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Abstract—This paper utilizes a fuzzy sets approach for the
analysis of arterial blood pressure and detection of hypotension
episodes during sleeve gastrectomy surgery. Membership of
systolic blood pressure measurements to the set of “low systolic
blood pressure” is used for feature construction of predictive
variables in predicting leakage after a sleeve gastrectomy pro-
cedure. The prediction task is posed as a classification problem.
Logistic regression and Takagi–Sugeno fuzzy inference systems
are used as the classification tools. Results indicate an increase in
predictive performance compared to previous studies using the
same data set.

I. INTRODUCTION

Nowadays hospitals are dealing with an increasing amount

of patients demanding more complex surgical procedures than

ever before. A particularly important branch of procedures

is bariatric surgery since obesity is a growing global health

problem. Sedentary lifestyles and a fast food culture have

worsened this problem year after year. Besides the obvious

aesthetic problems, obesity can lead to physical and psy-

chological problems like depression, heart disease, diabetes,

cancer and osteoarthritis [1].

One of the most common procedures within bariatric

surgery is the laparoscopic sleeve gastrectomy. In this pro-

cedure, the stomach is reduced to 75-85% of its original

size and made into the shape of a tube or sleeve. Sleeve

gastrectomy (SG) has recently been recognized as a safe and

effective stand-alone bariatric procedure, achieving a signifi-

cant reduction in weight and comorbidities [2], [3]. The overall

complication rate of SGs is lower than 15% [4].

The most common complications after the procedure are

abscesses and leakages along the stapler lines. The leakage

rate after laparoscopic sleeve gastrectomy is around 2.2% [5].

The management of early leakage should not be delayed and is

most effectively treated by operative or percuraneous drainage

and endoscopic stenting [6].

There are some studies trying to predict leakage after

colorectal cancer surgery by finding the risk factors such as

intraoperative blood pressure [7]. Nevertheless, these kinds

of studies do not focus on measuring the performance of

possible predictive models. More importantly, they do not

study leaks after bariatric surgery, specifically. In this paper,

we are focusing on leaks after bariatric surgery, based on the

previous works of [8], [9].

Our focus is on investigating the influence of occurrence of

hypotension episodes during the procedures on the leakage.

Hypotension episode occurs when the arterial blood pressure

is below a certain threshold for a predefined period of time.

The threshold values used in the definition of the hypotension

episode were investigated in [10]. In previous work [8],

[11], it was stated that presence of a hypotension episode

is a good predictor variable for leakage prediction. In these

studies, a hypotension episode is defined in a crisp way, as a

period of time where the blood pressure falls below a chosen

threshold for longer than a given time period. However, such

a crisp definition is not necessarily relevant from a clinical

perspective, since the transition into a low blood pressure

episode is typically gradual. Therefore, we propose to use a

fuzzy set-based representation of low blood pressure episodes.

In this paper we investigate whether a fuzzy set-based

detection of low blood pressure episodes by using additional

features describing length and severeness of this episode have

predictive value. We tested our method on data from patients

who have had laparoscopic sleeve gastrectomy between 2006

and 2012 at the Catharina Hospital in Eindhoven, the Nether-

lands. The data contain pre-operative information about pa-

tients as well as intra-operative blood pressure measurements.

The outline of the paper is as follows. In Section II, we

give the background information regarding the problem, as

well as report previous results. We present our method for

fuzzy description of the hypotension episodes in Section III. In

Section IV, we discuss the experimental setup and the results

we obtained. The paper ends with conclusions in Section V.

II. BACKGROUND

The problem of anastomotic failure after Laparoscopic

Sleeve Gastrectomy has been investigated in [11], [8], [9].

In [11], the authors investigated the influence of the occur-

rence of hypotension episodes for the leakage prediction. The

conclusion of this work was that episodes of systolic blood

pressure below 100 mmHg for 15 or 20 minutes are related

to the leakage. The authors also discovered that mean blood

pressure below 70 mmHg lasting for 20 minutes can be also

a good predictor of leaks. Similar episodes of 15 minutes had

less predictive value.
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TABLE I
SIGNIFICANT VARIABLES FOR LEAK PREDICTION.

Variable Description
Smoking Categorical – shows if a patient is a regular smoker or

not. Patients with failure smoke more often.
Puffs Categorical – shows if the patient uses puffs for lung

problems or not. Patients with failure use puffs more
often.

Antacids Categorical – shows if the patient uses antacids for
stomach problems or not. Patients with failure use
antacids more often.

Track type Categorical – shows if a patient had the fast-track or
normal-track approach for the procedure. Fast-track is
used since January 2011 instead of the normal-track.
Failure occurs less with the fast-track procedure.

Approach
type

Categorical – either Laparoscopic or Conversion or
Open approach. Laparoscopic approach means that the
procedure is done with small incisions. Failure occurs
less with this approach. Conversion approach shows
if patients had a second procedure or revision. Open
approach means that a large surgical cut is used for the
procedure. Failure occurs more often with the two later
approaches.

Stapler
type

Categorical – Endo GAITM stapler was used before
December 2009. Failure occurs more often with this
staple technique. TRI-stapleTM stapler is used since
May 2010. Failure occurs less often with this staple
technique.

Duration Continuous – the length of the procedure in minutes

In [8], the significant variables regarding patients’ and

procedure’s characteristics were investigated for predicting the

occurrence of leaks. The variables identified as relevant in

this study are shown in Table I. In [9], the author focused

on better detection of hypotension episodes and finding the

optimal thresholds for defining the hypotension episode for

leakage prediction. Since the blood pressure measurements are

not continuous, and measured usually every 2 to 5 minutes

during the operation, the exact start and end of a low blood

pressure episode are unknown. Consequently, finding the exact

duration of the hypotension episodes is not possible. In [9]

different methods for estimating the duration of episode were

tested, and it was found that linear interpolation in between

the measurements has predictive value. Additionally, different

threshold values for blood pressure and duration were inves-

tigated in order to include binary information regarding the

presence of a hypotension episode.

Afterwards, a logistic regression model was used to predict

leakage. The best results were obtained for a systolic pressure

threshold of 100 mmHg for a duration of at least 10 or 15

minutes. However, a threshold of 90 mmHg did not perform

much worse. The accuracy was around 78%, with precision

and recall equal to 67% and 39%, respectively. Cohen’s kappa

was 39% and AUC (area under the ROC) was 80%.

III. METHOD

The work in [9] assumed that a hypotension episode occurs

when the arterial blood pressure is below a certain threshold

for a predefined period of time. However, the low blood

pressure episode is gradual and it is not possible to determine

an optimal threshold for defining the threshold. Therefore, we
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Fig. 1. Membership function for low systolic blood pressure.

propose to use a fuzzy set-based definition of the episodes by

using new features that capture the length and severeness of

the hypotension episode in order to account for the gradual

character of the episodes.

Previous work [9] showed that the threshold for the systolic

blood pressure for the hypotension episode should be between

90 and 100 mmHg, i.e. such episodes have biggest predic-

tive capabilities. Based on this information and after some

experimentation, we decided to define low blood pressure as

a fuzzy set over the domain of systolic blood pressure. The

membership function is a left-shouldered trapezoidal function

(Z-function) where the membership decreases linearly from 1

to 0 in the rage 80 to 100 mmHg. Fig.1 shows the membership

function for low blood pressure.

By using the membership function in Fig.1, we are able to

determine to which degree each blood pressure measurement

belongs to the set of low blood pressures. In other words, let

us assume that st, t = 1, 2, . . . ... represents the time series of

the systolic blood pressure. The result of this transformation

is the time series plowt , t = 1, 2, . . . ..., such that

plowt = μlow(st). (1)

Given the time series plowt , the length of an interval during

which the blood pressure is low can be computed as the time

integral of μlow(st). Ideally, this integral would be calculated

analytically. However, the time series does not follow an

analytical expression, in general. Since we have the pressure

values available for a (finite) number of measurements at

discrete time steps, we use the numerical integration method

with the trapezoidal rule to approximate the integral. We

assume that the time series that we are interpolating consists

of (piecewise linear) line segments passing through the points

plowt , plowt+1.

It is worth noting that one patient may have encountered

more than one low blood pressure episode, and we capture
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Fig. 2. Example of detecting low blood pressure episodes.

the duration of all the episodes separately. The duration d of

an episode is calculated as

d =

∫ t2

t1

plowt dt =

=

t2−1∑
i=t1

(ti+1 − ti)
plowi+1 + plowi

2
, (2)

where t1 and t2 are beginning and end of a hypotension

episode, plowt1 = plowt2 = 0 and plowt > 0 for t ∈ (t1, t2).

Because a patient may experience multiple hypotension

episodes during surgery, we derive the following features to

be used as inputs to the prediction models:

• number of “episodes”,

• maximal “duration” of the episodes,

• minimal “duration” of the episodes,

• median “duration” of the episodes,

• average “duration” of the episodes.

Figure 2 illustrates our method for determining the duration

of the episodes. On the leftmost plot we can see the original

systolic blood pressure measurements for a patient. The middle

plot depicts the degree to which the pressure values belong to

the set of low blood pressure, given the definition in Fig.1.

Note that there are five low blood pressure episodes in Fig.2.

In the right plot, the area shaded for the third episode is

interpreted as the duration of the episode.

IV. RESULTS

We tested our method on data collected from Catharina

Hospital in Eindhoven, in the Netherlands. The data were

collected for 1286 procedures performed from 2006 to 2012

and included 38 procedures that resulted in leakage. The data

set contained all variables named in Table I as well as the

additional features related to hypotension episodes discussed

in Section III.

Firstly we created the validation set that contained 10%

of data with the same distribution of the target class as the

whole data set. The remaining data were used for the training

and testing the model. In order to overcome the problem of

unbalanced data, we used the synthetic minority over-sampling

technique, SMOTE, introduced in [12]. Hence 300 synthetic

minority class samples were generated by interpolation be-

tween existing cases. In order to better estimate the quality of

the models we used commonly used 10-fold cross-validation,

advocated in [13]. So 90% of the over-sampled data were used

for training and 10% for testing in each fold.

We used logistic regression and Takagi–Sugeno fuzzy in-

ference system as the classification method, for predicting

whether leakage takes place or not. For both methods we

used the same partition into the folds, in order to facilitate

comparison. For every fold, a model was trained with the

above mentioned two methods using the over-sampled data set.

Afterwards, the model was evaluated with the over-sampled

validation set as well as the test data set with original target

class distribution.

Each model was evaluated with several performance mea-

sures: accuracy, precision, recall, AUC, Cohen’s Kappa and

AUK. The first three metrics can be calculated based on the

confusion matrix per fold [14].

• Accuracy ((TP + TN) / Total): percentage of records that

was classified correctly.

• Recall (TP / (TP+FP)): percentage of leakage detected.

• Precision (TP / (TP+FN)): percentage of all predicted

leaks which were correct.

Herein TP stands for true positives, TN for true negatives,

FP for false positives and FN for false negatives. Since there

is a large class imbalance in the data set, Cohen’s Kappa is

generally thought to be a more robust measure than simple

accuracy, as Kappa takes into account the agreement occurring

by chance. Therefore it is considered to be more useful then

accuracy for this study [15].

In addition to the above metrics that are valid at a single

operating point only, the average performance of the models

across different operating points is studied receiver operating

characteristic (ROC) curves [16] and kappa curves [17]. The

performance is quantified by using the AUC (area under

ROC curve) and AUK (area under kappa curve). AUK is a

metric proposed recently in order to compensate for AUC

being sensitive to the class distribution [17]. Since our data

set is highly imbalanced, AUK seems to be the preferred

performance metric. Furthermore, kappa inherently takes into

account the class skewness in the data and prefers correct

classification of the minority class over the majority class.
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TABLE II
RESULTS FOR OVER-SAMPLED TEST DATA SET

Log regr. m1 Log regr. m2 FIS m1 FIS m2
μ σ μ σ μ σ μ σ

Accuracy 0.8294 0.0238 0.8322 0.0238 0.8350 0.0224 0.8531 0.0224
Precision 0.9698 0.0120 0.9689 0.0141 0.9715 0.0218 0.9840 0.0110
Recall 0.8386 0.0165 0.8417 0.0156 0.8430 0.0179 0.8525 0.0200
AUC 0.7733 0.0478 0.7786 0.0533 0.7987 0.0460 0.8112 0.0440
Kappa 0.3567 0.1012 0.3729 0.0991 0.3795 0.1016 0.4452 0.1053
AUK 0.2042 0.0362 0.2094 0.0388 0.2228 0.0334 0.2337 0.0309
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Fig. 3. Results for the logistic regression model on the over-sampled test set.

There is a relation between ROC curves and kappa curves,

which has been studied in [17]. For every fold, a model and

the associated ROC and AUK curves are plotted based on the

test set from over-sampled data and on the validation set from

the original (imbalanced) data.

Ten-fold cross validation is used for assessing the per-

formance of our proposed approach. Below, the presented

results are the average from those 10 models. We have tested

different models built using two different sets of features. The

first contains only the patient and procedure characteristics

smoking, puffs, antacids, track type, approach type, stapler

type and duration of the surgery, i.e. features described in
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Fig. 4. Results for the logistic regression model on the unbalanced validation
set.

Table I. We treat this model as the benchmark model. The

second feature set has all features of the first model plus

the five features describing the low blood pressure episodes

discussed in Section III.

Let us first discuss the results of the benchmark data set

for the logistic regression model. Figure 3 shows the averaged

ROC curves and kappa curves for the logistic regression model

created using 10-fold cross validation on the validation (over-

sampled) test set. This model performs with AUC equal to

0.77 and kappa equal to 0.35. These results are similar to the

results from [9], which we use as the base case. Additional
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Fig. 5. Results for the FIS on the over-sampled test set.

performance measures are presented in Table II for the over-

sampled test set.

We assessed the performance also on the unbalanced valida-

tion set. The ROC and Kappa curves are shown in Figure 4.

Note that the performance of the model on this data set is

lower, which indicates that the characteristics of the validation

set differ considerably from the training set. Although AUC

is reasonably high, the negative value for kappa shows that

the model makes significant classification errors, especially

when the false positive rate is small. This is a consequence of

the class imbalance in this problem. Additional performance

metrics for this data set are presented in Table III.

Takagi–Sugeno (TS) models [18] have been applied suc-

cessfully in various clinical problems [19], [20], [21]. They are

numerically competitive models, while the fuzzy rules in the

system provide an interpretable representation of the general

behavior of the model, which facilitates communication with

domain experts. For that reason, we looked also at a first-order

Takagi–Sugeno fuzzy inference system (FIS) for this problem.

To build the model, we used fuzzy c-means clustering [22] and

the ANFIS (adaptive neuro-fuzzy inference system) learning

method [23]. The main steps of our fuzzy modeling approach

are similar to the ones described in [24]. We cluster the data

in the product space of features by using fuzzy c-means. Each
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Fig. 6. Results for the FIS on the (unbalanced) validation set.

cluster corresponds to a rule in the FIS. We tried different

different values for the number of clusters c, and came to

the conlcusions that two clusters were sufficient for our data

set. These clusters were used to initialize the rule base of

a first-order TS model, which parameters are then optimized

using ANFIS training. The FIS computes a score, which can

then be used to classify the data samples into “leak” or “no

leak”. Figure 5 and Fig.6 show the results for the testing and

validation sets, respectively. It can be noticed that the fuzzy

model has better performance than one obtained using logistic

regression. The models with larger number of rules showed

similar results, a bit better on the testing (over-sampled) set

and a bit worse on the validation data set.

The above models are used as the benchmark with which

we want to compare and measure the usefulness of the new

hypotension features characterizing the low blood pressure

episodes, based on detection with our fuzzy set approach. This

is done in the second set of experiments.

Let us first show the results for the logistic regression

models. Figure 7 and Fig.8 show the results for the testing

and validation sets, respectively. We note that there are no

significant improvements when we compare these results with

the ones from the first set of features, since the performance

measures have virtually the same values.
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TABLE III
RESULTS VALIDATION DATA SET.

Log regr. m1 Log regr. m2 FIS m1 FIS m2
μ σ μ σ μ σ μ σ

Accuracy 0.9094 0.0055 0.9250 0.0055 0.9477 0.0053 0.9664 0.0053
Precision 0.9387 0.0056 0.9548 0.0056 0.9758 0.0054 0.9903 0.0051
Recall 0.9668 0.0002 0.9673 0.0002 0.9703 0.0037 0.9754 0.0024
AUC 0.7673 0.0099 0.7442 0.0182 0.8329 0.0029 0.8944 0.0074
Kappa -0.0426 0.0015 -0.0377 0.0020 0.0461 0.1171 0.2766 0.1058
AUK 0.0333 0.0026 0.0266 0.0034 0.0545 0.0018 0.0782 0.0028
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Fig. 7. Results for the logistic regression model on the (over-sampled) testing
set with additional features.

For the Takagi-Sugeno Fuzzy Inference model, a difference

between the two feature sets is observed, however. As in

previous cases we calculated the performance measures for

the two data sets. The results are shown in Fig. 9 and Fig.10,

respectively. We observe that there is an increase in all the

metrics for both data sets (see Table II and Table III). However,

performing Student’s t-test has shown that the differences were

significant for the unbalanced validation data set, but they were

not for the (over-sampled) testing data set. Currently, we are

investigating the possible causes of this observation.

We also created models for fuzzy inference systems with

different number of rules. In all cases the model built on
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Fig. 8. Results for the logistic regression model on the (unbalanced) validation
set with additional features.

the data set with additional features was better than a model

built with the data set without those features. Furthermore,

we noticed that when increasing the number of rules, the

performance measures on the (over-sampled) testing set tends

to increase slightly, while they tend to decrease slightly on

the unbalanced validation set. We think this is related to the

misclassification in the models when false positive rates are

small.

Several runs indicated that FIS always performs better

if it was trained on a set with additional features based

on hypotension episodes. In case of logistic regression this

was the case in about half the runs. Hence, it appears that
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Fig. 9. Results for the FIS on the (over-sampled) test set with additional
features.

the proposed features have discriminant value in predicting

leakage in sleeve gastrectomy, but the benefits are dependent

on the specific modeling approach that is used.

V. CONCLUSIONS

We investigated the effect of the occurrence of hypotension

episodes during the laparoscopic sleeve gastrectomy on the

leakage after the surgery. We introduced features describing

length and severeness of these hypotension episodes for pre-

diction models. We tested our method on patient data from

the Catharina Hospital in Eindhoven in the Netherlands by

using logistic regression and Takagi–Sugeno fuzzy inference

systems as modeling techniques. Results show that the new hy-

potension features have predictive value for leakage detection,

especially for fuzzy inference systems. These results indicate

that the added value of the prediction features depends also

on the modeling technique selected, arguing for a wrapper

approach to feature selection in modeling. In the future, we

will investigate the model-dependent selection of features for

this prediction problem.

From a clinical perspective, a good prediction modeling for

leakage after sleeve gastrectomy can help improve the care for
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Fig. 10. Results for the FIS on the (unbalanced) validation set with additional
features.

bariatric patients considerably. In the future, we will test these

prediction models prospectively within a clinical setting.
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