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Abstract—Cardiac auscultation is a non-invasive procedure
that is mainly used in primary care, and involves diagnosis
through analysis of the two heart sounds emanating from the
cardiac cycle. None of the existing methods of computer aided
auscultation can run in real time, and identify both S1 and S2
heart sounds, and operate without prior learning, and operate
without making crude assumptions about the signal.

This paper proposes a novel approach that is able to perform
cardiac auscultation in real time and supports all of these
features.

Existing approaches try to identify and employ unique features
of S1 and S2, which could be different for different patients,
equipment, placement of stethoscope, background noise, etc.

The proposed approach leverages the fact that distinct, domi-
nant groups (e.g. heart sounds S1 and S2) will naturally emerge
if the the time-frequency content of each sound is thresholded,
correlated with the other sounds, and finally clustered.

The time-frequency information is derived from the continuous
wavelet transform of the heart sound, and K-means is used for
clustering.

The system was tested on a dataset of 230 recordings with
over 5000 heart sound pairs, and test results show a predictive
rate for both heart sounds of above 86 % – on par with existing
approaches.

The system has been demonstrated working in real time, and
an example application that uses this capability was developed.

I. INTRODUCTION

A. Background

Auscultation is a non-invasive method of diagnosis that

medical doctors use to identify pathologies in the body. The

process of auscultation involves listening to and analysing the

sounds that emanate from organs. It is widely used in primary

medical care as a low-cost method of diagnosis. Cardiac aus-

cultation is the method of listening to the heart for diagnostic

purposes. Beyond primary care, auscultation is replaced with

other methods of diagnosis such as echocardiography, which

uses sonar to visualise the movement of heart tissue and blood

flow. Echocardiography, whilst considered the “gold standard”

in diagnosis, is impractical for primary care because it requires

the use of expensive equipment and specialist knowledge to

interpret the results. Auscultation is therefore primarily used

as a screening aid to determine whether a patient needs further

examination.

Computer aided heart auscultation is the process of using

signal processing techniques and, in some cases machine

learning, to automate the process of diagnoses of the heart

through auscultation.

The cardiac cycle consists of a repeating set of contractions

made by the four chambers of the heart. The chambers consist

of the left and right atria and the left and right ventricles. There

are four valves that control the movement of blood through the

heart. The positions of these valves are shown in figure 1.

The path of blood through the heart explained below.

• The blood enters the heart through the vena cava and

pulmonary vein. It fills the left and right atria.

• The atria contract and the blood enters the ventricles

through the tricuspid and mitral valves.

• The ventricles contract and blood leaves the heart through

the pulmonary and aortic valves into the pulmonary artery

and aorta respectively.

The main sounds emanating from the heart can be classified

as follows:

S1 - The “lub” of the “lub-dub” is termed the first heart sound.

It is caused by the blood hammer as a result of the mitral

and tricuspid valves closing.

S2 -The “dub” of the “lub-dub” is termed the second heart

sound. It is caused by the blood hammer as a result of

the pulmonary and aortic valves closing.

Murmurs - Turbulence in the blood flow in the heart causes

a murmur to occur. They are either physiological or

pathological in nature.

The time between the closing of the valves in the second

heart sound is of clinical significance. When the valves close

at different times, the heart sound is said to be split.The

duration of this split and how it varies with breathing can

be used to identify certain conditions in the heart. There are

four main types of S2 split.Normal splitting, where the split

increases with inhalation and decreases with exhalation; wide

splitting, when the split is identified to be wider than normal978-1-4799-7560-0/15/$31 c©2015 IEEE
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splitting; fixed splitting, where the split remains constant

during inhalation and exhalation; and paradoxical splitting,

where the split increases with exhalation and decreases with

inhalation. The abnormal splitting of the second heart sound

is used as a method of diagnosis for certain heart conditions

[1].

Fig. 1. Diagram showing the movement of blood through the heart

A key challenge in automated cardiac auscultation is heart

sound segmentation, which refers to the identification of the

physiological features of the different heart sounds to deter-

mine their relative physiological timing. Several techniques

have been developed to detect the timing of the sounds, using

peaks in the energy envelope [2], high frequency signatures in

wavelet coefficients [3], neural networks [4], empirical mode

decomposition [5], Hidden Markov Models [6] and selectional

regional correlation [7].

B. Contribution

The ideal Heart Sound Segmentation system should be able

to accurately identify S1 and S2, use as few assumptions about

the signal as possible to reduce the effect of noise, should

avoid the use of prior learning to increase generality across

patients and conditions, and should be able to work on a small

segment of a signal so that it can be used in a close to real

time environment. The system proposed in this paper is able

to satisfy these requirements.

This paper builds on the work of [7] by using the correlation

of multiple templates to identify a signal segment as opposed

to a single template. This method is used to implement a

system that can identify the two main heart sounds in close to

real time. An example application is developed that uses this

method to identify S1 and S2, and to detect the split in the

second heart sound.

Table I provides a summary of the related work and the

contribution of this paper.

II. MATHEMATICAL BACKGROUND

In this section, an overview of the mathematical tools

required for the used to develop the algorithm.

A. Time frequency analysis

The signals that emanate from the heart have frequency con-

tent which varies with time [8], therefore Fourier analysis of

Property / paper [4] [5] [3] [6] [7] This paper
S1 and S2 × � � � � �

Few assumptions � � × × � �
Adaptive learning × � � × × �
Works in real time × × × × × �

TABLE I
TABLE HIGHLIGHTING THE CONTRIBUTION OF THIS WORK AGAINST THE

STATE OF THE ART.

the signals provide limited information. Time frequency anal-

ysis examines how the frequency content of a signal changes

with time and therefore will yield useful information for

analysis. The time-frequency content of the signal is extracted

using wavelet decomposition. Wavelet analysis identifies the

different frequency components at different resolutions. The

equivalent Fourier transform method is the Short Time Fourier

Transform, which performs the analysis at a fixed resolution

that is dependent on the window size.

Using the variable names from [4], the wavelet transform

of a function f at a time u and scale s is:

Wf (u, s) =

∫ ∞

−∞
f(t)Ψ∗u,s(t)dt (1)

where

Ψu,s(t) =
1√
s
Ψ

(
t− u

s

)
(2)

u and s represent the time delay and frequency scale

variables. Ψ(t) called the mother wavelet as it generates the

different wavelets required for the multiple levels of resolution.

The mother wavelet used in this paper is the Morlet wavelet.

Ψ(t) = π−
1
4

(
e−jω0t − e−ω2

0/2
)
e−t2/2 (3)

B. Clustering

K-means clustering is a statistical method of grouping

together a set of vectors into a specified k number of clusters

[9]. Each cluster is associated with a mean which determines

how the date points are assigned to each cluster. The algorithm

iterates over the following steps until the assignment of vectors

does not change between iterations.

Assignment Each vector is assigned a cluster based on

minimising the Euclidean distance from each particular

vector to the centroid of the cluster.

Update New centroids calculate by finding the mean of all

the vectors assigned to a particular cluster,

III. METHOD

An overview of the system can be seen in figure 2.

A. Development of S1 and S2 identification

1) Heart sound location identification: To identify the

origins of all the sounds in a signal, the location of each

sound is required. This is achieved by identifying the peaks

in the Shannon envelope of the signal. The Shannon envelope
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Record signal
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using k- means
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or S2 using average

time differences

between groups

Fig. 2. Flow diagram showing the layout of the S1 - S2 detection system

is a transformation of the signal that emphasises the medium

amplitude values of the signal de-emphasising high and low

amplitudes. The resulting transformation is a smooth, contin-

uous function in which the peaks represent the location of the

sounds. The Shannon envelope of a heart sound segment is

shown in figure 3a. The calculation for the Shannon envelope

is shown below:

S(t) =
1

10

i=5∑
i=−5

x(t+ i)2 × log (|x(t+ i)|) (4)

where x(t) is the signal of which the Shannon envelope

S(t) is calculated.

2) Time frequency data extraction: The CWT for each

sound is calculated from a segment of signal around each

located peak. The segment length is calculated from the width

of the peaks in the Shannon envelope. The magnitude of the

CWT of the signal in figure 3a is shown in figure 3b.

3) Time frequency transformation: Correlation of the time

frequency components is used to group together similar

sounds. To make this process more accurate the following

properties are needed of the signals to be correlated:

• The peak amplitude of the signals needs to be constant,

otherwise higher valued signals bias the correlation

• The effect of noise needs to be minimised

To achieve these properties, the Shannon energy envelope is

calculated for the coefficients. The Shannon energy is used for

similar reasons as it was in the envelope. It reduces the effect

of high and low amplitude noise. The transformed coefficients

are then thresholded to values of 1 or 0 using high and

low thresholds. This is to eliminate the effect of amplitude

on the correlation as well as emphasising a specific shape

and position for the sound in the domain. The result of the

transformation and correlation is shown in figure 3c.

4) Selectional regional correlation as a feature vector: To

segment the located sounds, the selectional regional correlation

for each sound is calculated with respect to all the other

sounds in the signal. The time frequency correlation for two

sounds is calculated by multiplying the components of the two

sounds together and summing the result. The correlation for a

particular sound are expected to increase when the compared
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(a) Graph showing the Envelope, PCG and peaks
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(b) Graph showing wavelet coefficients of the signal
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(c) Graph showing transformed wavelet coefficients of the signal
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(d) Graph showing the correlation of the transformed wavelet
coefficients
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(e) Graph showing the grouped correlations of the signal

Fig. 3. Figure showing the development of the system using a sample of a
PCG

sound is similar and decrease when the sound is dissimilar.

The patterns of increasing and decreasing levels of similarity

are shown in figure 3d.

5) Clustering the heart sounds: The selectional regional

correlation for a particular sound is used as a feature vector
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for a machine learning system. The features in a particular

vector are its similarity with the sounds. The heart sounds are

then clustered using the k-means clustering algorithm. The

clustered correlations are shown in figure 3e

6) Identification of clustered heart sounds: The clustered

correlations are then used to separate the heart sounds into two

groups. These groups will each contain a number of sounds

that are similar to each other. The next step is to identify the

source of each group of similar sounds. The time difference

between successive S1 and S2 sounds is smaller than time

difference between successive S2 and S1 sounds. Using this

information, the groups are identified as either S1 or S2.

B. Real time analysis

An overview of the real time system is shown in figure 4.

Create templates

from short signal

(per §III-A)

Identify location of

sounds in real time

Calculate the CWT

of located sounds

Calculate the

correlation of the

located sounds

Assign sounds to

group using model
Validate

identified sounds

Fig. 4. Flow diagram showing the layout of the real time system

1) Model creation: To identify a heart sound in real time,

the system first needs to generate templates of S1 and S2

sounds with which an unknown sound can be correlated. The

templates are constructed from the transformed time frequency

coefficients of identified S1 and S2 an intitial recording (20

seconds in this case). The templates are arranged in an

alternating pattern of groups, namely S1 and S2. With the

templates in a pattern, the correlation of the templates is

calculated and the mean value of the correlation in each group

is found. This is the equivalent of performing the k-means

algorithm on the correlations.

2) Identify location of sound: The real time analysis of the

signal is performed on overlapping 2 second chunks of data

with a refresh rate of 1 second. These intervals guarantee that

at least one sound is captured in the chunk as the average heart

rate is 60 to 100 beats per minute. In each 2 second chunk

of data, the Shannon envelope is calculated and the peaks are

found. The peaks represent the location of a potential heart

sound.

3) Calculate time frequency content of located sounds: The

time frequency content of each identified sound is calculated

and transformed in the same way as subsections III-A2 through

III-A3.

4) Calculate correlation of identified sounds: The identified

sounds are correlated with the S1-S2 template to generate

feature vectors to identify the sounds.

5) Identification of sounds: The sounds are identified by

calculating the Euclidean distance from their feature vectors

to each of the means calculated in section III-B1. The group

with the smallest distance is chosen as the label for the sound

being identified.

6) Validation of identified sounds: To increase the accuracy

of the system, a simple method of validation is used. The

method consists of only using pairs of sounds that correspond

to the physiological process. Therefore the only sound pairs

that are used are the S1 to S2 pair and the S2 to S1 pair. Any

other pair is considered to be an error in identification.

IV. RESULTS

A. S1 and S2 detection

The system was tested using a database of 230 heart sound

signals recorded from various areas of the heart. The signals

were selected from a larger database that was recorded at the

Red Cross Children’s hospital under ethical conditions using

the SensiCardiac c© system. To ensure a fair test of the system,

a set of visual criteria was used to select suitable signals for

testing. The criteria are:

• Visible S1 and S2

• Few extra sounds in recording

• Minimal signal clipping

Each signal was recorded over a 15 second period using

an electronic stethoscope. The signals were recorded at 22

kHz. To test the system, the heart sounds in each signal were

tagged manually as S1, S2 or other, using an ECG to assist.

The average processing time for the signals was 1 second using

a PC with an Intel Core i5 and 4 GB of RAM.

The results for the system are presented in table II which

shows how the different heart sounds were classified.

Manually
identified S1

Manually
identified S2

Manually
identified

other
System identified S1 2444 508 15
System identified S2 334 2168 18

TABLE II
TABLE TO SHOW RESULTS OF THE SYSTEM IMPLEMENTED IN THIS PAPER

Table III shows the results for a system implemented using

one of the methods in [2].

Manually
identified S1

Manually
identified S2

Manually
identified

other
System identified S1 1919 290 6
System identified S2 325 1682 8

TABLE III
TABLE TO SHOW RESULTS FOR A SYSTEM IMPLEMENTED USING ONE OF

THE METHODS IN [2]

The tables show that the system implemented in this paper

has an accuracy of 86% with an S1 predictive value of 87%

and an S2 predictive value of 85%. The alternative system

fares slightly better with an accuracy of 89% with an S1

predictive value of 88% and an S2 predictive value of 89%.

However the system described in this paper correctly identified

27% more S1 sounds and 29 % more S2 sounds, and works

in real time.
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B. Real time results

The real time system was implemented using the S1 and

S2 detection method described in this paper to generate the

templates. A Thinklabs One stethoscope was used to record

the data. Using a sample rate of 1 kHz a computer with an i5

processor was able to identify the origin of the sounds within

one second of the sounds being recorded. A video of the real-

time detection can be seen at [10]. The video shows a 60

second real time analysis, where the heart sounds are being

detected. In this part of the video there were 39 pairs of S1 and

S2 sound, of these sounds 24 were identified by the computer

as S1 and S2 pairs, with no incorrectly identified sounds.

V. CONCLUSION

This paper has demonstrated how the heart sounds in a

signal can be identified in real time using selectional regional

time frequency correlation. The locations of possible heart

sounds were identified using the peaks in the Shannon energy

of the signal. The time-frequency characteristics for each

identified heart sound were calculated. The time-frequency

characteristics were then transformed using Shannon energy.

The time-frequency characteristics for each heart sound were

correlated with all the other heart sounds in the signal. The cor-

relations corresponding to each sound were used as a feature

vector for clustering using K-means. The correlations were

clustered into two groups. The groups were identified using

the physiological timing differences between S1 and S2. A

database of 230 heart sound signals was used to test the offline

system. The testing showed that the system implemented in the

paper was as accurate as well being sensitive to the detection

of S1 and S2. The system was then tested in real time and an

example application of detecting the second heart sound was

provided.

REFERENCES

[1] J. M. Felner, “The Second Heart Sound,” in Clinical Methods: The
History, Physical, and Laboratory Examinations., 3rd ed., H. Walker,
Hall WD, and Hurst JW, Eds. Butterworths, 1990, ch. 23. [Online].
Available: http://www.ncbi.nlm.nih.gov/books/NBK341/

[2] S. Choi and Z. Jiang, “Comparison of envelope extraction algorithms for
cardiac sound signal segmentation,” Expert Systems with Applications,
vol. 34, no. 2, pp. 1056–1069, Feb. 2008. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S0957417406003927

[3] D. Kumar, P. Carvalho, M. Antunes, J. Henriques, L. Eugenio,
R. Schmidt, and J. Habetha, “Detection of S1 and S2 heart sounds
by high frequency signatures.” Conference proceedings : ... Annual
International Conference of the IEEE Engineering in Medicine and
Biology Society. IEEE Engineering in Medicine and Biology Society.
Annual Conference, vol. 1, pp. 1410–6, Jan. 2006. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/17946890

[4] T. Oskiper and R. Watrous, “Detection of the first heart sound
using a time-delay neural network,” in Computers in Cardiology.
IEEE, 2002, pp. 537–540. [Online]. Available: http://ieeexplore.ieee.
org/lpdocs/epic03/wrapper.htm?arnumber=1166828

[5] C. D. Papadaniil and L. J. Hadjileontiadis, “Efficient Heart Sound
Segmentation and Extraction Using Ensemble Empirical Mode Decom-
position and Kurtosis Features,” IEEE Journal of Biomedical and Health
Informatics, vol. 18, no. 4, pp. 1138–1152, Jul. 2014.

[6] A. D. Ricke, R. J. Povinelli, M. T. Johnson, and G. E. Healthcare,
“Automatic Segmentation of Heart Sound Signals Using Hidden Markov
Models,” pp. 953–956, 2005.
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