trade-offs in one or more objectives.

B. Particle Swarm Optimization

PSO is a metaheuristic optimization algorithm modelled af-
ter the flocking behavior of birds. Candidate solutions are rep-
resented as particles within the PSO algorithm. PSO attempts
to iteratively improve a swarm of particles by moving their
positions towards the position of the best candidate solution
ever found by the particle and the best candidate solution ever
found by the particle’s neighbourhood. Initial particle positions
are generated randomly within the boundaries of the search
space.

Pseudocode for the standard global best (GBest) PSO
algorithm is shown in Algorithm 1. Particle positions are
updated in a synchronous fashion [9]. One should note that
this pseudocode utilizes a star neighbourhood topology [10],
employing the social component to draw particles towards the
overall best position of the entire swarm. It is also possible
to create neighbourhoods of particle attraction via the use of
a ring topology [11]. Algorithm 1 makes use of two update
equations on lines 12 and 13 defined as:

S.�vi(t+ 1) = ωS.�vi(t) + c1�r1(S.�yi(t)− S.�xi(t))

+ c2�r2(S.�̂y(t)− S.�xi(t)) (1)

S.�xi(t+ 1) = S.�xi(t) + S.�vi(t+ 1) (2)

where S.�x corresponds to the current position of particle i in
swarm S, S.�vi refers to the velocity of particle i in swarm S,

S.�yi is the personal best position of particle i in swarm S, S.�̂y

is the global best position of swarm S, ω is the inertia weight,
c1 is the cognitive weight, c2 represents the social weight,
and �r1 and �r2 are vectors consisting of uniformly distributed
random numbers within the range [0,1].

Algorithm 1 Standard GBest PSO

1: Create and initialize a swarm, S, with candidate solutions
in nx dimensions

2: while termination criterion not satisfied do
3: for each particle i in S do
4: if f (S.�xi) < f (S.�yi) then
5: S.�yi = S.�xi

6: end if
7: if f (S.�yi) < f (S.�̂y) then
8: S.�̂y = S.�yi
9: end if

10: end for
11: for each particle i in S do
12: Update velocity of particle i using Equation (1)
13: Update position of particle i using Equation (2)
14: end for
15: end while

C. Co-operative Particle Swarm Optimization

Traditional PSO algorithms, along with many other
stochastic optimization algorithms, experience significant per-
formance degradation when faced with high-dimensional prob-
lems [12]. Van den Bergh and Engelbrecht addressed this
problem in [13] by proposing a new variant of PSO based
on concepts observed in co-operative systems, referred to
as the co-operative PSO. This variant was later renamed to
co-operative split PSO (CPSO-S).

CPSO-S builds upon the original PSO algorithm by decom-
posing the search space into lower dimensional subspaces. The
single swarm which is attempting to optimize a vector of nx

dimensions is split into nx subswarms each optimizing a single
dimension. An overview of the CPSO-S algorithm is presented
in Algorithm 2.

For particle quality evaluation purposes, CPSO-S maintains
a vector consisting of global best position components of each
subswarm, referred to as a context vector [14]. Initially, the
context vector contains random dimensions selected from each
subswarm. Within Algorithm 2, b represents a function which
takes a subswarm index and particle as input, returning a vector
via the following process:

1) Clone the context vector. The cloned vector is de-
noted as �z.

2) Within �z, substitute the value at index l with the
current positional value of particle i.

3) Return �z.

Using CPSO-S over standard PSO has several advantages.
Solution quality is evaluated after each vector component is
updated rather than when the entire vector has changed as seen
in traditional PSO. This helps to prevent the PSO algorithm
from experiencing the “two steps forward, one step back” phe-
nomenon [5]. Additionally, diversity of solutions is improved
as a result of the large number of solution combinations formed
using different members of CPSO-S subswarms [5].

1303

Algorithm 2 CPSO-S

1: Create and initialize nx 1-dimensional subswarms
2: while termination criterion not satisfied do
3: for each subswarm Sl, l = 1, ..., nx do
4: for each particle i in Sl do
5: if f (b(l, Sl.�xi)) < f (b(l,Sl.�yi)) then
6: Sl.�yi = Sl.�xi

7: end if
8: if f (b(l,Sl.�yi)) < f (b(l,Sl.�̂y)) then
9: Sl.�̂y = Sl.�yi

10: end if
11: end for
12: end for
13: for each subswarm Sl, l = 1, ..., nx do
14: for each particle i in Sl do
15: Update velocity of particle i using Equation (1)
16: Update position of particle i using Equation (2)
17: end for
18: end for
19: end while

Two additional CPSO variants, CPSO-SK and CPSO-HK,
were proposed in [5] as a result of various shortcomings
of the original CPSO-S algorithm. In an attempt to avoid
optimizing dependent decision variables in isolation, the
CPSO-SK algorithm blindly splits the nx-dimensional search
space into k parts. The CPSO-HK algorithm addresses the
stagnation problem experienced by CPSO-S and CPSO-SK

when presented with deceptive functions. By executing both
CPSO-SK and regular PSO sequentially, CPSO-HK is able to
overcome deceptive locations in the search space [5]. A KTS
is used within CPSO-HK to exchange information between the
CPSO-SK and PSO swarms. This information exchange is a
form of co-operation described in [15]. To transfer knowledge,
the highest quality solution from the CPSO-SK swarm is
injected into the PSO swarm and vice-versa. Injection requires
overwriting a particle’s dimensions by replacing them with
the dimensions of a target particle. However, constraints [13]
as to which particles can be overwritten exist to ensure that
the CPSO-SK and PSO algorithms maintain a diverse set of
solutions. These constraints are as follows:

1) The particle chosen can not be the best particle of a
CPSO-SK subswarm or the PSO swarm.

2) A legal candidate is defined as a particle which can
be overwritten during knowledge transfer. A particle
which is not a legal candidate is explicitly protected
from overwrites. Only half of the total particles are
considered legal candidates, selected randomly prior
to optimization.

It is worth noting that other KTSs are possible, since the
knowledge flow of CPSO-HK is flexible. It is also possible to
structure CPSO-HK as an algorithm which executes CPSO-SK

until CPSO-SK has become trapped, and then switches to PSO
[13]. However, for real-world problems it would be difficult to
design heuristics capable of detecting when a switch is appri-
opriate. Additional work on applying co-operative principles
to PSO can be found in [16], [17], [18].

D. Vector Evaluated Particle Swarm Optimization

The VEPSO algorithm, proposed by Parsopoulos and Vra-
hatis in [2], serves as a PSO variant for solving MOPs. Particle
fitness in VEPSO is evaluated as a vector of sub-objective
fitnesses as opposed to a single scalar value. VEPSO utilizes
the concept of Pareto domination by implementing a structure,
referred to as the archive, to store non-dominated solutions for
future usage. The archive typically has a maximum capacity
defined by the user prior to optimization. Upon reaching the
archive size limit, solutions are removed either randomly or
according to some user-defined removal criteria.

One of the defining features of VEPSO is that multiple
swarms are employed, where each swarm is given its own
objective to optimize. Information is passed from swarm to
swarm using a KTS, ensuring that the problem as a whole
is optimized. Proper selection of the KTS is crucial to the
performance of VEPSO, as Matthysen et al. [19] have shown
that certain strategies are prone to stagnation.

Within VEPSO, a KTS defines how global guides for each
swarm are determined. A global guide is defined to be a
particle whose dimensions are substituted in Equation (1) for
�̂y, essentially replacing the global best particle position. Global
guides play a crucial role within VEPSO, allowing swarms to
optimize multiple objectives simultaneously. Several existing
KTSs for VEPSO are defined in [2], [20], [21].

E. Co-operative Vector Evaluated Particle Swarm Optimiza-
tion

As a result of the performance gain observed for
co-operative PSO models [5], the CVEPSO algorithm was
introduced in [4] as an extension to the VEPSO algorithm.
CVEPSO incorporates co-operative principles by performing
optimization of each objective using a CPSO variant. The fol-
lowing algorithms are concrete implementations of CVEPSO:

• CVEPSO-S: CPSO-S subswarms are used to optimize
each objective.

• CVEPSO-SK: CPSO-SK swarms are used to optimize
each objective.

• CVEPSO-HK: CPSO-HK swarms are used to optimize
each objective.

All CVEPSO variants employ KTSs in the same way as
traditional VEPSO. The ring, random and PCX GBest KTSs
require a “global best” particle to determine the global guides.
Because there is no global best position in the CPSO variants,
these KTSs use the context vector instead of a global best
particle.

Due to the search space decompositioning of each
CVEPSO variant, archive addition and maintenance are
slightly altered. Whenever a context vector of a CVEPSO
swarm is non-dominated with respect to all current solutions
in the archive, that context vector is inserted into the archive.
In the case of a full archive, a user-selected removal strategy is
executed to return the archive to its size limit and the context
vector is then added into the archive. Removal strategies
should ideally promote solution diversity within the archive.
Distance-based removal is an example of one such strategy.

1304

III. INCORPORATING RANDOM GROUPING WITHIN

CO-OPERATIVE VECTOR-EVALUATED PARTICLE SWARM

OPTIMIZATION

Within CC models, it is highly desirable to place interde-
pendent variables within the same groups when performing
decomposition. Doing so ensures that these variables are
optimized together, positively impacting optimization perfor-
mance. Each existing CVEPSO variant [4] performs search
space decomposition a priori and maintains variable group-
ings statically throughout optimization. If dependent variables
are not initially grouped together, they will be erroneously
considered independent of one another for the entirety of the
optimization process. Problems which exhibit non-separability
will then create significant obstacles for the optimizer.

To address this problem, we define a new CVEPSO
variant which employs a dynamic random grouping tech-
nique for search space partitioning, denoted CVEPSO-RK.
Similar to CVEPSO-SK, CVEPSO-RK randomly groups the
nx-dimensional search space into k subgroups. However, this
partitioning process is repeated at each iteration, dynamically
changing the grouping structure during the optimization pro-
cess.

To help illustrate the random grouping process, consider
a problem with nx = 500. Assuming k = 10 and 100
iterations are used, variables will be randomly re-grouped at
each iteration into 10 groups of size nx

k = 500
10 = 50. Thus,

variables will be regrouped a total of 100 times, increasing the
probability that dependent variables will be optimized together
[7].

IV. EXPERIMENTAL SETUP

This section covers topics such as performance measures,
statistical analysis methodology, algorithm parameters and
benchmark functions.

A. Performance Measures

The objective of performance measures used within this
paper is to provide an unbiased assessment of performance
without actually knowing the true Pareto front. This is done us-
ing common criteria such as distribution of the non-dominated
solution set, number of different non-dominated solutions and
similarity of the approximation front to a best known estima-
tion. The performance measures used in this work incorporate
several of these elements.

Hypervolume: Zitzler and Thiele [22] defined the hyper-
volume metric as a measure of the amount of space covered
by a set. The hypervolume metric consists of a single scalar
value, calculated as the sum of sub-cuboids created by solution
points. It was shown in [23] that the hypervolume metric
is maximized when the solution set consists of equidistant
Pareto-optimal points. Additionally, the hypervolume metric
can be used to prove that a solution set is not worse than
some other target solution set for all solution pairs [24].

Solution Distribution: The non-dominated solution distri-
bution metric introduced in [25] provides an indication of the
spacing density of the solutions along the discovered front.
The solution distribution metric S is calculated as

S =
1

nd

√√√√ 1

nd

nd∑
i=1

(di − �d)2, with �d =
1

nd

nd∑
i=1

(3)

where di represents the Euclidean distance between solution
i and its closest neighbour in objective space and nd is the
number of non-dominated solutions. One should note that a
larger number of solutions may produce a more desirable
distribution score.

B. Statistical Methods

Pairwise Mann-Whitney-Wilcoxon rank sum tests [26]
were used to test for a significant difference in performance
between algorithms. For each pairwise test, if a statistically
significant difference existed the algorithm with the higher
mean over 30 independent runs was given a win and the
algorithm with the lower mean was given a loss. A confidence
level of 95% was used for each Mann-Whitney-Wilcoxon rank
sum test.

C. Algorithm Parameters

The number of swarms used in each algorithm was equal to
the number of objectives for the problem at hand. Each archive
was restricted to 250 solutions, with solutions being removed
when this size limit was reached. Selection of the solution to
remove was distance-based to promote archive diversity. The
two solutions with the smallest distance between each other
were determined and one of them was removed randomly.

To ensure unbiased comparisons, each CVEPSO variant
was assigned the same number of particles, i.e 50, before split-
ting into subswarms. When the subswarm split was performed
based on the CVEPSO variant, the particles were divided
as evenly as possible across all subswarms. Since the total
number of particles used for all CVEPSO variants was equal,
the number of fitness function evaluations per iteration were
identical for each algorithm. Initial particle velocity was set
to zero to comply with the recommendations given in [27].
Concerning the weight values, ω was set to 0.729844, c1 was
set to 1.496180 and c2 was set to 1.496180. Note that these
values were not set arbitrarily; they were chosen due to the
fact that they ensure convergence [28]. To ensure that particles
remain feasible, particles were re-initialized upon violating a
boundary constraint.

The k value of CVEPSO-SK and CVEPSO-RK was set
to 6 for all experiments, motivated by previous work in
[5] and validated empirically. The CPSO-SK swarms within
CVEPSO-HK also used a k value of 6.

D. Benchmark Suites

The Walking Fish Group (WFG) suite, introduced in [29],
contains a set of nine minimization problems that are defined
in terms of a vector of parameters. This vector is derived
through a series of transition and shape functions, creating
uniquely shaped Pareto fronts. Functions within the WFG suite
are diverse, incorporating challenging shapes and modalities to
help simulate real-world function landscapes.

1305

TABLE I. OVERVIEW OF WFG FUNCTIONS USED

Function Separability Bias Shape Modality

1 Separable Polynomial, Flat Convex Uni

2 Non-Separable - Convex, Disconnected Uni, Multi

3 Non-Separable - Linear, Degenerate Uni

4 Separable - Concave Multi

5 Separable - Concave Deceptive

6 Non-Separable - Concave Uni

7 Separable Parameter Dependent Concave Uni

8 Non-Separable Parameter Dependent Concave Uni

9 Non-Separable Parameter Dependent Concave Multi, Deceptive

The WFG functions used within this work possess a total
of three objectives and p decision parameters. The value of p is
experiment-dependent, with values of 30 and 500 seen within
the work. An overview of the WFG function set is given in
Table I. Additional information on problems contained within
the WFG suite can be found in [29], [30].

V. EXPERIMENTAL RESULTS AND DISCUSSION

Within this section, experimental results are presented and
discussed. The CVEPSO-S, CVEPSO-SK and CVEPSO-HK

algorithms were compared to the proposed CVEPSO-RK algo-
rithm using the hypervolume and solution distribution metrics.
Experiments were performed over the WFG function set using
30 dimensions and 500 dimensions. The PCX GBest KTS [21]
is used to transfer knowledge between swarms in all experi-
ments as it has been shown to perform well with CVEPSO
variants [4].

Several figures presented in this section reference the term
difference, which is simply the difference between pairwise
wins and losses (described in Section IV. B) for each al-
gorithm. Additionally, the rank of each algorithm is shown
which denotes performance ranking in comparison to all other
algorithms with respect to WFG function performance.

A. 30-dimensional functions

Table II presents an overview of algorithmic performance
using functions of 30 dimensions, while Table III displays a
statistical summary of the information present in Table II.
Table II shows that the CVEPSO-RK algorithm was domi-
nant with respect to the hypervolume metric. CVEPSO-RK

performed significantly better than all other algorithms for all
functions except WFG4, WFG7 and WFG9. It is noted that
both WFG4 and WFG7 are separable functions which are not
impacted as much by the random grouping mechanism, likely
why CPSO-S outperformed CVEPSO-RK for both functions.

Observing the performances of CVEPSO-SK and
CVEPSO-RK in Table II and III, it is clear that the
added random grouping present in CVEPSO-RK led to a
more desirable hypervolume in nearly all cases. CVEPSO-RK

possessed the lowest mean rank of all algorithms, indicating
that it was consistently the best CVEPSO variant. CVEPSO-S
was the second best variant, performing better than both
CVEPSO-SK and CVEPSO-HK as evidenced by Table II. The
CVEPSO-HK struggled most often, yielding poor hypervolume
performance in comparison to the other CVEPSO variants.

The proposed CVEPSO-RK algorithm also distributed
non-dominated solutions exceptionally well. Both

TABLE II. MANN-WHITNEY WINS AND LOSSES OVER THE WFG
FUNCTIONS USING 30 DIMENSIONS

WFG Function
Algorithm Metric Result 1 2 3 4 5 6 7 8 9

CVEPSO-RK Hypervolume

Wins 2 3 3 1 3 3 1 3 2

Losses 1 0 0 1 0 0 2 0 1

Difference +1 +3 +3 0 +3 +3 -1 +3 +1

Rank 1 1 1 2 1 1 2 1 2

Distribution

Wins 2 2 3 0 3 0 1 3 0

Losses 0 1 0 1 0 1 1 0 0

Difference +2 +1 +3 -1 +3 -1 0 +3 0

Rank 1 2 1 3 1 2 2 1 2

CVEPSO-S Hypervolume

Wins 0 1 2 3 2 2 2 2 3

Losses 2 2 1 0 1 1 0 1 0

Difference -2 -1 +1 +3 +1 +1 +2 +1 +3

Rank 3 3 2 1 2 2 1 2 1

Distribution

Wins 0 3 2 3 2 3 3 2 1

Losses 3 0 1 0 1 0 0 1 0

Difference -3 +3 +1 +3 +1 +3 +3 +1 +1

Rank 4 1 2 1 2 1 1 2 1

CVEPSO-SK Hypervolume

Wins 2 2 1 1 1 1 2 1 1

Losses 1 1 2 1 2 2 0 2 2

Difference +1 +1 -1 0 -1 -1 +2 -1 -1

Rank 1 2 3 2 3 3 1 3 3

Distribution

Wins 1 1 0 0 1 0 0 0 0

Losses 2 2 2 2 2 1 1 3 1

Difference -1 -1 -2 -2 -1 -1 -1 -3 -1

Rank 3 3 3 4 3 2 3 4 4

CVEPSO-HK Hypervolume

Wins 1 0 0 0 0 0 0 0 0

Losses 2 3 3 3 3 3 3 3 3

Difference -1 -3 -3 -3 -3 -3 -3 -3 -3

Rank 2 4 4 3 4 4 4 4 4

Distribution

Wins 2 0 0 1 0 0 0 1 0

Losses 0 3 2 1 3 1 2 2 0

Difference +2 -3 -2 0 -3 -1 -2 -1 0

Rank 1 4 3 2 4 2 4 3 2

TABLE III. ALGORITHM RANK SUMMARY FOR 30 DIMENSIONS

Algorithm
Metric Measure CVEPSO-RK CVEPSO-S CVEPSO-SK CVEPSO-HK

Hypervolume

Mean 1.333 1.889 2.333 3.667

Maximum 2 3 3 4

Minimum 1 1 1 2

Distribution

Mean 1.667 1.667 3.222 2.778

Maximum 3 4 4 4

Minimum 1 1 2 1

CVEPSO-RK and CVEPSO-S possessed the best rank
on average with a mean ranking of 1.667. The separable
WFG4 function presented the most difficulty for CVEPSO-RK,
as it was outperformed by both CVEPSO-S and CVEPSO-HK.
The CVEPSO-SK algorithm performed noticeably poor,
yielding a much less desirable distribution of non-dominated
solutions in comparison to CVEPSO-S and CVEPSO-RK.
The large performance disparity between CVEPSO-SK and
CVEPSO-RK implies that the random grouping method
produced a more distributed set of non-dominated solutions
with respect to the 30-dimensional WFG function set.

B. 500-dimensional functions

Results of experiments utilizing functions with 500 di-
mensions are given in Table IV. Table V displays the mean,
maximum and minimum rankings of each algorithm in Table
IV. Effectiveness of the random grouping method is much more
pronounced than on 30-dimensional functions as evidenced by
the overall performance of the CVEPSO-RK algorithm. With
respect to the hypervolume metric, CVEPSO-RK outperformed
every other CVEPSO variant for all functions aside from
the separable WFG7 function. Random grouping was highly

1306

TABLE IV. MANN-WHITNEY WINS AND LOSSES OVER THE WFG
FUNCTIONS USING 500 DIMENSIONS

WFG Function
Algorithm Metric Result 1 2 3 4 5 6 7 8 9

CVEPSO-RK Hypervolume

Wins 3 3 3 3 3 3 1 3 3

Losses 0 0 0 0 0 0 2 0 0

Difference +3 +3 +3 +3 +3 +3 -1 +3 +3

Rank 1 1 1 1 1 1 2 1 1

Distribution

Wins 2 3 3 3 3 0 1 3 0

Losses 0 0 0 0 0 1 1 0 0

Difference +2 +3 +3 +3 +3 -1 0 +3 0

Rank 1 1 1 1 1 2 2 1 2

CVEPSO-S Hypervolume

Wins 0 1 2 1 2 2 2 2 1

Losses 2 2 1 1 1 1 0 1 2

Difference -2 -1 +1 0 +1 +1 +2 +1 -1

Rank 3 3 2 2 2 2 1 2 2

Distribution

Wins 0 2 2 2 2 3 3 2 1

Losses 3 1 1 1 1 0 0 1 0

Difference -3 +1 +1 +1 +1 +3 +3 +1 +1

Rank 4 2 2 2 2 1 1 2 1

CVEPSO-SK Hypervolume

Wins 1 2 1 1 1 1 2 1 2

Losses 2 1 2 2 2 2 0 2 1

Difference -1 +1 -1 -1 -1 -1 +2 -1 +1

Rank 2 2 3 3 3 3 1 3 2

Distribution

Wins 1 1 0 0 1 0 0 1 0

Losses 2 2 2 3 2 1 1 2 1

Difference -1 -1 -2 -3 -1 -1 -1 -1 -1

Rank 3 3 3 4 3 2 3 3 4

CVEPSO-HK Hypervolume

Wins 1 0 0 0 0 0 0 0 0

Losses 2 3 3 3 3 3 3 3 3

Difference -1 -3 -3 -3 -3 -3 -3 -3 -3

Rank 2 4 4 3 4 4 4 4 4

Distribution

Wins 2 0 0 1 0 0 0 0 0

Losses 0 3 2 2 3 1 2 3 0

Difference +2 -3 -2 -1 -3 -1 -2 -3 0

Rank 1 4 3 3 4 2 4 4 2

TABLE V. ALGORITHM RANK SUMMARY FOR 500 DIMENSIONS

Algorithm
Metric Measure CVEPSO-RK CVEPSO-S CVEPSO-SK CVEPSO-HK

Hypervolume

Mean 1.111 2.111 2.444 3.667

Maximum 2 3 3 4

Minimum 1 1 1 2

Distribution

Mean 1.333 1.889 3.111 3.000

Maximum 2 4 4 4

Minimum 1 1 2 1

effective when tasked with non-separable WFG functions,
as CVEPSO-RK outperformed every other algorithm for all
functions that were not separable.

As shown in Table V, CVEPSO-RK possessed the lowest
mean ranking in comparison to all other CVEPSO variants,
indicating that the algorithm scaled well to 500 dimensions.
It is likely that far more variable relationships were captured
by the dynamic random grouping strategy, placing interacting
variables within the same subcomponent frequently. As a
result, CVEPSO-RK produced a significantly more desirable
hypervolume on nearly every WFG function in comparison
to the other CVEPSO variants. CVEPSO-S scaled notably bad
as a result of considering dependent variables in isolation. The
worst performing algorithm was CVEPSO-HK, as it yielded the
overall worst hypervolume for all functions aside from WFG1
and WFG4.

With regards to the non-dominated solution distribution
metric, the performance of the CVEPSO-RK algorithm im-
proved considerably in comparison to the 30-dimensional
experiments. Seen in Table V, the maximum ranking of
CVEPSO-RK was two, being outperformed by CVEPSO-S
for WFG6, WFG7 and WFG9. CVEPSO-RK possessed an

overall mean ranking of 1.333, indicating that it consistently
produced a better non-dominated solution spread than all other
CVEPSO variants. CVEPSO-SK was often outperformed by
CVEPSO-RK, indicating that the static grouping strategy of
CVEPSO-SK may experience difficulty in obtaining a diverse
set of non-dominated solutions in high-dimensional environ-
ments. Overall, the observations present in the 30 and 500
dimension experiments provide strong empirical evidence for
the use of random grouping within CVEPSO, especially in
high-dimensional environments.

C. Comparison to Other Algorithms

While the analysis in sections V.A and V.B revealed ran-
dom grouping to improve overall performance of the CVEPSO
algorithm, it is desirable to discover how well CVEPSO-RK

fares against other well-known multi-objective optimization
algorithms. For this purpose, the CVEPSO-RK algorithm was
compared with optimized multi-objective PSO (oMOPSO) [31]
and speed constrained multi-objective PSO (SMPSO) [32].
An equal number of function iterations were used across all
algorithms to avoid any bias, with 30 dimensions used for each
WFG function. Tables VI and VII give insight into the results
of these experiments.

With reference to the hypervolume metric, the
CVEPSO-RK algorithm consistently outperformed the
SMPSO algorithm. CVEPSO-RK produced equal or better
hypervolume than SMPSO for all functions over the WFG
suite. SMPSO generally performed the worst out of all three
algorithms, achieving a mean rank of 2.556. Comparison
of oMOPSO and CVEPSO-RK was more even, with both
algorithms possessing similar mean hypervolume ranks
in Table VII. CVEPSO-RK tended to perform better on
non-separable functions (WFG6, WFG8, WFG9). However,
considerable success was seen on separable functions as well
(WFG1, WFG4, WFG5). CVEPSO-RK performed worst on
the separable WFG7 function while oMOPSO experienced
considerable difficulty when presented with the non-separable
WFG8 function.

A similar set of conclusions is seen for the non-dominated
solution distribution metric. SMPSO generally produced a
significantly less desirable spread of solutions in comparison to
oMOPSO and CVEPSO-RK as evidenced by its mean rank of
2.444 in Table VII. CVEPSO-RK and oMOPSO yielded rela-
tively equal non-dominated solution performance, with neither
algorithm dominating the other. It is noted that oMOPSO again
struggled severely for WFG8, indicating that this function
may present significant problems for the oMOPSO algorithm.
Contrary to this observation, CVEPSO-RK did not seem to
experience difficulties for any function in particular, indi-
cating reliable and consistent performance. Table VII shows
that the CVEPSO-RK algorithm possesses the lowest mean
ranking overall, performing slightly better than oMOPSO on
average and considerably better than SMPSO. Overall, the
CVEPSO-RK is highly competitive with both oMOPSO and
SMPSO, often performing better than both algorithms for
various WFG functions.

VI. CONCLUSION

This work investigated the application of a dynamic
random grouping technique to aid in optimizing dependent

1307

TABLE VI. MANN-WHITNEY WINS AND LOSSES OVER THE WFG
FUNCTIONS FOR VARIOUS MULTI-OBJECTIVE PSO ALGORITHMS

WFG Function
Algorithm Metric Result 1 2 3 4 5 6 7 8 9

CVEPSO-RK Hypervolume

Wins 2 1 1 1 2 2 0 2 1

Losses 0 1 1 0 0 0 2 0 0

Difference +2 0 0 +1 +2 +2 -2 +2 +1

Rank 1 2 2 1 1 1 3 1 1

Distribution

Wins 2 2 0 1 0 2 1 1 1

Losses 0 0 1 1 1 0 0 1 1

Difference +2 +2 -1 0 -1 +2 +1 0 0

Rank 1 1 2 2 2 1 1 2 2

oMOPSO Hypervolume

Wins 0 2 2 1 0 1 2 0 1

Losses 1 0 0 0 1 1 1 2 0

Difference -1 +2 +2 +1 -1 0 +1 -2 +1

Rank 2 1 1 1 2 2 1 3 1

Distribution

Wins 1 1 0 2 2 1 1 0 2

Losses 1 1 1 0 0 1 0 2 0

Difference 0 0 -1 +2 +2 0 +1 -2 +2

Rank 2 2 2 1 1 2 1 3 1

SMPSO Hypervolume

Wins 0 0 0 0 0 0 1 1 0

Losses 1 2 2 2 1 2 1 1 2

Difference -1 -2 -2 -2 -1 -2 0 -1 -2

Rank 2 3 3 3 2 3 2 2 3

Distribution

Wins 0 0 2 0 0 0 0 2 0

Losses 2 2 0 2 1 2 2 0 2

Difference -2 -2 +2 -2 -1 -2 -2 +2 -2

Rank 3 3 1 3 2 3 3 1 3

TABLE VII. ALGORITHM RANK SUMMARY FOR VARIOUS

MULTI-OBJECTIVE PSO ALGORITHMS

Algorithm
Metric Measure CVEPSO-RK oMOPSO SMPSO

Hypervolume

Mean 1.444 1.556 2.556

Maximum 3 3 3

Minimum 1 1 2

Distribution

Mean 1.556 1.667 2.444

Maximum 2 3 3

Minimum 1 1 1

variables within the CVEPSO algorithm. The CVEPSO-RK

algorithm was formally proposed as a CVEPSO variant uti-
lizing random variable grouping to repartition the search
space at each iteration. The performance of the CVEPSO-RK

algorithm was compared to existing CVEPSO variants found
in [4]. Experiments comparing CVEPSO-RK to well-known
multi-objective PSO algorithms were also performed.

Results demonstrated random grouping to be a powerful
tool capable of enhancing the performance of CVEPSO. The
proposed CVEPSO-RK algorithm frequently outperformed all
other existing CVEPSO variants in terms of the hypervol-
ume and non-dominated solution distribution metrics. Dy-
namic random grouping was demonstrated to perform better
than static grouping as evidenced by CVEPSO-RK’s signif-
icant outperformance of CVEPSO-SK. The effectiveness of
CVEPSO-RK was even more pronounced in high-dimensional
space, as the random grouping technique aided in optimizing
dependent variables together. It was noted that the CVEPSO-S
strategy experienced significant performance degradation in
high-dimensional space as a result of considering dependent
variables in isolation.

The CVEPSO-RK algorithm was also observed to per-
form competitively with several well-known multi-objective
PSO algorithms, namely oMOPSO and SMPSO. CVEPSO-RK

consistently possessed a more desirable hypervolume and

non-dominated solution distribution in comparison to the
SMPSO algorithm. Comparisons between CVEPSO-RK and
oMOPSO were much more competitive, as both algorithms
experienced approximately the same level of performance.
CVEPSO-RK was observed to perform better on non-separable
functions, likely due to its random grouping decomposition
method. Overall, considerable empirical evidence within this
work supports the use of random grouping within CVEPSO,
especially on high-dimensional non-separable problems.

Several interesting opportunities for future work within this
area exist. Arguably the most important research offshoot is
further addressing the variable dependency problem within
the co-operative coevolution model. Techniques which aim
to learn variable relationships a priori can be used to parti-
tion the search space, grouping dependent variables together
in subcomponents. Further research into the scalability of
CVEPSO-RK as the number of dimensions and/or objectives
increases is also one area that can be investigated.

REFERENCES

[1] Y. Jin, M. Olhofer, and B. Sendhoff, “Dynamic weighted aggregation
for evolutionary multi-objective optimization: Why does it work and
how?” in Proceedings of the Genetic and Evolutionary Computation
Conference GECCO. Morgan Kaufmann, 2001, pp. 1042–1049.
[Online]. Available: documents/edwa.pdf

[2] K. E. Parsopoulos and M. N. Vrahatis, “Particle swarm optimization
method in multiobjective problems,” in Proceedings of the 2002
ACM Symposium on Applied Computing, ser. SAC ’02. New
York, NY, USA: ACM, 2002, pp. 603–607. [Online]. Available:
http://doi.acm.org/10.1145/508791.508907

[3] C. A. Coello Coello and M. S. Lechuga, “Mopso: A proposal for
multiple objective particle swarm optimization,” in Proceedings of the
Evolutionary Computation on 2002. CEC ’02. Proceedings of the
2002 Congress - Volume 02, ser. CEC ’02. Washington, DC, USA:
IEEE Computer Society, 2002, pp. 1051–1056. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1251972.1252327

[4] J. Maltese, B. Ombuki-Berman, and A. P. Engelbrecht, “Co-operative
vector-evaluated particle swarm optimization,” 2015, submitted to IEEE
SIS.

[5] F. Van den Bergh and A. Engelbrecht, “A cooperative approach to parti-
cle swarm optimization,” Evolutionary Computation, IEEE Transactions
on, vol. 8, no. 3, pp. 225–239, June 2004.

[6] Z. Yang, K. Tang, and X. Yao, “Differential evolution for
high-dimensional function optimization,” in Evolutionary Computation,
2007. CEC 2007. IEEE Congress on, Sept 2007, pp. 3523–3530.

[7] ——, “Large scale evolutionary optimization using cooperative
coevolution,” Information Sciences, vol. 178, no. 15, pp. 2985 –
2999, 2008, nature Inspired Problem-Solving. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S002002550800073X

[8] X. Li and X. Yao, “Tackling high dimensional nonseparable opti-
mization problems by cooperatively coevolving particle swarms,” in
Evolutionary Computation, 2009. CEC ’09. IEEE Congress on, May
2009, pp. 1546–1553.

[9] J. Rada-Vilela, M. Zhang, and W. Seah, “A performance study
on synchronous and asynchronous updates in particle swarm
optimization,” in Proceedings of the 13th Annual Conference on
Genetic and Evolutionary Computation, ser. GECCO ’11. New
York, NY, USA: ACM, 2011, pp. 21–28. [Online]. Available:
http://doi.acm.org/10.1145/2001576.2001581

[10] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Neu-
ral Networks, 1995. Proceedings., IEEE International Conference on,
vol. 4, Nov 1995, pp. 1942–1948.

[11] R. Eberhart, P. Simpson, and R. Dobbins, Computational Intelligence
PC Tools. San Diego, CA, USA: Academic Press Professional, Inc.,
1996.

1308

[12] T. Hendtlass, “Particle swarm optimisation and high dimensional prob-
lem spaces,” in Evolutionary Computation, 2009. CEC ’09. IEEE
Congress on, May 2009, pp. 1988–1994.

[13] F. van den Bergh and A. Engelbrecht, “Coop-
erative Learning in Neural Networks using Particle
Swarm Optimizers,” pp. 84–90, 2000. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.27.4265

[14] N. Unger, B. Ombuki-Berman, and A. Engelbrecht, “Cooperative par-
ticle swarm optimization in dynamic environments,” in Swarm Intelli-
gence (SIS), 2013 IEEE Symposium on, April 2013, pp. 172–179.

[15] S. H. Clearwater, T. Hogg, and B. A. Huberman, “Cooperative problem
solving,” in COMPUTATION: THE MICRO AND THE MACRO VIEW.
World Scientific, 1992, pp. 33–70.

[16] M. El-Abd, “Cooperative models of particle swarm optimizers,” Ph.D.
dissertation, Waterloo, Ont., Canada, Canada, 2008, aAINR43264.

[17] M. El-Abd, H. Hassan, M. Anis, M. S. Kamel, and M. Elmasry,
“Discrete cooperative particle swarm optimization for fpga placement,”
Appl. Soft Comput., vol. 10, no. 1, pp. 284–295, Jan. 2010. [Online].
Available: http://dx.doi.org/10.1016/j.asoc.2009.07.011

[18] K. E. Parsopoulos, “Parallel cooperative micro-particle swarm
optimization: A masterslave model,” Applied Soft Computing,
vol. 12, no. 11, pp. 3552 – 3579, 2012. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1568494612003134

[19] W. Matthysen, A. Engelbrecht, and K. Malan, “Analysis of stagnation
behavior of vector evaluated particle swarm optimization,” in Swarm
Intelligence (SIS), 2013 IEEE Symposium on, April 2013, pp. 155–163.

[20] J. Grobler, A. P. Engelbrecht, and V. S. S. Yadavalli, “Multi-objective
de and pso strategies for production scheduling,” in 2008 IEEE World
Congress on Computational Intelligence, J. Wang, Ed., IEEE Compu-
tational Intelligence Society. Hong Kong: IEEE Press, 1-6 June 2008,
pp. –.

[21] K. R. Harrison, B. Ombuki-Berman, and A. P. Engelbrecht,
“Knowledge transfer strategies for vector evaluated particle swarm
optimization,” in Evolutionary Multi-Criterion Optimization, ser.
Lecture Notes in Computer Science, R. Purshouse, P. Fleming,
C. Fonseca, S. Greco, and J. Shaw, Eds. Springer Berlin
Heidelberg, 2013, vol. 7811, pp. 171–184. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-37140-0 16

[22] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: a
comparative case study and the strength pareto approach,” Evolutionary
Computation, IEEE Transactions on, vol. 3, no. 4, pp. 257–271, Nov
1999.

[23] M. Fleischer, “The measure of pareto optima applications to
multi-objective metaheuristics,” in Proceedings of the 2Nd International
Conference on Evolutionary Multi-criterion Optimization, ser. EMO’03.
Berlin, Heidelberg: Springer-Verlag, 2003, pp. 519–533. [Online].
Available: http://dl.acm.org/citation.cfm?id=1760102.1760146

[24] E. Zitzler, L. Thiele, M. Laumanns, C. Fonseca, and V. da Fonseca,
“Performance assessment of multiobjective optimizers: an analysis and
review,” Evolutionary Computation, IEEE Transactions on, vol. 7, no. 2,
pp. 117–132, April 2003.

[25] C. Goh and K. Tan, “An investigation on noisy environments in
evolutionary multiobjective optimization,” Evolutionary Computation,
IEEE Transactions on, vol. 11, no. 3, pp. 354–381, June 2007.

[26] H. B. Mann and D. R. Whitney, “On a test of whether one of two
random variables is stochastically larger than the other,” The Annals of
Mathematical Statistics, vol. 18, no. 1, pp. 50–60, 03 1947. [Online].
Available: http://dx.doi.org/10.1214/aoms/1177730491

[27] A. Engelbrecht, “Particle swarm optimization: Velocity initialization,”
in Evolutionary Computation (CEC), 2012 IEEE Congress on, June
2012, pp. 1–8.

[28] F. Van Den Bergh, “An analysis of particle swarm optimizers,” Ph.D.
dissertation, Pretoria, South Africa, South Africa, 2002, aAI0804353.

[29] S. Huband, L. Barone, L. While, and P. Hingston, “A scalable
multi-objective test problem toolkit,” in Evolutionary Multi-Criterion
Optimization, ser. Lecture Notes in Computer Science, C. Coello Coello,
A. Hernndez Aguirre, and E. Zitzler, Eds. Springer Berlin
Heidelberg, 2005, vol. 3410, pp. 280–295. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-31880-4 20

[30] S. Huband, P. Hingston, L. Barone, and L. While, “A review of multiob-
jective test problems and a scalable test problem toolkit,” Evolutionary
Computation, IEEE Transactions on, vol. 10, no. 5, pp. 477–506, Oct
2006.

[31] C. A. Coello Coello and M. Lechuga, “Mopso: a proposal for multiple
objective particle swarm optimization,” in Evolutionary Computation,
2002. CEC ’02. Proceedings of the 2002 Congress on, vol. 2, 2002, pp.
1051–1056.

[32] A. Nebro, J. Durillo, J. Garcia-Nieto, C. Coello Coello, F. Luna, and
E. Alba, “Smpso: A new pso-based metaheuristic for multi-objective
optimization,” in Computational intelligence in miulti-criteria
decision-making, 2009. mcdm ’09. ieee symposium on, March 2009,
pp. 66–73.

1309

