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Abstract—The aim of this paper is to present the results of
an experiment towards Sonouroflowmetry, a novel approach for
recognition of potential voiding dysfunctions based on machine
learning classification of sound records that are obtained while a
patient urinates into water in a toilet bowl. Such approach could
enable a diagnosis of the voiding dysfunctions via a mobile device.
We provide a comparison of 69 state-of-the-art classification
methods.

I. INTRODUCTION

Voiding dysfunction is highly prevalent and has a major
impact on the quality of life of a large proportion of men.
Uroflowmetry (UF) is a widely used non-invasive instrument
for evaluation of bladder emptying. The measuring procedure
involves the person to urinate into the uroflowmeter, often at
a pre-determined time and at specified procedure area. This
process is unnatural as it requires “on-demand” voiding often
with either low or very high bladder filling, which leads to
significant variability that should be mitigated by repeating
the measures, which is costly and time consuming.

In this paper, we present an experiment that was performed
towards the development of Sonouroflowmetry (SUF) [1], a
novel approach for recognition of potential voiding dysfunc-
tions based on capturing the sound generated when urine
stream is hitting the water level in the toilet bowl. The idea is to
enable the patients to perform the measurements at their home
and at the time that is suitable for them. For that purpose, e.g.
a cell phone with special sound recording application (or other
small, cheap, and user-friendly sound recording device) may
be used. Whereas the first paper, [1], gives overview from the
medical point of view, this work is aimed to the mathematical
and information science point of view.

The sound recognition is not a new problem. There exist
a lot of real-life applications such as recognition of actually
played song [2], speech recognition [3] in cell phones etc.
The problem is very often solved by using neural networks
[4]. Paper [4] also shows a comparison of existing methods
and focuses on environmental sound recognition (such as
footsteps, glass breaking etc). Their main idea is similar to
ours, i.e. within the supervised machine learning methodol-
ogy, we extract features from the sound signal and train the
classification model. The most problematic part is naturally
to develop the right set of features that correspond to the
domain knowledge. Whereas the paper [4] focuses mainly on
frequencies of a sound function, we focus on features reflecting
medical expert’s knowledge.

In this paper, we address several objectives. The first one is
to explore possibilities of recording a sound using cell phones.
The second one is to define characteristic values describing
function that reflects expert decision. The third goal is to define
an own learning algorithm and compare it with state-of-the-art
algorithms. The last one (and the most important) is to analyze
the possibilities of making diagnoses of a potential voiding
dysfunction at home using a user-friendly non-invasive device
such as a cell phone or other mobile device.

The structure of this paper is as follows: in Section II, the
method of data collection and the structure of source dataset
is discussed. We describe the data preparation phase, features
extraction, and classification in Section III. In Section IV,
the comparison of 69 state-of-the-art classification methods
is presented. We discuss the obtained results and comment
the former unsuccessful approaches in Section V. The con-
clusion and some proposals for future research are drawn in
Section VI.

II. DATA

In order to evaluate the possibility to recognize the void-
ing dysfunction based on a sound signal captured during
urinating, the urologists prepared a simulation environment
that allows repeated experiments under identical conditions.
A water stream of constant height was directed into a container
with water of constant column level. A microphone was put
into a constant distance and sound recording was performed
with predefined constant settings. Within the sound recording,
a uroflowmeter was measuring the water flow. Figure 1 shows
the simulation environment schematically.

Fig. 1. Scheme of the simulation environment.
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Fig. 2. The result of the UF measure is the graph of the flow-rate (y-axis)
in time (x-axis) – top. The result of the SUF measure is the sampled sound
volume (y-axis) in time (x-axis) – bottom.

The expert urologists simulated the flow of healthy (group
A) and diseased men (group B) by changing the flow rate
by obstructing or releasing the tube of water output. The
simultaneous UF measures provided them an instant feedback
of a quality of the simulation and allowed later a comparison
with the SUF method being developed.

A total of 208 simultaneous UF and SUF recordings were
included into the final analysis. Group A consisted of 114
recordings representing physiological voiding patterns. Group
B consisted of 94 recordings representing the most frequent
subtypes of pathological voiding patterns, namely: urethral
stricture (n = 27), bladder outlet obstruction due to benign
prostatic enlargement (n = 29), detrusor-sphincter dyssynergia
(n = 19), and detrusor acontractility (n = 19).

Roughly speaking, the healthy patients are expected to have
relatively high and stable stream of voiding, whereas patholog-
ical patients exhibit variable stream with lower average flow.
Let us remark, whereas such differences can be easily seen
and recognized using uroflowmetry, the behavior of sound is
different, distorted by several artifacts and the recognition of
pathological patterns is not so straightforward.

III. METHODS

The whole process of machine learning consisted in the fol-
lowing parts (see also Fig. 4). The recorded sound signal in the
WAV format was pre-processed and transformed into a time-
series vector of integers that correspond to sampled amplitudes.
From them, several numeric features were extracted so that
the set of recorded source sound signals could be transformed
into a numeric matrix, where rows correspond to measures
(i.e. sound records) and columns contain the values of the
extracted features. Also a column of correct classification to
healthy/diseased was appended to the matrix.

Such feature matrix was repeatedly split into a training and
testing part. The training part was used for machine learning

to create a classification model. The testing part was used to
evaluate the model performance. With respect to the size of
the original dataset, we have decided to use the leave-one-out
scheme (a.k.a. jackknife) for partitioning of features matrix
into a training and testing part. In each step, a single row was
considered as testing, while the rest was used to create the
model. The resulting model was evaluated against testing row.
Such process was repeated for each row, and the results were
averaged.

A. Pre-process and Transformation

During the pre-process phase, the records with artifacts
were removed from the experiment. By artifact we mean a
sound that is not caused by the water flow - e.g. cough, phone
ringing etc. The sound signal was trimmed from quiet parts
in the beginning and in the end of the record. We used two
methods of artifact removal. The first one is manual - an
expert processes each sound graph and if an artifact occurs, the
particular measure is removed. The second approach detects
the biggest continuous part of non-zero sound amplitude
automatically and trims everything else.

The records were transformed to a sequence of non-
negative integers by taking the absolute values of the sam-
ples, i.e. each record was treated as a vector a of sequence
a = (|ak|)�k=1 where � is the length of the signal.

See Figure 2 for a comparison of the flow-rate measure
performed by the UF device and the corresponding sound
record.

B. Features Extraction

Based on the analysis of the results from UF and the
experts’ knowledge (see [5]), we have defined the following
features, which we believe capture the important effects that
are capable of the desired classification, and which were
computed from the source sound signal sequences. In total, we
have defined 27 features denoted with fi, for i ∈ {1, . . . , 27}.
Figure 3 illustrates some of the features extracted from the
sound signal.

Let a = (a1, . . . , a�) be a vector representing the absolute
values of the sound signal.

Let sτ be a vector of values from vector a without values
that are lower than τ , i.e. sτ = (ak ∈ a | ak > τ).

Let p = (p1, . . . , p�) be such permutation of vector a that
pk ≤ pk+1, for k ∈ {1, . . . , �− 1}.

Let gδ = (g1, . . . , g�) be a δ-gradient vector computed
from a as follows (for d ∈ {1, . . . , �}):

gd = max{ak | k ∈ {d− δ, . . . , d+ δ} ∩ {1, . . . , �}}
−min{ak | k ∈ {d− δ, . . . , d+ δ} ∩ {1, . . . , �}}.

Note that the proposed gradient is not a standard way of how
the gradient is usually computed e.g. in computer graphics (see
[6] for more details).

The final list of extracted features is as follows:

• The arithmetic mean of non-zero values:

f1 =
1

|s0|
∑

s∈s0

s.
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Fig. 4. Flow-chart of the whole sound signal processing and machine learning, as performed within our experiment. Processes are depicted as ovals, artifacts
(i.e. data sets, models, results) as rectangles. The right part of the diagram was repeated multiple times, accordingly to the leave-one-out (jackknife) scheme of
validation.

Fig. 3. The illustration of how the features extracted from SUF relate to the
flow-rate function captured by UF.

This feature corresponds to the area under the curve
of the sound signal, which approximates the volume
of the voided urine.

• The arithmetic mean of the sequence vector a:

f2 =
1

�

�∑

k=1

ak.

In comparison with the previous case, here also the
silent parts of the signal are taken into consideration.

• Percentiles of sound amplitude that approximates
a maximum flow rate. The aim of the percentile is
to mitigate the effect of a noise:

f3 = p1�, f4 = p0.95�, f5 = p0.85�,

f6 = p0.8�, f7 = p0.75�.

• Median:

f8 = p0.5�.

• A difference between 90% and 40% percentiles, which
serves as a measure of variability because accordingly
to the experts, the high variability often relates to

pathological patterns. The 90 and 40 percentages were
selected empirically.

f9 = p0.9� − p0.4�.

Also the following variants were used:

f10 = p1� − p0.9�.

f11 = p1� − p0.7�.

• The arithmetic mean of the 1, 10, 100, and 1000-
gradient:

f12 =
1

�

∑

g∈g1

g; f13 =
1

�

∑

g∈g10

g.

f14 =
1

�

∑

g∈g100

g; f15 =
1

�

∑

g∈g1000

g.

• Time to reach the 50%, 60%, 70%, 80%, and 90%
percentile:

f16 = min{k | ak > p0.5�};
f17 = min{k | ak > p0.6�};
f18 = min{k | ak > p0.7�};
f19 = min{k | ak > p0.8�};
f20 = min{k | ak > p0.9�}.

Accordingly to the experts, a healthy person should
reach the maximum flow rate of voiding faster than
a person with a dysfunction.

• Thresholded time:

f21 = |s100|; f22 = |s200|; f23 = |s300|.
• The product of the arithmetic mean and the arithmetic

mean of non-zero values:

f24 = f1 · f2
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• Sums of thresholded values:

f25 =
∑

s∈s100

s; f26 =
∑

s∈s200

s; f27 =
∑

s∈s300

s.

Let us remark that we have also tried various features
derived from the frequency domain of the sound records.
However, no significant influence on the resulting classification
was observed. We expect the frequency filters and features
based on frequencies to be useful later when developing
automatic filters of sound artifacts and noise.

C. The State-of-the-Art Machine Learning Techniques

The feature matrix F = [fj,i] is created for j = 1, . . . , n,
i = 1, . . . , 27+1, where i-th column corresponds to the feature
fi and the 28th column encodes the target classification to
healthy/diseased, as provided by the experts, and j-th row
corresponds to the j-th record of total n = 208.

We have tested several well known techniques that are
available in the caret package [7] of the R statistical en-
vironment [8] – see Table I. We believe that the selection
of methods nicely covers the state-of-the-art at the field of
machine learners.

D. Our Learning Method

We have developed also a learning algorithm based on the
idea of a binary decision tree [9]. The algorithm was originally
used for visual recognition of jewelry stone defects [10]. The
main idea is similar to decision trees and it is as follows:
at each node of a tree, a decision is made which divides
an input set into two disjoint sets. However, the selection
of a feature to be used in a node as well as a construction
of a separation condition in a node differs to the classical
decision trees. For details, see [10]. In comparison with the
original approach presented in [10], the following changes
were made: the input function is one dimensional instead of
two dimensional; new semantic based features were used (see
section III-B); detection and removing extreme values in a
learning phase was designed.

The most significant benefit of our approach is its simplic-
ity that leads to very low computational cost, which makes our
classification algorithm ideal for execution on mobile devices.
For the purpose of classification problem described in this
paper, we have further improved the algorithm by extending
the classification condition in each node by introducing more
thresholds to separate the extreme feature values. However, the
mathematical background is out of the aim of the paper. In Ta-
ble I of the results, our algorithm is denoted as “PROPOSED”.

IV. RESULTS

As can be seen from Table I, the majority of tested methods
classified correctly more than 90 % of cases. The best accuracy
(0,9471) was achieved by Bagged AdaBoost (AdaBoostM1)
[11], Model Averaged Neural Network (avNNet) [12], and
glmnet [13]. Such good quality of classification serve us as
an empirical evidence of correctly selected features.

The proposed algorithm demonstrated one of the best accu-
racy rates in the task of jewelry stone defects recognition (see
[10]). In the task of classification of sound records described in
this paper, the accuracy of our improved algorithm is 91.35 %.

TABLE I. CLASSIFICATION ACCURACY AS OBTAINED FROM VARIOUS

CLASSIFICATION METHODS

method accuracy

AdaBoost.M1 0.9471

avNNet 0.9471

glmnet 0.9471

fda 0.9423

spls 0.9423

svmPoly 0.9423

kernelpls 0.9375

nnet 0.9375

pls 0.9375

plsRglm 0.9375

simpls 0.9375

widekernelpls 0.9375

bstTree 0.9327

LogitBoost 0.9327

sda 0.9327

bagEarth 0.9279

CSimca 0.9279

lda 0.9279

Mlda 0.9279

pda 0.9279

rocc 0.9279

RRFglobal 0.9279

svmRadialCost 0.9279

svmRadial 0.9279

svmRadialWeights 0.9279

bagEarthGCV 0.9231

bagFDA 0.9231

C5.0Cost 0.9231

C5.0 0.9231

gcvEarth 0.9231

kknn 0.9231

multinom 0.9231

nodeHarvest 0.9231

rf 0.9231

RRF 0.9231

method accuracy

Boruta 0.9183

bstLs 0.9183

bstSm 0.9183

ctree 0.9183

FRBCS.CHI 0.9183

FRBCS.W 0.9183

partDSA 0.9183

rFerns 0.9183

rpart2 0.9183

PROPOSED 0.9135

AdaBag 0.9135

bagFDAGCV 0.9135

glm 0.9135

parRF 0.9135

RFlda 0.9135

RSimca 0.9135

blackboost 0.9087

gamLoess 0.9038

hdda 0.9038

lssvmRadial 0.9038

C5.0Rules 0.8990

treebag 0.8990

pam 0.8942

PenalizedLDA 0.8846

C5.0Tree 0.8798

SLAVE 0.8750

knn 0.8413

lvq 0.8365

rbfDDA 0.8077

ada 0.8039

GFS.GCCL 0.7596

mlpWeightDecay 0.5913

rbf 0.5481

oblique.tree 0.4519

protoclass 0.4519

V. DISCUSSION

This paper describes a successful approach for classifica-
tion of SUF sound records. The results look promising, indeed,
the way to obtain them was quite complicated. In this section,
we would like to describe some previous attempts and dead-
ends.

A. Approach 1 – A Proprietary Sound Recording Software on
a Mobile Device

The result of UF is a function u of flow-rate on time (see
Figure 2). From that, the physician can see the process of
voiding of the patient in order to formulate a diagnosis. The
original idea was to develop SUF to get results similar to UF.
In other words, having a sound record s, which is a function of
volume of sound on time, we wanted to find a mapping s→ s′
such that corr(u, s′) is maximized (or equal to 1, ideally).

For that purpose, a proprietary sound recording application
on a mobile device was used to obtain a set of measures, where
the UF measure was performed simultaneously with the SUF
recordings.

Accordingly to the experts, the most important characteris-
tics of the UF graph are: maximum voiding flow-rate (Qmax);
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Fig. 6. Cell phone automatic volume normalization problem: whereas the
top graph reaches higher value than lower one, UF says the maximal value is
opposite. Moreover, consider the peak at the beginning of the recording that
we suppose is caused by the Automatic Gain Control too.

the total voiding time (T ime); and the total voided volume
(V ol), which can be represented with the area under the curve
in the UF graph (see Figure 2). Therefore, the comparison
between UF and SUF was performed as a correlation on these
three characteristics. Figure 5 shows the obtained correlations.

We tried to develop the mapping s → s′ using various
convolutions and non-linear filters. As depicted in Figure 5,
our mapping improved the correlation of T ime (from 0.56
to 0.91), but on the other hand, the correlation of Qmax
or V ol remained almost the same or got even worse. The
reason of that problem was discovered in the Android OS that
automatically normalizes the sound volume in order to make
the record audible and pleasant to the humans. Such feature is
called the Automatic Gain Control. However, it is undesirable
for SUF measures. See Figure 6 for visual demonstration of
that problem.

B. Approach 2 – Developing a Sound Recording Software for
Android OS

Based on the findings discussed above, we developed an
own Android application for sound recording with automatic
volume control turned off in the Android SDK. However,
probably because of some bug in the SDK, the cell phone
still insisted to control the volume automatically. Therefore,
we postponed the development of the mobile device version
until the problems with automatic gain control get resolved.

C. Approach 3 – Developing a Sound Recording Software on
the Personal Computer

Finally, a sound recording software was developed for a
personal computer running the MS Windows OS that can use

an integrated or external microphone. Unfortunately, although
the sound recording quality improved significantly, the corre-
lations between SUF and UF did not improve as expected.

D. Approach 4 – Searching the Mapping with Differential
Evolution

Until now, we tried to define the mapping s→ s′ manually
with the aid of an expert knowledge. In our subsequent exper-
iment, we searched the mapping with the help of differential
evolution. A function that processed the raw sound signal was
encoded into the genes of the differential evolution and we op-
timized the fitness function maximizing the correspondence of
SUF and UF. As the task was very computationally demanding,
we have run it on Anselm HPC in Ostrava.

Unfortunately, we have failed to find a suitable solution as
it seems that the sound of voiding does not reflect ideally the
flow rate. This unsuccessful research led us to reformulating
the objective and not to try to obtain UF results from SUF,
but to directly classify dysfunctions from SUF, as described in
this paper, which finally led to success.

VI. CONCLUSION

As can be seen from the reported results, the SUF method
of voiding dysfunction classification seems very promising.
However, this experiment is still too much laboratory-centric
and is far away from being directly applicable to the medical
practice. We see many challenges that must be tackled before
reaching the applicability in practice.

For instance, the real-life sound recordings may be encum-
bered with the bias caused by:

• varying sound conditions in a room where the measure
takes place;

• sound jamming, artifacts;

• different quality of devices performing the recording;

• different height of urine stream per patient;

• different size and shape of toilet bowl, different
amount of water inside;

• different distance or position of recording device mi-
crophone, etc.

We tried to avoid all such sources of bias in this preliminary
study by setting constant laboratory conditions.

For the readers who are interested, the CSV file
with data used for classification was uploaded to
graphicwg.irafm.osu.cz/storage/suf.csv.
If you are interested, you can test your machine learning
algorithm and send us your results.

We have also tested our own classification algorithm that
was successfully used in the stone defect recognition task [10].
Although it does not achieve the highest success rate in the
task described above, its proven benefit is again a very low
computational cost.

Future work may address classification of the recorded
sounds not only to healthy/diseased, but also to the type of
a disease or dysfunction. We plan to define more features,
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Fig. 5. Correlations between UF (x-axis) and SUF (y-axis) with respect to Qmax, V ol, and T ime. Top: original data (s); Bottom: transformed data (s′).

employ some advanced feature selection technique, or perform
classification with some ensemble of classifiers. The main
objective is to improve sound recognition pre-processing and
artifact removal.
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