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Abstract—Process mining is an emerging research area that
brings the well-established data mining solutions to the chal-
lenging business process modeling problems. Mining streams of
business processes in the real time as they are generated is a
necessity to obtain an instant knowledge from big process data.
In this paper, we introduce an efficient approach for exploring
and counting process fragments from a stream of events to
infer a process model using the Heuristics Miner algorithm. Our
novel approach, called StrProM, builds prefix-trees to extract
sequential patterns of events from the stream. StrProM uses a
batch-based approach to continuously update and prune these
prefix-trees. The models are generated from those trees after
applying a decaying mechanism over their statistics. The extensive
experimental evaluation demonstrates the superiority of our
approach over a state-of-the-art technique in terms of execution
time using a real dataset, while delivering models of a comparable
quality.

I. INTRODUCTION

Process mining is an emerging research area that brings
the well-established data mining solutions to the challenging
business process modeling problems. These problems are pro-
vided to the data mining algorithms in the form of event logs.
Typically, event logs contain detailed information about the
activities that are taken within a business process. The main
aim of process mining is to discover, monitor and improve
real processes by extracting knowledge from event logs [1].
The achieved improvement of the extracted process models
can be measured by the extent of conformance between them
and the original event logs.

Although process mining is relatively a young research
field, several approaches [2], [3], [4], [5], [6], [7] are already
existing in its literature. These works presented interesting
methods by examining different features of the event logs (cf.
Section II). All of them have however assumed the existence
of the complete event logs and the possibility to access it as
much as needed to generate, in most of them, a single final
process model. This is infeasible when considering the huge
increases in the size of event logs generated from modern
information systems supporting business processes [8]. The
proposed approaches will face serious efficiency issues with
the increase in both the size and the dimensionality of the
collected events [9]. Moreover, one important recent research
question in the field of process mining is the concept drift
of the underlying business process [10]. Decision makers
will lose important insights over such drifting process by
having merely a single final model. An important additional

Fig. 1. An overview of our StrProM algorithm using an example stream
of events from a Traffic Fine Management System. The streaming process
models (Right) present a drift in the models (causal nets) over the time with
the activities: Traffic Offense, Penalty, Payment, Administration, Judge.

evolving requirement in this context is the necessity to have
instant knowledge about the process model in the real time of
observing the event logs.

With these new requirements, one started to speak about
event streams, streams of process models and streaming pro-
cess discovery [8]. Consider the event stream flowing from an
example Traffic Fine Management System in Fig. 1. Observed
events are received over the time by the streaming process
discovery part in the middle column which continuously ex-
tracts and updates a stream of process models in the right
side of Fig. 1. Stream mining is a well-established area with
a rich literature in clustering, classification, outlier detection
and frequent pattern mining [11], [12], [13], [14], [15] (cf.
Section II). Efficient solutions for mining sequential patterns
within data streams have been proposed recently to extract
knowledge from evolving data streams with guarantees on the
memory usage and the running time [16], [17].

In this paper, we present our novel streaming process
discovery algorithm, called StrProM, that efficiently mines
the flowing event stream to find streams of frequency lists.
StrProM uses the novel prefix-tree structure with a decaying
mechanism and builds above the Heuristics Miner [4] (cf. Fig.
1). More precisely, our contributions are:

1) Building a special prefix-tree data structure to get
interesting statistics from the batches and applying a
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novel pruning mechanism over the tree to guarantee
an efficient processing of the events in the stream and
an upper bound on memory usage,

2) Performing a unique, storage-aware pruning method
to outdated cases,

3) Introducing an additional decaying of relation counts
and activity counts to allow a faster adaptation to new
behaviors and gradually forget older ones and

4) Achieving considerable time savings when compar-
ing StrProM against a state-of-the-art competitor [8]
using a real dataset, by keeping the quality of the
models at least as good as the competitor.

The remainder of this paper is organized as follows: Section
II lists some related work. In Section III we give a formulation
of the problem. Section IV describes our novel method. In
Section V we show our extensive experimental evaluation
of StrProM against a state-of-the-art algorithm using a real
dataset. Section VI concludes this paper and defines some
future directions.

II. RELATED WORK

Process Mining

Process mining originates from the fields of business
process modeling and adapts techniques from data mining and
various other fields. In 1998, Cook and Wolf [18] published an
article in the field of software engineering on the discovery of
models from event-based data, Agrawal et al. [19] published on
the discovery of process models from workflow-logs and van
der Aalst [3] examined the usage of Petri nets in the context
of workflow management. Today, this area of process mining
is called process discovery and over the last decade, several
approaches and algorithms for the discovery of workflow
models have been developed.

In 2001, the foundations for the Heuristics Miner algorithm
were laid by Weijters and van der Aalst [2]. This led to the
development of the algorithm called Little Thumb [20] in
2003 and Little Thumb itself lead to the development of the
Heuristics Miner [4] algorithm by Weijters et al. It is a widely
used process discovery algorithm, and according to [1] it is one
of the few process discovery algorithms that is able to handle
noise and incompleteness in event logs. In our contribution,
we use it as the underlying model inferring method.

There are several other process discovery algorithms, and
probably the most famous one is the α-Algorithm [5], devel-
oped by van der Aalst et al. in 2004. It is of a special theoretical
importance, since it can be shown for a specific class of
workflow nets, that the α-Algorithm is able to rediscover any
model based on a generated suitable event-log [5]. Further
process discovery algorithms are the Multi-Phase Miner [6]
and the Fuzzy Miner [7]. In 2005, the framework ProM [21]
was published. It includes all of the aforementioned algorithms
and many more techniques from the different fields of process
mining, and is since under further development [22]. We also
aim to create a ProM-plugin from our contribution.

Stream Process Mining

The challenge to transfer concepts from stream mining to
process mining has been mentioned in the Process Mining

Manifesto [23]. Stream mining has been and is still studied ex-
tensively in the area of data mining [9]. Nevertheless, adopting
stream data mining techniques to the field of process mining is
not straightforward. We focus on the task of streaming process
discovery, which, among other things, includes working on
potentially unbounded event logs. Few algorithms have been
developed, that are able to perform process discovery in a
single pass over the data. Namely, Burattin et al. developed
an online adaption of the Heuristics Miner to streaming event
logs [24]. In [8], Burattin et al. performed an extensive analysis
of an online Heuristics Miner, using Lossy Counting to keep
track of the frequencies of the activities and the direct-follows
relations. Another streaming process discovery algorithm was
developed by Redlich et al. [25], and is based on their process
discovery algorithm Constructs Competition Miner [26]

There are other approaches that use the Declare language
to build a process model in real-time. This language [27] was
developed to support loosely structured processes. It uses linear
temporal logic to describe rules that the observed process
adheres to. An algorithm to mine a declarative model from
streaming event data was proposed by Maggi et al. in [28].
The Online Heuristics Miner results were modified to mine a
Declare model by Burattin et al. in [29].

Stream Sequential Pattern Mining

In our contribution, we adapt stream sequential pattern
mining algorithms to collect the frequencies of activities and
their direct-follows relations. In 2004, Peit et al. proposed a
static algorithm to mine sequential patterns: PrefixSpan [30].
This algorithm was developed into a stream sequential pattern
mining algorithm called SS-BE [16] by Mendes et al. Using
a sliding window approach, Hassani and Seidl adapted SS-BE
to handle multiple input-streams [17]. This algorithm can only
find so called consecutive sequential patterns, though.

III. PRELIMINARIES AND PROBLEM DEFINITION

To get an overview about the main concepts of stream
process mining, we will introduce them in this section.

In process mining we usually consider static logs of events.
Each event e consists of at least a case identifier c, an activity
label a and a timestamp t. For simplification we will only
consider events of this minimal shape e = (c, a, t), but in
real-world applications it is possible to add arbitrarily more
attributes. For convenience we define projection functions for
each attribute: c(e) = c, a(e) = a, t(e) = t.

Each event in the log reflects an occurred action in a
business process and all events sharing the same case identifier
form a sequence of actions that we typically call a trace.

While a log can be defined as a multiset of events, we want
to deal with a sequence of events. We define the sequence of
events S : N→ E as an event stream. To simplify the notation
we use its string representation.

S = 〈e1, e2, e3, . . .〉

Different to sequential pattern mining, where we aim at
finding frequent consecutive subsequences, stream process
mining tries to find pairs of events in common cases and collect
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their frequencies. This knowledge is then used to infer a model,
which allows for interpretation of causalities between different
activities. As many cases are usually handled at the same time,
it is necessary to observe all of them in parallel to find these
pairs.

Therefore it can be useful to differentiate between open and
already closed cases during the runtime of a stream. There is
of course also the third option, that a particular case has not
been seen until now. Let ek be the most recently observed item
in the stream and c a case such that there was an event ej with
0 ≤ j ≤ k and c(ej) = c. We call c an open case, if we expect
to observe an event em with m > k and c(em) = c. If we can
guarantee that we will not see another occurrence of c, we
call c closed. It should be noted that it is usually possible to
introduce start and end activities to the event universe. This
helps to safely close an open case after we observed an event
which is marked with an end-activity. On the other hand there
are a lot of reasons why the detection of the case closure can
fail due to technical problems or faulty human interaction. If
we only rely on observing end markings, we will unnecessarily
keep cases open which will finally congest the memory. To deal
with this problem it is a good idea to forget cases which have
not been seen for some time.

Given such an event stream we want to find the underlying
process model by collecting the traces as process instances and
transform them into a human-comprehensible visualization.
The Heuristics Miner [4] is a well-established algorithm for
transforming an event log into a graph model and allows for
a good quality in terms of being able to replay many traces
from the log while not allowing too much additional behavior
and staying human-interpretable.
The Heuristics Miner discovers the control-flow model of a
process by connecting activities which fulfill a set of con-
straints representing their degree of dependency. So for two
activities a and b, Heuristics Miner will only establish the
connection from a to b, if ab is a frequent pattern within the
event log. The existence of a subsequence of two activities a
and b in a certain case is typically called the direct-follows
relation and denoted by a > b. By |a > b| we state the
number of direct-follows occurrences seen in the current batch.
To reduce the size of the model, Heuristics Miner prunes the
model by ignoring those connections with a support below a
minimum support threshold. This threshold is user-defined and
denoted by τPO. The following constraint is used to build an
initial candidate set for edges in the result model.

|a > b| ≥ τPO (1)

The Heuristics Miner additionally computes a dependency
measure for the pair (a, b), such that a connection from a to b
will only be established if b is dependent of a. In the literature,
the dependency measure is denoted by

a⇒ b =
|a > b| − |b > a|

|a > b|+ |b > a|+ 1
∈ [−1, 1]. (2)

If a ⇒ b is close to 1, then there is a strong tendency that
a is usually followed by b. If it is close to −1, then there
is a high chance to observe an a after a b. In case of a
value nearly 0, there is no significant causality between both
activities. As with the positive observation threshold, the user

has to specify which degree of dependency τdep is reasonable
to declare two activities as dependent. This means that the
following condition has to be fulfilled:

a⇒ b ≥ τdep (3)

To keep the model simple and comprehensible, the Heuris-
tics Miner eliminates connections between a and b if there is
another successor postbest(a) = argmaxb′ a ⇒ b′, such that
the difference between a ⇒ b and a ⇒ postbest(a) exceeds
a third user-defined threshold τbest. Analogously by defining
prebest(b) = argmaxa′ a′ ⇒ b, the Heuristics Miner checks
all predecessors of b to compare a ⇒ b with prebest(b) ⇒ b.
Formally all dependency connections are allowed which are
accepted by these two constraints:

|(a⇒ postbest(a))− (a⇒ b)| < τbest (4)

|(prebest(b)⇒ b)− (a⇒ b)| < τbest (5)

This gives connections between activities with high depen-
dency a huge advantage. A found relation can be frequent and
can also have a high dependency measure. For many relations
which fulfill these requirements, Heuristics Miner only keeps
the top dependent ones. A model shows only the relations with
strongest dependencies, which should be the most important
ones for the process.

Similar to the dependency measure, the Heuristics Miner
introduces a measure for the discriminability of the splits and
joins.

a⇒ (b ∧ c) =
|b > c|+ |c > b|

|a > b|+ |a > c|+ 1
∈ [0, 1] (6)

(b ∧ c)⇒ a =
|b > c|+ |c > b|

|b > a|+ |c > a|+ 1
∈ [0, 1] (7)

By using the user-defined AND-threshold, it defines two
relations (a, b) and (a, c) (analogously (b, a) and (c, a)) as
an AND-split (join), if

a⇒ (b ∧ c) ≥ τAND. (8)

On the contrary, if

a⇒ (b ∧ c) < τAND. (9)

holds, then we mark this split (join) with XOR.

As the Heuristics Miner uses these constraints to determine
the existence of a causal connection between two activities, it
is sufficient to know the frequencies of all existing relations to
infer the different measures and therefore infer a causal net.
This is a rather important detail as it allows to transform the
problem of mining a model into mining for sequential patterns
of length 2 per case.

In [8] the introduced approaches share the idea of collecting
items from a stream and then use the Heuristics Miner on
this static data. A very well performing algorithm in this
work is the Heuristics Miner with Lossy Counting algorithm
(LC) and its improvement, the Heuristics Miner with Lossy
Counting with Budget algorithm (LCB). Both approaches
utilize three data structures to collect information about the
activities, relations and open cases. Inspired by the lossy
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counting method from the field of mining frequent items from
streams, it suggests to mine activity counts and to extend the
lossy counting approach to also count relations. It has to use
the third structure for cases to allow for mining relations within
the same case.

In the following we want to adapt a method of another
mining field as well. The SS-BE method [16] itself is also
inspired by the Lossy Counting algorithm but mines sequential
patterns in streams. It uses a prefix-tree to store each sequence
and its frequency. After a predefined period of observed items,
the tree will be pruned generating a bounded error while
reducing its size to keep all the frequent sequences only.
The pruning cuts branches with a support below a minimum
support threshold.

IV. StrProM: A STREAM PROCESS MINING ALGORITHM

In [8] several approaches are presented to collect counts of
activities and case-related direct-follows relations by observing
an event stream and to use this data as an input for the
Heuristics Miner algorithm. The miner algorithm will then
infer a control-flow model in form of a causal net as it would
do with static data. Considering the introduced approaches we
have selected the Lossy Counting with Budget algorithm since
it is most suitable for comparing with our novel approach
considering its very fast event processing time. LCB utilizes
three data structures for activities, relations and open cases. All
of them have to be updated after a new stream event appeared.
Our approach aims at reducing the process time by decreasing
the effort for updating three structures and just uses one data
structure. This allows a much faster process time but demands
a more extensive processing of this structure to yield the counts
on activities and relations. Since we usually do not need this
information as often as the stream progresses with new events,
we can delay this step to decrease average event process times
significantly.

A. Indexed Prefix-Trees

Inspired by the SS-BE method [16], we imported a subse-
quence mining method to the field of stream process mining.
This algorithm uses lexicographic trees to store subsequences
of items. We adapted this idea in the sense that a currently open
case is just a subsequence of the finally closed ones. So while
we are collecting events of a case by observing the stream, we
fill a prefix-tree Ttraces with new arriving items. This refers
to Lines 11-26 in Algorithm 1. For each open case we store a
pointer in a map structure Dcases to the corresponding node
in the tree (Lines 11-12) for a fast access when we observe
a new event for this case. If a case is closed, we can delete
the pointer and still keep the collected information in the tree.
The usage of case pointers leads to a noticeable decrease of
event processing time, as for each arriving stream event, the
algorithm only has to insert it at the correct position in the
tree and update the pointer. The updates of the relation and
activity frequency lists (FA and FR) do not need to be done
every time a new item is observed.

Consider a small example of only three cases here. Let
us assume the following traces: c1 = (ab), c2 = (bc) and
c3 = (bab). Imagine that we observe all events in the following

c1 a b

c2 b c

c3 b a b

time

Fig. 2. Example of an event stream S over three cases c1 = ab, c2 = bc
and c3 = bab. The dashed line indicates that we have observed only 6 of 7
events yet.

ε

a : 11

cases:

b : 1

b : 2

a : 1 c : 1

Fig. 3. Example of a prefix-tree after 6 of 7 events have been observed.

order defining a stream S:

S = 〈(1, a, t0)(2, b, t1)(3, b, t3)(2, c, t4)
(3, a, t5)(3, b, t6)(1, b, t7)〉

For a more illustrative understanding of the stream and its
temporal ordering, take a look at Fig. 2. After six events have
been observed, the prefix-tree in Fig. 3 contains the whole
information we have collected so far. For the cases c2 and c3
we observed their last activities, so these two cases are closed.
As only one item of case c1 is remaining, we end up with this
case still open. The corresponding case pointer is still active
in the cases list.

The tree will grow continuously. We have to keep in mind
that considering stream processing typically means a huge
amount of data, so we will finally store more items than
our capacity allows. As a theoretical boundary, the maximum
node degree is limited by the number of different activities.
The height of the tree is bounded by the case length. For
instance we take a number of 20 activities with an average case
length of 20. This would finally end up in a tree consisting of
roughly 1025 nodes or 1013 terabytes of data. Depending on
the application we could easily have more different activities or
longer process instances, which will increase the huge amount
of data even more.

Even if we are able to store all the data, the time needed
to infer a model grows with the size of the tree. On the
other hand, a complete prefix-tree of observed events offers far
more information than we actually need for a heuristics net.
Knowing that we only need counts on direct-follows instead
of the positional information of each relation leads to the
following pruning strategy.

B. Tree Pruning

We again take a look at the SS-BE [16] approach. After
a certain period, it applies a pruning to the tree eliminating
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ε

a : 1

b : 1

b : 2

a : 1

b : 1

c : 1

Fig. 4. Prefix-tree with redundancy after processing the complete stream S.

branches with a support below a particular minimum support
threshold. Considering our aims of mining the process, we are
also interested in branches with a low support. Many 2-patterns
in the depth of the tree with a low individual observation
frequency can add up to large numbers. These information
make a significant difference in the resulting model. On the
other hand, and in contrary to SS-BE, we do not need to
keep all the structural information of the tree. Regarding the
process mining task we have a lot of redundant information
which can also be stored in a more compressed structure. For
instance, consider Fig. 4, where the stream has been observed
completely. The pattern ab occurs two times in the tree. For
our needs it is sufficient to know that |a > b| = 2.

So instead of pruning branches of the tree we will do almost
the inverse of the SS-BE algorithm. We store the information
given by the tree in two frequency maps for activities FA :
A→ N and relations FR : (A×A)→ N. To collect all counts,
we have to traverse the tree only once. For each node n with
label a and its child m with label b, we retrieve the value stored
in m. This value is then added to the relation frequency list
for a > b. In addition, we can sum up the activity frequencies
in the same run. This is done in Algorithm 1, Lines 32-42.

After we have extracted all the tree information, we can
remove most of the tree. For each open case, we store the
last activity and attach it directly to the root node. The case
pointers for the fast access will point to these nodes on the
second tree level. They are initialized with a value of 0 as
we already transferred the old values into the frequency lists
before. After the tree pruning has been finished, the algorithm
continues as before with a tree of height 1 and we fill it again.
In Fig. 5 we used the pruning on our example. Using a period
length of 5 and starting at the beginning, we have to prune after
we observe the a in case c3. First, we extract the contained
information:

FA = {a : 2, b : 2, c : 1}
FR = {(b, a) : 1, (b, c) : 1}

The new tree only consists of the root and one node labeled
with a as both open cases c1 and c3 have shown an a most
recently. Case c2 is already closed and therefore does not need
a pointer.

After a pruning has been done, we have collected the
activity and relation frequencies. These are additive and the old
data can just be updated. A causal net can then be constructed
using the Heuristics Miner constraints. The pruning period and

ε

a : 11

3

cases:

b : 2

a : 1 c : 1

pruning

ε

a : 01

3

cases:

Fig. 5. Tree pruning at t = 5 while observing S with pruning period of 5.

the interval between model inferring are not depending on each
other and we do not have to construct a model after each
pruning period.

C. Decaying

Non-stationary processes obviously need different models
during their existence. Information in the stream of events
get less important the older this data becomes. To grant more
importance to newer process instances or cases, it is useful to
forget older relations and activities. When we prune the tree
and add the newly collected counts on activities and relations,
we modify the old counts using a decaying factor λ ∈ [0, 1].
This is done at Algorithm 1, Lines 36-37.

Fnew
A = (1− λ)F old

A + F extracted
A

Fnew
R = (1− λ)F old

R + F extracted
R

Choosing λ = 1 the algorithm will ignore all data collected
in the previous batches, allowing for an exclusive focus on
the recent data. If we do not want any decaying at all, we
can choose λ = 0 such that all data is treated with the same
importance. This is for example useful for the processing of a
static but very large database as an event stream.

D. Case Pruning

A last thing to consider is keeping the number of observed
concurrent cases limited. In the worst case there can be a point
in time when all cases are open simultaneously. In real-world
applications this case is very unlikely, although in the case
of an error-prone stream in a technical sense or a comparable
influence there can be missing end events. But the number of
simultaneously open cases tends to grow very large for many
real-world datasets, while the number of activities and relations
is usually very small. This leads to the fact that monitoring the
open cases is the dominating factor considering the memory
consumption.
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Algorithm 1 The StrProM Algorithm

Input: S: event stream;
1: λ ∈ [0, 1]: decay factor;
2: p: pruning period;
3: cmax: case observation limit

4: Initialize the data structure Ttraces, Dcases

5: Initialize frequency maps FA and FR

6: loop
7: /* pruning period p */
8: for 0, . . . , p do
9: (c, a, t)← observe(S)

10: /* Update Ttraces with observed event */
11: if ∃c ∈ Dcases then
12: (n, t)← Dcases(c)
13: if ∃Ttraces(n.a) then
14: Ttraces(n.a)← Ttraces(n.a) + 1
15: else
16: Ttraces(n.a)← 1
17: end if
18: Dcases(c)← (n.a, t)
19: else
20: if ∃Ttraces(a) then
21: Ttraces(a)← Ttraces(a) + 1
22: else
23: Ttraces(a)← 1
24: end if
25: Dcases(c)← (a, t)
26: end if

27: /* remove least recent cases from observation */
28: if Dcases reach size of cmax then
29: delete oldest cases from observation
30: end if
31: end for

32: /* after pruning period, collect data and prune tree */
33: for all n.a, n.a.b ∈ Ttraces do
34: /* collect pairs of nodes and their children first
35: consider decay factor d here */
36: FA(b)← (1− λ)FA(b) + Ttraces(n.a.b)
37: FR(a, b)← (1− λ)FR(a, b) + Ttraces(n.a.b)
38: end for
39: for all a ∈ Ttraces do
40: /* children of root are still missing */
41: FA(a)← (1− λ)FA(a) + Ttraces(a)
42: end for

43: /* create new tree for next period */
44: initialize Tnew

traces
45: for all c ∈ Dcases do
46: /* update open case pointers */
47: (n.a, t)← Dcases(c)
48: Tnew

traces(a)← 0
49: Dcases(c) = (a, t)
50: end for
51: /* next period’s tree has height 1 */
52: Ttraces ← Tnew

traces
53: end loop
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Fig. 6. Comparison of average process times per event for the Lossy Counting
with Budget (b = 500 and b = 1000) approach and our StrProM algorithm.
We used a decaying factor of d = 0.1 and a case observation limit of 800.
The pruning period ranges from 200 to 500 events per period.

In the case of an overflow of monitored cases, which
means for the algorithm that we store too many case pointers,
we have to remove some of them. Therefore, we chose to
collect the timestamp of the last event for each open case.
When deciding which cases to remove from the observation
list, we will choose the ones not seen for a long time (see
Algorithm 1, Lines 28-29). It is important, with regards to the
performance, not to restrain the number of tracked cases too
much. If the algorithm chooses to few items, we will only
achieve a very small buffer for new cases, resulting in another
overflow thereafter. The case pruning will add a significant
amount to the average process time if it is performed very
frequently.
After we determined the mean of all collected timestamps,
we retain only those cases with a timestamp above the mean
value. The remaining cases are considered as obsolete and are
removed. If one of the removed cases is observed again after
its deletion, it will be considered as a new case.

V. EXPERIMENTAL EVALUATION

We used a real-world dataset to evaluate our method against
a state-of-the-art competitor. The dataset is called Road Traffic
Fine Management Process and is publicly available1. As the
title suggests it is a log of a system that manages road traffic
fines. It contains 561470 events distributed amongst 150370
cases. Cases vary in their lengths between 2 and 20 events.

With this dataset we performed time measurements per
stream event, counted the stored items and used the fitness
and precision measures. We have selected the Heuristics Miner
with Lossy Counting with Budget algorithm (LCB) [8] as the
state-of-the-art competitor. The time needed to infer a model is
not contained in the measurements because the frequency of a
demand for a model update can differ very much and the con-
struction of a new model would easily become the dominating
factor here. As both approaches use similar model inferring
methods, we only consider the time to process an incoming
stream event and update the data structures accordingly. For
measuring the size of used memory space, we put our focus
on the number of observed cases and the size of the prefix-tree

1The dataset can be downloaded from
http://data.3tu.nl/repository/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
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TABLE I. PROCESS TIMES PER EVENT

Algorithm Time Max. Stored Items
LCB (b=500) 1985.18 ns 493 (cases)

LCB (b=1000) 2907.54 ns 993 (cases)

StrProM (c=800, tree=200) 1976.93 ns 800 (cases) + 16 (tree)

StrProM (c=800, tree=300) 1798.64 ns 800 (cases) + 18 (tree)

StrProM (c=800, tree=400) 1501.68 ns 800 (cases) + 20 (tree)

StrProM (c=800, tree=500) 1427.24 ns 800 (cases) + 24 (tree)

here. The number of activities and relations is typically very
small compared to the number of concurrent cases. We tried
to match the numbers of maximally stored items to compare
processing times. For the quality measures, a high fitness value
near 1 means that many cases found in the original log or
in the stream can be replayed in the resulting model. A high
precision value on the other hand, implies that there are almost
no instances created by the resulting model that can not be
found in the source log. In Fig. 6 we illustrated the averaged
processing times per event of both algorithms. The processing
times for LCB are lower when decreasing the budget size.
Reducing the budget increases the time performance as there
are more cleanups and therefore smaller data structures to
update for each event arrival. But as already stated in [8] a
lower budget is usually traded off against quality. However,
when using several pruning period lengths from 200 to 500
items, the StrProM was able to process stream events in less
than 2 milliseconds or > 500 events per second (see also Table
I). StrProM shows a better efficiency than LCB even with
higher pruning frequencies (after each 200 events). This shows
that our approach is appropriate for real-world applications
considering high throughput of new events.

Considering the number of stored items we reduced in our
experiment the number of observed cases to 800 instead of the
default 1000 cases for the LCB algorithm. This allows a buffer
of 200 items for the prefix-tree. A pruning period of 500 events
gives a boundary for a maximum tree size of the same value,
because for each event we can only add one node or update an
existing one. As the experiments have shown (Fig. 7), the tree
always grows very slowly and its size never touches a value
close to the pruning period length. A high concurrency of cases
and much repetition in trace patterns leads to slow growth as
there will be only short paths in the tree. See also the second
column of Table I for the maximum number of stored items.
For the StrProM approach, we listed in Table I the numbers of
cases and tree nodes. The difference of the number of cases
and tree nodes is very significant. After the next pruning period
starts, we will again start with a tree of height 1, so the case
observation list still dominates the memory usage similar to
the situation in LCB.

Finally we want to talk about the quality of the resulting
model. We are not able to compare it to the original process
as we only have the log file without any ground truth model.
However, we compared it to LCB using the same procedure
already used in [8]. As Fig. 8 and Fig. 9 illustrate, StrProM
yields a model with nearly the same quality that LCB can
produce. This is to be expected as the algorithms use similar
constraints for building their model. One important difference
between their model building procedures is the step of col-
lecting activity and relation counts. Although the collected
frequency statistics will be different, the experiments show

TABLE II. AVERAGE FITNESS AND PRECISION

Algorithm Avg. Fitness Avg. Precision
LCB (b=1000) 0.636 0.898

StrProM (c=800, tree=300) 0.602 0.918

StrProM (c=800, tree=500) 0.621 0.941
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Fig. 7. Stored Items over a period of 5000 events. Considered are the number
of observed open cases and in case of StrProM the size of the prefix-tree.
Budget is 1000 and pruning period is 500 with a decaying factor of 0.1.
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Fig. 8. The precision quality measure of LCB and two runs of StrProM,
using pruning periods of 300 and 500 items. Measures are taken over the
whole stream with intervals of 10000 items.
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Fig. 9. The fitness quality measure of LCB and two runs of StrProM, using
pruning periods of 300 and 500 items. Measures are taken over the whole
stream with intervals of 10000 items.

that we do not lose quality while having a considerably better
efficiency. The average fitness and precision values are very
similar as it can be seen in Table II. It should be noted that
StrProM tends to yield a model with a better precision and
a slightly worse fitness for this dataset. This effect has to be
further analyzed and clarified using more datasets in a future
work.

VI. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we introduced an efficient approach for
exploring and counting process fragments from a stream of
events to infer a process model by using the Heuristics Miner
algorithm. Our novel introduced approach, called StrProM,
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builds prefix-trees to extract sequential patterns of events
from the stream. StrProM uses a batch-based approach to
continuously update and prune these prefix-trees. The final
models are generated from those trees after applying a de-
caying mechanism over their statistics. The Lossy Counting
with Budget algorithm is used as a competitor, which is a
very well performing algorithm in terms of execution time,
space requirements, and quality. We showed the efficiency
improvements in terms of execution time while keeping the
space requirements nearly equal to that of the LCB algorithm,
by evaluating both methods against a large dataset.

In the future, we plan to change the decaying factor and
the pruning period to become dynamically adaptive to changes
in the underlying event stream termed concept drift. E.g. [10]
applied a statistical hypothesis testing to detect concept drifts
in the process. Furthermore, choosing a good length value for
the pruning period is not trivial. Small values increase the av-
erage processing times per event, while keeping the frequency
maps up-to-date, but negatively affects the accuracy of the
extracted model. We additionally want to address the more
complicated and realistic scenario where interval-based events
are considered. In the case of overlapping, more relations are
considered between these temporal events (Allen relationships)
[31]. In [32], an idea of a Heuristics Miner for interval-based
events was discussed. Recent approaches for finding sequential
patterns in a stream of such kinds of events were presented in
[33], [34].
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