
The Analysis of a Real Life Declarative Process

Søren Debois
IT University of Copenhagen

debois@itu.dk

Tijs Slaats
IT University of Copenhagen & Exformatics A/S

tslaats@itu.dk

Abstract—This paper reports on a qualitative study of the
use of declarative process notations used in a commercial setting.
Specifically, we investigate the actual use of a system implemented
in terms of DCR graphs for the Danish “Dreyer Foundation” by
our industry partner Exformatics A/S. The study is performed
by analysing logs of actual use of the system.

By the study we seek to illuminate the currently open—
and heavily debated!—research question of whether the claimed
advantages in conciseness and flexibility of declarative models
over more traditional flow-based notations are significant in
practice. Studies investigating this question have typically focused
on understandability for users, driven by lab experiments and
workshops with practitioners unfamiliar with the paradigm.

In the present study, we (1) attempt to assess qualitatively
whether users employed the flexibility granted them by the
declarative model, and (2) use process discovery techniques to
examine if a perfect-fitness flow-based model representing the
main business constraints is in fact easy to come by. For (1), we
find evidence in various forms, most notably an apparent change
in best practices by end-users allowed by the model. For (2), we
find no such model. We leave as a challenge to the community
the construction of a flow-based model adequately representing
the business constraints and supporting all observed behaviour
by the users, whether by hand or by mining.

I. INTRODUCTION

Modern developed economies are experiencing a transition
from production work to knowledge work [1], [2]. Knowledge
workers, who are experts in their field and often deal with
highly variable problems, need a high degree of flexibility
from the IT systems that support their processes [3]–[5]. The
workers should be able of applying customised solutions to the
unique problems that they face and therefore many different
executions of the underlying processes should be supported.
Researchers have proposed that declarative, or constraint-
based, notations are better at supporting such a high degree
of flexibility than more traditional flow-based notations [6]–
[8].

However, declarative notations have seen little adoption by
industry, and so the question naturally arises whether these
notations are in fact solutions to practical needs. This has
lead to a number of studies into the usability of declarative
notations, but such studies have been limited to lab experiments
and short workshops with industry partners being introduced
to the new notations [9]–[13]. In essence researchers have

Authors listed alphabetically. This paper would not have been possible with-
out the vision of and encouragement from our industry partner, Exformatics
A/S; in particular CEO Morten Marquaard. The research reported on here is
supported by ITU, Exformatics A/S and the Velux Foundation through the
Computational Artefacts (CompArt) project (http://www.compart.ku.dk).

been faced with a chicken-and-the-egg dilemma: with little
industrial adoption of declarative notations it is difficult to test
their usability in practice, but without such experiments it is
difficult to determine what is limiting their industrial adoption.

Recently this situation has changed: Exformatics, a Dan-
ish vendor of Electronic Case Management (ECM) Systems,
has invested heavily in declarative notations. The company
started by developing a declarative process engine for their
products [14] and more recently created a declarative process
modelling portal [13]. As part of a solution developed for the
Danish foundation Dreyers fond [15], Exformatics employed
a declarative model to describe the process of the customer.
By now this solution has been in operation for over a year and
the process model and logs from the first half year have been
made available for research.

In this paper we attempt to illuminate two important
research questions regarding the usability of declarative models
by applying process mining techniques [16] to these logs:

1) Do users exploit the flexibility provided by the declar-
ative model?

2) Can automated approaches find a reasonable flow-
based replacement for the declarative model?

The first question gives insight into the usefulness of the
declarative approach for real-life processes. If we were to
discover that the logs exhibit only very structured behaviour,
we would have a strong indication that Dreyer in fact does not
use the flexibility offered by a declarative model. On the other
hand, if the logs do show variable and unstructured behaviour,
we can make the qualitative argument that (1) the declarative
model does apparently enables flexibility and freedom for end-
users, and (2) that end-users do in fact use this flexibility.

The second question helps us understand whether the
declarative notation really provides a more concise model for
the Dreyers process. The state-space and transition system of
the declarative model are so big that constructing a flow-based
model allowing all and only the runs of the declarative model
would very likely be practically impossible. However, the
declarative model may allow for behaviour which is practically
irrelevant; the flexibility might be useless. In this case, perhaps
there exists a simple, flow-based model which adequately
models the processes at Dreyer. We tackle this question by
applying automated mining techniques.

For the first question, we find ample evidence of the use
of flexibility, in the form of widely varying traces; a long
tail of special-cases; and an apparent change in practice by
users as time progresses. For the second question, we find
that mainstream miners emphatically do not produce helpful

2015 IEEE Symposium Series on Computational Intelligence

978-1-4799-7560-0/15 $31.00 © 2015 IEEE

DOI 10.1109/SSCI.2015.196

1374

models; in particular, the mined models are either hopelessly
complex, omit important business constraints, or both.

We emphasise that both questions are treated qualitatively,
and that we do not pretend to present a firm conclusion on
the relative merits of flow-based and declarative notations.
In essence, this paper reports on a failure to disprove the
superiority of declarative notations for the present case.

Related work. The relative merits of declarative and imperative
workflow notations have been the subject of considerable study
and debate. In [10], the authors propose, based on existing
research on cognitive aspects of programming language design
to business process notations, that “circumstantial” changes
are easier to apply in declarative notations, whereas “sequen-
tial” changes are more easily applied to imperative notations.
Subsequent empirical studies found that imperative notations
are easier understood1 [17]; respectively that imperative and
declarative notations exhibit no difference in understandability
[18]. Other important works include [9], [12], [13], which
investigates in various ways understandability of declarative
notations.

The present work differs in that we are not interested
in understandability of the entire-model, but rather in seeing
(a) whether end-users, regardless of their understanding the
underlying declarative model or not, do exploit the flexibility
ostensibly afforded by declarative models; and (b) whether the
declarative model in question could have been easily machine-
discovered.

For want of space, figures in this paper are somewhat small;
please find full-size copies electronically at [19].

II. THE CASE

The Dreyer Foundation awards grants to projects and
activities aimed at promoting the development of the lawyer
and architect professions, and their interaction with society. In
2013 the Dreyer Foundation awarded grants amounting to a
total of DKK 15.9M/EUR 2.1M.

Towards implementing an ECM solution for the Founda-
tion, Exformatics developed a process model of the Founda-
tion’s internal processes regarding both application assessment,
rejections, grants and payouts. Roughly, an application is
processed as follows. Applications are accepted in rounds.
In each round, first, a caseworker pre-screens applications,
weeding out obvious rejects. The remaining applications are
independently reviewed by 2-4 reviewers, at least one of which
must be an architect or a lawyer, depending on the type of
application. Once all reviews are in, the Foundation’s board
decides on which applications to accept on a board meeting.
Successful applications then have a running payout, until the
grant period expires and an end-report is produced. In practice,
board members and reviewers overlap, and reviews might
happen or be amended at the board meeting.

III. THE MODEL

Exformatics modelled the Dreyers process using Dynamic
Condition Response (DCR) Graphs, a declarative process

1However, study participants were subsequently discovered to be pre-
disposed towards imperative notations; and evidence of learning of declarative
notations in the experiment was uncovered.

notation developed at the IT University of Copenhagen [7],
[8], [20]; the model is visualised in Figure 1. We will explain
the DCR notation only very briefly here, and refer the reader
to further sources for details on the semantics [20]–[22] and
supporting tools [13], [14].

A DCR graph comprises activities and relations between
activities. In the diagram, activities are rounded boxes, with the
label of the activity on top and the role executing the activity
at the bottom. Activities are arranged in a nesting hierarchy
indicated by dashed boxes. Relations are arrows between
activities or nestings; the latter is a short-hand, indicating that
the relation applies to all entities within the nesting box. There
are five kinds of arrows:

• Conditions, drawn as arrows with dots at their head,
indicate that the source activity must be executed at
least once before the target activity can be. E.g., in
Figure 1, Register decision must be executed before
Approve can be.

• Responses, drawn as arrows with dots at their tail,
indicate that if the source activity is executed, the
target activity must subsequently also be executed.
We say then that the target activity is pending. E.g.,
in Figure 1, Register decision requires the subsequent
execution of Change phase to board meeting.

• Milestones, drawn as arrows with diamond heads,
indicate that the target activity cannot execute if the
source activity is pending.

• Inclusions and exclusions, drawn with respectively ’+’
and ’%’ as head, indicate that when the source activity
is executed, the target activity is either included or
excluded from the workflow. Conditions and pending
state are ignored for excluded activities, and excluded
activities cannot execute. E.g., in Figure 1, Approve
excludes Reject.

We emphasise that, when included and not restricted by
relations, a DCR activity can execute at any time and any
number of times.

Each activity of a DCR model can be said to have a state
(has it been executed? is it pending? is it included?); the
sum of these states is the state of the graph, known as the
marking of the graph. Executing an activity can change the
state of one or more activities, thus taking us from one marking
to another; the set of all possible markings equipped with
transitions labelled by executable activities forms a transition
system for the DCR model. From this transition system we
derive the formal semantics of a DCR model, namely the set
of (finite and infinite) sequences of activities in which every
pending activity is eventually executed. We call such sequences
“runs”. For finite runs, this means that no activity is pending
at the end.

Metrics of the model. The DCR model in Figure 1 contains 37
activities, 59 relations, and 11 nesting boxes with a maximum
nesting depth of 3. Writing out all the relations implied by
nesting, one obtains instead 71 relations.

The transition system or state space associated with this
model is too large to practically enumerate on the authors’
available hardware; on a Mid-2012 Macbook Pro, enumeration

1375

��������	
�

�
����������������	
�����

�
��������������������

�
����������������� !

�
��������������������

�
��������������������

�
�������������������!

�
�������������������

�
�������������������"

�
������������������"!

�
������������������"#

�
�����������������!#�

�$%�&���'

�$($'�

���)$*�'+,+�$+($�)'

����-$).�) ��)��	�	
+)�/���

����-$).�)
�

���	
�+�����+�$+0�*��-

�$($'�

��

�-��)+0�*��-

�-��)

�)�������+0�*��-

�)�������

0�*��-

0�*��-�)+1

0�*��-

0�*��-�)+�

0�
����)+������$	

����-$).�)

0�/���

����-$).�)

���)$*�

����-$).�)

���	
�+�����+�$+2$�)'+%����	

�$($'�

��)��	+���&�����$	

����-$).�)

�

�

���	
�+�����+�$+�)���)���$	

�$($'�

���+�$+�)�,���)$*�'

�$($'�

��)��+���%�	�

�$($'�

�
3	'$+���%�	�

����-$).�)

0����*�+�	'+)��$)�

����-$).�)
���	
�+�����+�$+�$%�&���

�$($'�

4	5$)%+���&���	�+$5+���)$*�&

����-$).�) �

�

���)$*�+���	
�'+���$6	�

���$6	��	�

0$6	'+���)$*�'

�$($'�

7����	
+�	+�)$
)���

�$($'�
�

�

��&&+$6�+���&�����$	

�$($'�

�

�

0$6	'+�	'�

�$($'�

�

�

��	��&+���&�����$	

����-$).�)

�

���	
�+�����+�$+8	'+0��$)�

�$($'�
����$6	�+	6%(�)+���	
�'

�$($'��

���	
�+�����+�$+���$6�

�$($'�

���%�	�+�$%�&���'

�$($'�

�

4	5$)%+���&�����$	+$5+($�)'+)�*��-

����-$).�)

�

�

89��6��+�)�,'�����$	

�$($'�

���&���	�+/6���:��+)�&�*�	��

����-$).�)

�
�

�

�

�

���&���	�+�	5$)%�'

����-$).�)

���	
�+�����+�$+�($)�

�$($'�

�

89��6��+�(�	'$	

����-$).�)

�

���	
�+�����+�$+�(�	'$	

�$($'�

1

Text

2

3

4

5

Fig. 1. Dreyer DCR Model

1376

of the transition system exhausts 3.2GB of available memory
after having visited 2,977,623 distinct markings by following
19,504,669 transitions (activity executions).

Selection of business rules. Instead of describing every detail
in the graph, we select three rules that are both particularly
relevant and that can be straightforwardly observed from
Figure 1.

1) Before the first payment in a successful application,
the applicant must have been informed of the ap-
proval.

2) Once an applicant is informed of approval, that de-
cision is final and no changes can be made to the
reviews.

3) Once an applicant is informed of rejection, the en-
tire process should stop and the ”phase” (a rough
indication of where in the process we are) should be
changed to abort.

The first rule can be observed in the DCR Graph as a condition
relation from the two nestings containing Inform applicant of
approval to First payment (“1”, “2”, and “3” in the Figure).
The second rule is included in the DCR Graph through the
exclusion relation from Inform applicant of approval to the
nesting that contains all review activities (“1” and “4” in the
Figure). The last rule is modelled by the exclusion from the
Applicant informed activity to the nesting surrounding most
of the graph (“5”). In addition it requires as a response the
activity Change phase to Abort, thereby ensuring that the phase
is changed.

IV. THE LOG

The logs supplied to us by Exformatics consisted of an
event log and an XML database of DCR models for each
process instance2.

The event log initially contained 12,151 events, but not all
of these were interesting for our purposes. Some of the events
were meta-events, representing the initialisation (start) of a
process, restart of a process and ad-hoc changes to the model.
Ad-hoc changes came in two categories; most changes simply
added additional tasks to the process, but some changes also
affected the rules of the process. Since we are investigating the
flexibility of the basic declarative model rather than its support
for ad-hoc changes, we chose to remove both meta-event and
ad-hoc events from the log. In the case of ad-hoc changes that
affected the rules of a process instance, we removed the entire
instance from the log. Most importantly this allowed for a fair
comparison between mined models and the declarative model.

Removing such events we retained 11,044 events, corre-
sponding to 587 cases or traces. However, because the event
log contained restart meta-events not present in the DCR
formalism, we split the traces in the log across such events,
considering the parts before and after distinct cases. This
resulted in 797 traces. It’s important to note that already the
original 587 cases contained incomplete traces; we do not
believe we have made mining substantially harder by adding
additional incomplete traces.

2The original log is available at
http://www.dropbox.com/s/kh7i7ykbj10nc3w/originallog.csv?dl=0

0 20 40 60 80

100

101

102

Trace Class ID

N
u

m
b

er
o

f
tr

ac
es

Fig. 2. Trace density. (Space considerations preclude a bar-chart.)

Exformatics took advantage of the declarative process
engine and implemented post-deployment updates and bug-
fixes by simply adjusting the rules of the process through
updates to the underlying declarative model. Therefore the
actual models used varied slightly, representing incremental
updates to the original model.

However, for our comparison of the declarative model and
mined models, it is of course important that there is a single
declarative model. If we keep all traces, knowing that they
arise from slightly different declarative models, we would be
violating a usual assumption of mining, namely that the input
log represents some number of process instances of the same
process. We therefore reduced the set of traces further, by
retaining only the traces that conform to the final model used
by Exformatics. We replayed all traces against this model and
kept only the compliant 594 traces, which had a total of 6470
events3.

V. VARIABILITY OF TRACES

In this section, we qualitatively assess the amount of
variability in the log, with the aim of clarifying research
question 1: “Do users exploit the flexibility provided by the
declarative model?”.

We start by grouping the traces into trace classes that
contain traces that are exactly the same. Figure 2 shows the
result as a plot with on the x-axis each class and on the y-
axis the number of traces in that class. As one can see the
594 traces in the log can be divided in a small number of
relatively large classes and a large number of classes with
few or unique traces. On first sight this seems to indicate that
while there are a number of trace classes that represent ”best
practice” executions that are commonly used, there is also a
large amount of unique traces representing various variations
on the best practice.

3The processed log is available at
http://www.dropbox.com/s/1l0ur2pr2bpqyix/log.csv?dl=0

1377

Fig. 3. 10 Most Common Trace Classes

We further investigate this assumption by looking at what
the top 10 most populated trace classes actually look like in
Figure 3. Here we see that the most common trace class,
with 171 traces of only 4 events, represents a set of process
instances from the 2nd round of applications which have been
approved for review by the board, but are still awaiting the
aforementioned reviews. Since these process instances are still
far from completion they say little about variability except
for that apparently the first steps in the process are often the
same. The second most common trace class also contains only
4 events and represents 81 traces. In this case it turns out that
we are dealing with process instances where the application
was rejected on formal grounds, before being considered by
the board. It is perhaps not surprising that these cases can
be handled straightforwardly by the case worker and require
little variation. The next two trace classes, with respectively
66 and 53 traces and 18 and 16 events are more interest-
ing. They both represent applications that were rejected after
evaluation by the board, but whereas the first class contains
only applications from the second round, the second class
contains only applications from the first round. The fifth trace
class, containing 27 traces of 17 events, appears to represent
approved applications in the second round. Judging by the final
event the traces in this class have not been completed yet. The

sixth and seventh trace class, each containing 16 traces of 16
events represent two other variations on rejections in the first
round of applications. The eighth trace class, containing 16
traces of 18 events represents another variant on rejections
in the second round of applications. The ninth trace class,
containing 15 traces of 5 events represents a variant on early
rejections in the first round. The tenth trace class, containing
15 traces of 17 events represents approved applications in the
second round.

It is interesting that the larger trace classes often contain
traces from exclusively one round or the other. We hypothesise
that this is because the habits and best practice employed by
the participants of the process changes over time, changing the
way most applications are handled between the two rounds.
This is facilitated by employing a flexible declarative model,
which allows all behaviour falling within the rules instead
of just a limited number of common scenarios and therefore
allows the methods of the users to evolve over time without
requiring changes to the process definition and underlying IT
systems.

Further investigating the smaller trace classes also shows
that while there are clear best practice runs of the process,
many variations on the best practice exist and have been used
over the half-year run of the process. Figure 4 shows an
example of ten arbitrarily chosen variations.

Parallelism. Of course variability in a log does not necessarily
indicate declarative flexibility, but can also be a result of
parallelism in the process leading to many different possible
interleavings. We do not believe that this is the case for the
Dreyers process: the variability in, e.g., the traces shown in
Figures 3 and 4 arises not just from re-ordering events, but also
from varying degrees of repetition and plain absence of some
events in some traces. This kind of variability in the number
of occurrence (and possible absence) of events is commonly
offered by declarative models and is not straightforwardly
mimicked by the use of parallelism in flow-based models. For
example we observe that the fourth, sixth and seventh trace
class, each representing rejections in the first application round,
all have a very similar structure: their only variation appears to
come from the ordering of the reviews. While this can easily
be handled by parallelism in flow-based notations, we observe
that many of the single-instance trace classes also represent
rejections in the first round, but have larger differences from
these four base cases, that can not be handled with parallelism
alone.

Looping. Another common source of variability in logs is
repeatable behaviour, which can be modelled by loops in
flow-based notations. Flow-based loops however need to be
highly structured, or they easily lead to hard to read “spaghetti-
models”. On the other hand most declarative notations, includ-
ing DCR Graphs, assume repeatability of activities. Activities
can be repeated freely unless inhibited by constraints or rela-
tions. A good example of this kind of repetition best supported
by declarative notations is shown in Figure 4. The activities
475 and 519 always appear as a pair. This pair can appear in
different contexts (preceded and succeeded by various other
activities) and can be absent, occur once or occur multiple
times in a single trace. The pair can be repeated in direct
succession, or repetitions can be separated by other activities.

1378

Fig. 4. 10 Arbitrary Unique Traces

In some cases even the pair itself can be interleaved with other
events.

In conclusion, based on a qualitative analysis, it appears
there is ample use of flexibility in the model, which cannot
be explained away by parallelism or looping behaviours. One
interesting point of variability is that since variations tend to
fall into one round or the other, it seems likely that users
have exploited the flexibility to change their practice between
rounds.

VI. FLOW-BASED DISCOVERY RESULTS

In order to answer our second research question: “Can auto-
mated approaches find a reasonable flow-based replacement for
the declarative model?”, we run a number of flow-based dis-
covery algorithms on the logs and analyse the resulting models.
We will show that contemporary miners cannot produce such
a suitable alternative. However, from this we of course cannot
conclude that no such model exists; we can merely see that no
such model is easily procured using a miner.

But first: What should a model satisfy in order to “reason-
ably replace” the declarative model? We propose the following
requirements, inspired by the standard quality criteria for
process discovery [23]:

1) We know that all traces in the log are valid behaviour
and stem from a single declarative model. Hence the
model should have perfect fitness.

2) The original declarative model expresses business
constraints. The mined model should respect these;
that is, it must be precise. For instance, it should
respect the three rules listed in Section III.

3) The flow-based model should be at least as simple as
the declarative model.

4) The flow-based model should be sufficiently general,
that is, it should allow further developments of end-
users best practices.

DCR-based Transition System Miner. Since DCR graphs
have transition system semantics, an obvious starting point is
to simply extract the partial transition system actually explored
by the logs. Note that this is different from one would obtain
from the ProM transition system miner, since we are exploiting
that we know the actual transition system of the model: choice
points are guaranteed to be correct wrt. that model.

Figure 5 shows the resulting transition system, which is in
essence a cross section of the full transition system underlying
the DCR Graph with the traces in the log, containing only those
states and transitions that have been visited in practice. States
are annotated and shaded based on the number of times they
are visited, transitions are annotated by the label of the activity
being executed and the number of times that they occur. Square
boxes represent accepting states according to the log. Because
not all traces in the log have been completed, these are not
necessarily accepting states in the original model, but since
the other miners can only use the log in their construction of
a model we feel that this choice of accepting states yields the
fairest model for comparison.

By construction, the transition system has perfect fitness
and precision. We feel that it offers a somewhat acceptable
result in terms of simplicity as well: on the one hand it requires
246 states and 336 transitions, making it hard to get a general
overview of all allowed behaviours, but on the other hand it
is fairly straightforward to observe the details of particular
paths through the process. The transition system lacks strongly
in terms of generality however: with the exception that loops
could be taken any number of times the modelled behaviour is
exactly that what was encountered in the log. Considering the
immense size of the full transition system of the DCR Graph
and the fact that we already encountered significant changes in
behaviour between the first and second round of applications,
it is to be expected that the users will both evolve their
best-practice and encounter new special cases in the future,
which are supported by the DCR Graph model, but not by the
transition system as they are not found in the current log. It
is also clear that increased generality of the transition system
model based on logs of behaviour past the first half year will
incrementally lower its simplicity.

Inductive Miner. We mined the process log with the inductive
miner [24] set to find a model representing all paths, thus
yielding perfect fitness. The result is shown in Figure 6, while
the model is certainly simple, the miner has modelled a large
part of the process as a flower-model, trading precision for
generality. In particular, business rules are not upheld, e.g., the
model does not enforce the first two business rules identified in

1379

� ��
���
��	

�
�	

��
���

�
�

�	
��

��
�

�
�

�
��

	

��

�

��

�	
��

�

�

�

�
�

��
�	

��

�

�	
�

	�
��

��
�

	�
��

�

�

�

��
	

��
�

��
�	

��
�

�

��

�!
	

��
���

�
�

�	

	"

��
	�
��

��
�

	�
��

�

�

��
	�

��
�	
��

�

#$
�

�

��

�	
��

�
�	

�

	%

"

��
	�
��

�
�$

&

�

'
�

�

��

�	
��

�
�	

�

	%

"

��
	�
#�

��

�
�

��
�	

��

�

�	
�

	%
"

��
	�
��

�

�$
&

�
�

��
�	

��

�

�	
�

	%
"

��
	�
�$

&�

� �
�

��
�	

��

�

�	
�

	%
"

��
	�
��

#

�
�

��
�	

��

�

�	
�

	%
"

��
	�
#�

�� %
��

���

�

�	�
�

�
!

��
	�
��

�

�$
&

%
��

���

�

�	�
�

�
!

��
	�
�$

&�

� %
��

���

�

�	�
�

�
!

��
	�
��

%
��

���

�

�	�
�

�
!

��
	�
#�

�� �

�

��
	�

��
�	
��

��

�

�

��
	�

��
�	
�#

�

� ��
�

��
�	

��

�

�	
�

	%
"

��
	�
��

��
�

�
�

��
�	

��

�

�	
�

	%
"

��
	�
�'

�

�'

�
�

��
�	

��

�

�	
�

	%
"

��
	�
�'

�

� %
��

���

�

�	�
�

�
!

��
	�
��

�

#

�
�

��
�	

��

�

�	
�

	(

��
	!

��
���

�	
��

�
�

�
��

	�
��

�	
��

�
�

��
��

��
�	
)

��
��

�

�	

��
�

��
�

��

�!
	

��
���

�
�

�	

	"

��
	�
��

��
�

	�
��

�

�

��
	

��
�

��
�	

��
��

��*�
��

��
	

��
���

�
�

�	
��

��

��
&+
,�

��
��

	�
��

-�
��

��
�

�	
��

�� �

�

��
	

��
�

��
�	

�#
�

%
��

���

�

�	�
�

�
!

��
	�
�'

�

�
�

��
�	

��

�

�	
�

	(

��
	!

��
���

�	
��

�+
,�

��
��

	�
��

-�
��

��
�

�	
��

��
�

�.
��

�	�
��

�

�$
�

�
��

	

��

�

��

�	
��

�

� �
�

��
�	

��

�

�	
�

	�

!

��
��

�	
��

�

� �
�

��
�	

/�

�

�	
�

	+
��

	�
��

�
�	�

��

� /

0!

��
�	�

!
��

��
��

	�
��

�
�

�
��

	

��

�

��

�	
��

�

�
�

�
��

	

��

�

��

�	
��

�

�$
�

�
��

	

��

�

��

�	
��

�
� �

�

��

�	
/�

�
�	

�

	+

��
	�

��

�

�	�
��

� �
�

��
�	

/�

�

�	
�

	+
��

	�
��

�
�	�

��

� �
�

��
�	

/�

�

�	
�

	+
��

	�
��

�
�	�

��

� /

0!

��
�	�

!
��

��
��

	�
��

� /

0!

��
�	�

!
��

��
��

	�
��

� /

0!

��
�	�

!
��

��
��

	�
��

� ���
��	

�
�	

��
���

�
�

�	
��

�

��
��

�	�

0

!
��

�	�
��

� ��
��

�	�

0

!
��

�	�
��

�

'

�
��

��
��

	�
��

	�
��

�
�	�

��

�

��
��	

�
�	

��
���

�
�

�	
��

�

��
��

�	�

0

!
��

�	�
��

� ��
��

�	�

0

!
��

�	�
��

� �%
��

���

�

�	.
��

��1
��

	�
��

��

�

��
	�
��

� �
�

��
�	

/�

�

�	
�

	/

0

�
�	�

��

�
�

��
�	

/�

�

�	
�

	/

0

�
�	�

��

%
��

���

�

�	.
��

��1
��

	�
��

��

�

��
	�
��

��

�!
	

��
���

�
�	

 	

�

��

�

�
	�
��

+
,�

��
��

	�
��

-�
��

��
�

�	
��

�

� ��

�

��
	

��
�

��
�	

��
�

� �
�

��
�	

/�

�

�	
�

	/

0

�
�	�

��

' �

�

��
	�

��
�	
�'

�

� �

�

��
	�

��
�	
��

�

� �

�

��
	

��
�

��
�	

�'
�

&

�

�

��
	

��
�

��
�	

��
�

�%
��

���

�

�	.
��

��1
��

	�
��

��

�

��
	�
��

�

�

�
�

��
�	

��

�

�	
�

	/
��

�

�

��

�	

��
�

*�
�	�

	
/�

�-

�

��

�

��
	�
��

�
�

��
�	

/�

�

�	
�

	/

0

�
�	�

��

� ��
�

��
�	

��

�

�	
�

	/
��

�

�

��

�	

��
�

�'��

�!
	

��
���

�
�

�	

	"

��
	�
��

��
�

	�
��

�� ��%
��

�

��

	�
��

�

�

�
�

��
�	

��

�

�	
�

	�
��

��
�

	�
��

�
�

��
�	

��

�

�	
�

	/
��

�

�

��

�	

��
��

�

�

��
	

��
�

��
�	

��
��

%
��

�

��

�	
-	
�

	"

��
	�
��

��

�!
	

��
���

�
�

�	

	"

��
	�
��

��
�

	�
��

�

��
��	

�
�	

��
���

�
�

�	
��

�

�

%
��

�
��

	�
�!

"�
�	
��

�
��

�	
��

�

�

%
��

�

��

	�
��

�

�

��
	

��
�

��
�	

��
�

�

�

�

�

��
	

��
�

��
�	

��
�

�

%
��

�

��

	�
��

�
�

��
�	

��

�

�	
�

	/
��

�

�

��

�	

��
�

��

�!
	

��
���

�
�	

 	

�

��

�

�
	�
��

�

�

��
	�

��
�	
��

�

%
��

�
��

	�
�!

"�
�	
��

�
��

�	
��

��
�

��
�	

��

�

�	
�

	/
��

�

�

��

�	

�#
�

�

�

��
��	

�
�	

��
���

�
�

�	
��

�

�%
��

���

�

�	.
��

��1
��

	�
��

��

�

��
	�
��

��

�!
	

��
���

�
�	

 	

�

��

�

�
	�
��

' '+
,�

��
��

	�
��

-�
��

��
�

�	
�'

�

%
��

�
��

	�
�!

"�
�	
��

�
��

�	
��

� ���
��	

�
�	

��
���

�
�

�	
��

�

�%
��

���

�

�	.
��

��1
��

	�
��

��

�

��
	�
��

��

�!
	

��
���

�
�	

 	

�

��

�

�
	�
��

��

�
�

��
�	

��

�

�	
�

	/
��

�

�

��

�	

��
��

' �

�

��
	�

��
�	
�'

��

��
�

��
�	

��

�

�	
�

	/
��

�

�

��

�	

��
�

�*�
�	�

	
/�

�-

�

��

�

��
	�
��

��

�#

*�
�	�

	
/�

�-

�

��

�

��
	�
��

�

�

�

��
	

��
�

��
�	

�'
�

�

*�
��

��
	

��
���

�
�

�	
��

�

��

+
,�

��
��

	�
��

-�
��

��
�

�	
��

�

��

�!
	

��
���

�
�	

 	

�

��

�

�
	�
��

�#%
��

�

��

	�
��

��

�!
	

��
���

�
�	

 	

�

��

�

�
	�
��

+
,�

��
��

	�
��

-�
��

��
�

�	
�'

�

'

�
�

��
�	

��

�

�	
�

	/
��

�

�

��

�	

�'
�

*�
�	�

	
/�

�-

�

��

�

��
	�
'�

�

*�
�	�

	
/�

�-

�

��

�

��
	�
��

��

�!
	

��
���

�
�

�	

	"

��
	�
��

��
�

	�
��

��

�
�

��
�	

��

�

�	
�

	/
��

�

�

��

�	

��
��

� �
�

��
�	

��

�

�	
�

	/
��

�

�

��

�	

��
�

��
$ %
��

�

��

	�
��

�'
'

��

�!
	

��
���

�
�

�	

	"

��
	�
��

��
�

	�
�$

��

�

�

+
,�

��
��

	

"

��

�

	�
��

�
�.

��
�	�

�$
&�

%
��

�

��

	�
��

�

�

�

��
	

��
�

��
�	

��
��

�

� �
�.

��
�	�

��

�

�

��
	

��
�

��
�	

��
�

��
�

��
�	

��

�

�	
�

	%
"

��

�

	�
��

�
�

��
�	

��

�

�	
�

	%
"

��

�

	�
��

� ��

�!
	

��
���

�
�

�	

	"

��
	�
��

��
�

	�
��

�

�

�

��
	�

��
�	
��

�

��
�

�

�

��
	

��
�

��
�	

��
�$

�

�'��

�!
	

��
���

�
�

�	

	"

��
	�
��

��
�

	�
��

�

�

��
	

��
�

��
�	

��
'�

� �

�

��
	

��
�

��
�	

��
�

��
�

2

�

0�
�	
�

��
��

�
	�
��

�
��

��
��

�	
)

��
��

�

�	

��
�

��
&

�
�

��
�	

��

�

�	
�

	(

��
	!

��
���

�	
��

��
�

�
�.

��
�	�

��
%

��
�

��
	�
��

�

�

��
	�

��
�	
��

��
�

�

�
��

��
��

�	
)

��
��

�

�	

��
�

��
�

��

�!
	

��
���

�
�

�	

	"

��
	�
��

��
�

	�
��

�
�

��
�	

��

�

�	
�

	(

��
	!

��
���

�	
��

�

�
�.

��
�	�

��
#�

%
��

�

��

	�
��

�
�

�
��

	

��

�

��

�	
��

�
�

�
��

	�
��

�	
��

��

#

�
��

��
��

�	
)

��
��

�

�	

��
�

�

*�
��

��
	

��
���

�
�

�	
��

�
�

�

��

�	
��

�
�	

�

	(

��

	!
��

���
�	

��
�

%
��

��
��

��
	�

��
��

�
	�
��

�

+
,�

��
��

	�
��

-�
��

��
�

�	
��

�

%
��

�

��

	�
��

� �

�

��
	�

��
�	
��

�

��
�

�
�

��
�	

��

�

�	
�

	(

��
	!

��
���

�	
��

��
�

� �
�

��
�	

��

�

�	
�

	(

��
	!

��
���

�	
��

�

�
�

�
��

	

��

�

��

�	
��

�

�

�

�

��
	

��
�

��
�	

��
�

��
�

�
��

��
��

�	
)

��
��

�

�	

��
��

�

%
��

��
��

��
	�

��
��

�
	�
��

2

�

0�
�	
�

��
��

�
	�
��

�
��

��
�

	�
��

��
�

�
��

��
��

�	
)

��
��

�

�	

��
��

�
�

�
��

	�
��

�	
��

�

� �
��

��
��

�	
)

��
��

�

�	

��
�

�

�
��

��
�

	�
��

��

�
��

��
�

	�
��

�

�

�
��

��
�

	�
��

��
$

�
��

��
�

	�
��

$�

��

�
��

��
�

	�
�$

�

2

�

0�
�	
�

��
��

�
	�
��

� �
��

��
�

	�
��

�

�
��

��
�

	�
��

�� �
��

��
�

	�
��

�

�

�
��

��
�

	�
��

��
$

�
��

��
�

	�
��

$�

�

%
��

��
��

��
	�

��
��

�
	�
��

�

�

�
�

��
�	

��

�

�	
�

	(

��
	!

��
���

�	
��

�

%
��

��
��

��
	�

��
��

�
	�
��

��

%
��

��
��

��
	�

��
��

�
	�
��

�
�

��
��

��
�	
)

��
��

�

�	

��
�

� %
��

��
��

��
	�

��
��

�
	�
��

� %
��

��
��

��
	�

��
��

�
	�
��

� �
��

��
�

	�
��

�

�
��

��
�

	�
��

��

%
��

��
��

��
	�

��
��

�
	�
��

�
��

��
�

	�
��

�

�
��

��
�

	�
��

� %
��

��
��

��
	�

��
��

�
	�
��

�
��

��
�

	�
��

� �
��

��
�

	�
��

�

�
��

��
�

	�
��

� ���
��	

�
�	

��
���

�
�

�	
��

�

�

�

��
	

��
�

��
�	

��
�

� �

�

��
	�

��
�	
��

�

� �

�

��
	

��
�

��
�	

��
�

� �
�

��
�	

/�

�

�	
�

	+
��

	�
��

�
�	�

��

�

/

0!

��
�	�

!
��

��
��

	�
��

�

��
��

�	�

0

!
��

�	�
��

�

�

%
��

���

�

�	.
��

��1
��

	�
��

��

�

��
	�
��

�
�

��
�	

/�

�

�	
�

	/

0

�
�	�

��

� ��

�!
	

��
���

�
�	

 	

�

��

�

�
	�
��

� *�
�	�

	
/�

�-

�

��

�

��
	�
��

�

�
�

��
�	

��

�

�	
�

	/
��

�

�

��

�	

��
�

�

�

�
�

��
�	

��

�

�	
�

	(

��
	!

��
���

�	
��

� �

�
��

��
��

�	
)

��
��

�

�	

��
�

��

��

�!
	

��
���

�
�

�	

	"

��
	�
��

��
�

	�
��

�
�

��
�	

��

�

�	
�

	(

��
	!

��
���

�	
��

�

%
��

��
��

��
	�

��
��

�
	�
�#

�

�

*�
��

��
	

��
���

�
�

�	
��

�

�+
,�

��
��

	�
��

-�
��

��
�

�	
��

�

%
��

�

��

	�
��

��

%
��

��
��

��
	�

��
��

�
	�
��

�
��

��
�

	�
��

�
��

��
�

	�
��

�
�

��
��

��
�	
)

��
��

�

�	

��
�

#� %
��

��
��

��
	�

��
��

�
	�
#�

�
�

��
��

�
	�
��

� �
��

��
�

	�
��

� 2

�

0�
�	
�

��
��

�
	�
��

� �
�

��
�	

��

�

�	
�

	(

��
	!

��
���

�	
��

�

��

2

�

0�
�	
�

��
��

�
	�
�$

�

%
��

��
��

��
	�

��
��

�
	�
��

� �
��

��
��

�	
)

��
��

�

�	

��
�

�

�
��

��
�

	�
��

�

�
��

��
�

	�
��

�' 2

�

0�
�	
�

��
��

�
	�
��

�
�

��
��

�
	�
'�

�

%
��

��
��

��
	�

��
��

�
	�
��

�
��

��
�

	�
'�

�

2

�

0�
�	
�

��
��

�
	�
��

�&

2

�

0�
�	
�

��
��

�
	�
�'

�

%
��

��
��

��
	�

��
��

�
	�
��

�

�
�

��
�	

��

�

�	
�

	(

��
	!

��
���

�	
��

�

��

2

�

0�
�	
�

��
��

�
	�
��

�
��

��
�

	�
��

�
��

��
�

	�
&&

�

%
��

��
��

��
	�

��
��

�
	�
��

��
$

2

�

0�
�	
�

��
��

�
	�
�$

��
�

��
��

�
	�
��

�
��

��
��

�	
)

��
��

�

�	

��
�

%
��

��
��

��
	�

��
��

�
	�
#�

�
�

�

��

�	
��

�
�	

�

	%

"

��
	�
#�

�

�
�

��
�	

��

�

�	
�

	%
"

��
	�
��

�

2

�

0�
�	
�

��
��

�
	�
��

�

%
��

���

�

�	�
�

�
!

��
	�
��

� ���
��	

�
�	

��
���

�
�

�	
��

�

�

�

��
	

��
�

��
�	

��
�

�� �
�

��
�	

/�

�

�	
�

	+
��

	�
��

�
�	�

��

� /

0!

��
�	�

!
��

��
��

	�
��

� �

�

��
	�

��
�	
��

�

�� �
�

��
�	

/�

�

�	
�

	+
��

	�
��

�
�	�

��

�

/

0!

��
�	�

!
��

��
��

	�
��

� �

�

��
	

��
�

��
�	

��
�

� �
�

��
�	

/�

�

�	
�

	+
��

	�
��

�
�	�

��

�

�

�

��
	�

��
�	
��

�
/

0!
��

�	�

!

��
��

��
	�
��

� ��
��

�	�

0

!
��

�	�
��

� �%
��

���

�

�	.
��

��1
��

	�
��

��

�

��
	�
��

�

�
�

��
�	

/�

�

�	
�

	/

0

�
�	�

��

� ��
��

�	�

0

!
��

�	�
��

#

�

%
��

���

�

�	.
��

��1
��

	�
��

��

�

��
	�
#�

�
�

��
�	

/�

�

�	
�

	/

0

�
�	�

��

�

�

�
�

��
�	

��

�

�	
�

	/
��

�

�

��

�	

��
�

��

�!
	

��
���

�
�	

 	

�

��

�

�
	�
��

%
��

�

��

	�
��

�

+
,�

��
��

	�
��

-�
��

��
�

�	
��

�

��

�!
	

��
���

�
�	

 	

�

��

�

�
	�
��

' �
�

��
�	

��

�

�	
�

	/
��

�

�

��

�	

�'
�

�

��

�!
	

��
���

�
�	

 	

�

��

�

�
	�
#�

�

%
��

���

�

�	.
��

��1
��

	�
��

��

�

��
	�
��

��

�!
	

��
���

�
�	

 	

�

��

�

�
	�
��

�

*�
�	�

	
/�

�-

�

��

�

��
	�
��

�

'

�
�

��
�	

��

�

�	
�

	�
��

��
�

	�
��

�
�

��
�	

��

�

�	
�

	/
��

�

�

��

�	

��
�

%
��

�

��

�	
-	
�

	"

��
	�
��

�

�

��

�!
	

��
���

�
�

�	

	"

��
	�
��

��
�

	�
��

%
��

�

��

	�
'�

�

�

��
	

��
�

��
�	

��
�

�

�

�

��
	

��
�

��
�	

��
�

� �

�

��
	

��
�

��
�	

��
�

��
�

��
��

��
�	
)

��
��

�

�	

��
�

��

�
�

��
�	

��

�

�	
�

	(

��
	!

��
���

�	
��

$�

%
��

��
��

��
	�

��
��

�
	�
��

�
�.

��
�	�

��
�

�
��

	�
��

�	
��

�

�

�
��

��
��

�	
)

��
��

�

�	

��
�

�#

��

�!
	

��
���

�
�

�	

	"

��
	�
��

��
�

	�
'�

�
�

��
�	

��

�

�	
�

	(

��
	!

��
���

�	
��

�

2

�

0�
�	
�

��
��

�
	�
�#

�
%

��
��

��
��

	�
��

��
�

	�
��

�
�

�
��

	�
��

�	
��

�

�

�
��

��
��

�	
)

��
��

�

�	

��
�

'

*�
��

��
	

��
���

�
�

�	
�'

�

�

+
,�

��
��

	

"

��

�

	�
��

�
�

��
�	

��

�

�	
�

	(

��
	!

��
���

�	
��

�

'

+
,�

��
��

	�
��

-�
��

��
�

�	
�'

�

�
�.

��
�	�

��
%

��
�

��
	�
��

��
�

��
�	

��

�

�	
�

	%
"

��

�

	�
��

�

+
,�

��
��

	

"

��

�

	�
��

�
�

��
�	

��

�

�	
�

	%
"

��

�

	�
��

#� �
�

��
�	

��

�

�	
�

	(

��
	!

��
���

�	
�#

'�

�
��

��
��

�	
)

��
��

�

�	

��
�

�&
�

%
��

�

��

�	
-	
�

	"

��
	�
#�

�&
�

�
�

��
�	

��

�

�	
�

	�
��

��
�

	�
��

��

2

�

0�
�	
�

��
��

�
	�
��

�
%

��
��

��
��

	�
��

��
�

	�
�$

�
�

��
��

��
�	
)

��
��

�

�	

��
$�

�

%
��

�

��

�	
-	
�

	"

��
	�
��

#�
#

��

�!
	

��
���

�
�

�	

	"

��
	�
��

��
�

	�
#�

��
�

�

��

�	
��

�
�	

�

	�

��
��

�
	�
��

2

�

0�
�	
�

��
��

�
	�
#�

�
%

��
��

��
��

	�
��

��
�

	�
�$

��
�

��
��

��
�	
)

��
��

�

�	

�#
'���

�!

	

��

���

�

�

�	

	"

��

	�
��

��
�

	�
��

�

2

�

0�
�	
�

��
��

�
	�
��

�

�
�

��
�	

��

�

�	
�

	�
��

��
�

	�
��

� ��
�

��
�	

��

�

�	
�

	%
"

��
	�
��

� %
��

���

�

�	�
�

�
!

��
	�
��

&# &��
�

��
�	

��

�

�	
�

	%
"

��
	�
&#

�

�' ���
�

��
�	

��

�

�	
�

	%
"

��
	�
�'

�

�

%
��

���

�

�	�
�

�
!

��
	�
��

�
�

��
�	

��

�

�	
�

	%
"

��
	�
��

�

%
��

���

�

�	�
�

�
!

��
	�
��

�
�

��
�	

��

�

�	
�

	%
"

��
	�
��

��
#

%
��

�

��

�	
-	
�

	"

��
	�
��

%
��

���

�

�	�
�

�
!

��
	�
&#

�

*�
��

��
��

�	
��

.�
��

	�
#�

��

�

�

��
	�

��
�	
��

��

�

�

��
	

��
�

��
�	

��
�

%
��

���

�

�	�
�

�
!

��
	�
�'

�

�
�

�
��

	

��

�

��

�	
��

�

%
��

�

��

�	
-	
�

	"

��
	�
��

��
*�

��
��

��
�	

��
.�

��
	�
��

$�

�

�

�

��
	�

��
�	
��

�

�

%
��

�
��

	�
�!

"�
�	
��

�
��

�	
��

�

�

�

��
	

��
�

��
�	

��
�

%
��

�

��

�	
-	
�

	"

��
	�
��

Fig. 5. The Transition System of the Log.

1380

���
���

��

�������	
��

��

���������������

��������
������ ���

���

���

���

�		

�������	
��

��

��������

������
�
��
 !

��

���

��

���

����

����

���

����

�

�������	
��

��

���"�#
��	�
���
��	���
!$�

	�
�������	
��

��

���!�#
%�
&

$�

	��
�������	
��

��

�" ��#���'�
�'	

$$

		�
�������	
��

��

�����#
%�
&

$��

	��
�������	
��

��

�����(

��%
'�)����*���'

��"

���
�������	
��

��

�"$$��+���
�,+�	
����,�����

$�

	�
�������	
��

��

�"�"�-.
���
�
�
)'
��	���

$$�

		�
�������	
��

��

��/"�#���'��

��%
'

!�/

��
�������	
��

��

�"������

���

��������

 �

���
�������	
��

��

���/�(

��%

 $/

�	�
�������	
��

��

�"!��0�1��2��

����������1�*���'��
%�
&

���

���
�������	
��

��

�����#
�
��

!$�

	�

�������	
��

��

�"!��,��2
�����2
�
�
'
 �

��

�������	
��

��

��������	��
��2
��
 /

��

�������	
��

��

�"! ��+���
�
+�	
����,�

�������
 !�

�
�

�������	
��

��

�" ���+���
�
+�	
����3���'�2

����
! "

��

�������	
��

��

�"�$��
�����,�
)�

��%
'
$�

	�

�������	
��

��

��� ���&�
��#
%�
&
$��

	��

�������	
��

��

�" /��+���
�
+�	
����#
%�
&
��$

��	

�������	
��

��

�"���(

���������	��1�
	��
�
%���

$

	�

�������	
��

��

�"� �(���������2*
���+���
'
"

�

�������	
��

��

�"$���+���
�
+�	
������2
�
�

"

�

�������	
��

��

���$�(��+��
���#
%�
&
!��

��

�������	
��

��

��/$�0�1��2��

��������1��

��%��
$!

	

�������	
��

��

�"$ ��+���
�,+�	
����-�'�#

���
 �

��

	�

	��

		�

	��

���

	�

		�

��

���

�	�

���

	�
��

��

�
�

��

	�

	��

��	

	�

�

�

��

	

��
���

�������	
��

��

��/��#
�
�%
�
�'��

���
"

�

���
�

	��

	

	�
���

�

�������	
��

��

�""��-.
���
��*��'��
!

	

�

�������	
��

��

�"" ��+���
�
+�	
����(*��'��
�

�
�

	

�������	
��

��

��/��(

���������1��2
'
!$�

	�

	�

	�
	�
���

�������	
��

��

�"!/��+���
�
+�	
����(*���
���

���
	����

Fig. 6. Model Mined By The Inductive Miner

Fig. 7. Model Mined By The ILP Miner

Section III, allowing, e.g., “application” to be followed directly
by payments, with no intervening review or approval.

ILP Miner. The ILP Miner [25] also finds a perfectly fitting
model, however the resulting Petri net, shown in Figure 7, is
complex to the point of uselessness. We have not attempted to
rate the model on precision and generality.

Other Miners. We experimented with a number of other
process discovery algorithms that did not yield perfect fitness:
the alpha miner (0.64 fitness) [26], the heuristics miner (0.48
fitness) [27] and the Fuzzy Miner (0.88 fitness) [28].

In conclusion, we failed to find a mining technique that
provided perfect fitness, reasonable simplicity, reasonable pre-
cision (as respect for business rules), and reasonable generality.
Our attempts seem bracketed by the DCR transition system
miner on the one hand, providing perfect precision but little
generality, and the inductive miner on the other, providing
generality but little precision.

Since we apparently cannot machine-generate a model, the

question arises whether a hand-crafted model could strike a
better balance. We leave this question as a challenge for the
community.

VII. CONCLUSION

In this paper we investigated the logs generated by a
real life, declaratively modelled process. We first undertook a
qualitative investigation of the variability present in the log to
determine to what extent the users have exploited the flexibility
provided by the declarative model. The log exhibited a large
amount of variations on a small set of base cases, demonstrated
by a small number of highly populated trace classes and a large
number of unique traces.

Secondly we experimented with process discovery algo-
rithms to determine if they could generate a sufficiently concise
and precise flow-based model based on the log. We did not find
such a model.

Altogether, we were unsuccessful in disproving the hypoth-
esis that the claimed advantages of declarative modelling are
indeed helpful. Anecdotally and qualitatively, the present study
seem to indicate that declarative modelling was indeed helpful.

Thus, we put forward a challenge to the community to find
such a flow-based model, satisfying the quality requirements
listed in Section VI: (1) perfect fitness in respect to the real-
life behaviour exhibited in the Dreyers logs, (2) reasonable
precision in terms of representing the main business rules, (3)
a clear advantage in simplicity over the declarative model and
(4) a stronger sense of generality than the transition system
approach in Section VI.

1381

VIII. FUTURE WORK

As the present study is qualitative in nature, the obvious
next step is to conduct a companion quantitative study. A first
step in this direction is to define precisely what it means for a
log to exhibit “variability” and “flexibility” behaviour, based
on parameters such as the number of trace classes compared
to the size of the log and the string edit distance between
the trace classes. Special care needs to be taken to distinguish
between straightforward variability resulting from parallelism
and looping constructs in traditional flow-based notations and
more complex variability which can not be traced back to such
flow-based constructs, but instead would require a declarative
notation to be described concisely.

We have seen that most variability occurs in the middle of
traces, whereas the start and end of the traces seems relatively
uniform. Thus the question whether the Dreyers process is a
good candidate for a Hybrid modelling approach [11], [29]–
[31], where the stricter parts of the process are modelled using
a flow-based notation and the more flexible parts are modelled
using DCR Graphs. It would be interesting to see if a hybrid
mining algorithm [32] would be up to the task of mining a fit
and sufficiently precise model from our log, but this does not
fall in the scope of the current paper as a hybrid model would
still confirm the need for declarative notation.

REFERENCES

[1] P. F. Drucker, Management Challenges for the 21st Century. Harper-
Business, 2001.

[2] T. H. Davenport, S. L. Jarvenpaa, and M. C. Beers, “Improving
knowledge work processes,” Sloan management review, 1996.

[3] M. Reichert and B. Weber, Enabling Flexibility in Process-Aware
Information Systems: Challenges, Methods, Technologies. Berlin-
Heidelberg: Springer, 2012.

[4] B. Weber, M. Reichert, and S. Rinderle-Ma, “Change patterns
and change support features - enhancing flexibility in process-
aware information systems,” Data and Knowledge Engineering,
vol. 66, no. 3, pp. 438–466, September 2008. [Online]. Available:
http://dbis.eprints.uni-ulm.de/335/

[5] N. A. Mulyar, M. H. Schonenberg, Mans, and van der Aalst, “Towards
a Taxonomy of Process Flexibility (Extended Version).” 2007.

[6] T. Hildebrandt and R. R. Mukkamala, “Declarative event-based
workflow as distributed dynamic condition response graphs,” in
Post-proceedings of PLACES 2010, 2010. [Online]. Available:
http://www.itu.dk/∼rao/pubs submitted/dcrsjournalversionfinal.pdf

[7] T. Slaats, “Flexible process notations for cross-organizational case
management systems,” Ph.D. dissertation, IT University of Copenhagen,
January 2015.

[8] R. R. Mukkamala, “A formal model for declarative workflows - dy-
namic condition response graphs,” Ph.D. dissertation, IT University of
Copenhagen, March 2012.

[9] C. Haisjackl, S. Zugal, P. Soffer, I. Hadar, M. Reichert, J. Pinggera, and
B. Weber, “Making Sense of Declarative Process Models: Common
Strategies and Typical Pitfalls,” in BMMDS/EMMSAD, ser. Lecture
Notes in Business Information Processing, vol. 147. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 2–17.

[10] D. Fahland, D. Lbke, J. Mendling, H. Reijers, B. Weber, M. Weidlich,
and S. Zugal, “Declarative versus imperative process modeling lan-
guages: The issue of understandability,” in Enterprise, Business-Process
and Information Systems Modeling, ser. Lecture Notes in Business
Information Processing. Springer, 2009, vol. 29, pp. 353–366.

[11] H. A. Reijers, T. Slaats, and C. Stahl, “Declarative modeling – An
academic dream or the future for BPM?” in BPM 2013, 2013, pp. 307–
322.

[12] S. Zugal, P. Soffer, C. Haisjackl, J. Pinggera, M. Reichert, and B. Weber,
“Investigating expressiveness and understandability of hierarchy in
declarative business process models,” Software & Systems Modeling,
June 2014. [Online]. Available: http://dbis.eprints.uni-ulm.de/942/

[13] M. Marquard, M. Shahzad, and T. Slaats, “Web-based modelling and
collaborative simulation of declarative processes,” in Proceedings of
13th International Conference on Business Process Management (BPM
2015), 2015.

[14] T. Slaats, R. R. Mukkamala, T. Hildebrandt, and M. Marquard, “Ex-
formatics declarative case management workflows as DCR graphs,” in
BPM ’13, ser. LNCS. Springer, 2013, vol. 8094, pp. 339–354.

[15] S. Debois, T. Hildebrandt, M. Marquard, and T. a. Slaats, “A case for
declarative process modelling: Agile development of a grant application
system.” 2014.

[16] W. M. P. van der Aalst, Process Mining: Discovery, Conformance and
Enhancement of Business Processes. Springer, 2011.

[17] P. Pichler, B. Weber, S. Zugal, J. Pinggera, J. Mendling, and H. A.
Reijers, “Imperative versus declarative process modeling languages: An
empirical investigation,” in Business Process Management Workshops
(1), 2011, pp. 383–394.

[18] N. C. Silva, C. A. L. de Oliveira, F. A. L. A. Albino, and R. M. F.
Lima, “Declarative versus imperative business process languages - A
controlled experiment,” in ICEIS ’14, 2014, pp. 394–401.

[19] “Full-size figures of the present paper.” http://bit.ly/1KVtMem.

[20] T. T. Hildebrandt and R. R. Mukkamala, “Declarative event-based work-
flow as distributed dynamic condition response graphs,” in PLACES ’10,
2010, pp. 59–73.

[21] T. Hildebrandt, R. R. Mukkamala, and T. Slaats, “Nested dynamic
condition response graphs,” in FSEN ’11, April 2011.

[22] S. Debois, T. Hildebrandt, and T. Slaats, “Hierarchical declarative
modelling with refinement and sub-processes,” in Business Process
Management, ser. LNCS. Springer, 2014, vol. 8659, pp. 18–33.

[23] J. Buijs, B. van Dongen, and W. van der Aalst, “On the role of fitness,
precision, generalization and simplicity in process discovery,” in On the
Move to Meaningful Internet Systems: OTM 2012, ser. LNCS. Springer
Berlin Heidelberg, 2012, vol. 7565, pp. 305–322.

[24] S. Leemans, D. Fahland, and W. van der Aalst, “Discovering block-
structured process models from event logs containing infrequent be-
haviour,” in Business Process Management Workshops, ser. Lecture
Notes in Business Inf. Proc. Springer, 2014, vol. 171, pp. 66–78.

[25] J. van der Werf, B. van Dongen, C. Hurkens, and A. Serebrenik,
“Process discovery using integer linear programming,” in Applications
and Theory of Petri Nets, ser. LNCS, K. van Hee and R. Valk, Eds.
Springer, 2008, vol. 5062, pp. 368–387.

[26] W. van der Aalst, T. Weijters, and L. Maruster, “Workflow mining:
discovering process models from event logs,” Knowledge and Data
Engineering, IEEE Transactions on, vol. 16, no. 9, pp. 1128–1142,
Sept 2004.

[27] A. Weijters, W. M. van Der Aalst, and A. A. De Medeiros, “Process
mining with the heuristics miner-algorithm,” Technische Universiteit
Eindhoven, Tech. Rep. WP, vol. 166, pp. 1–34, 2006.

[28] C. W. Günther and W. M. van der Aalst, “Fuzzy mining—adaptive
process simplification based on multi-perspective metrics,” in Busi-
ness Process Management, ser. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2007, vol. 4714, pp. 328–343.

[29] S. Sadiq, W. Sadiq, and M. Orlowska, “Pockets of flexibility in
workflow specification,” in Conceptual Modeling – ER 2001, ser.
Lecture Notes in Computer Science, 2001, vol. 2224, pp. 513–526.
[Online]. Available: http://dx.doi.org/10.1007/3-540-45581-7 38

[30] W. van der Aalst, M. Adams, A. ter Hofstede, M. Pesic, and H. Scho-
nenberg, “Flexibility as a service,” in Database Systems for Advanced
Applications, ser. Lecture Notes in Computer Science, 2009, vol. 5667,
pp. 319–333.

[31] M. Westergaard and T. Slaats, “Mixing paradigms for more compre-
hensible models,” in BPM 2013, 2013, pp. 283–290.

[32] F. M. Maggi, T. Slaats, and H. A. Reijers, “The automated discovery
of hybrid processes,” in Proceedings of 12th International Conference
on Business Process Management (BPM 2014), 2014, pp. 392–399.
[Online]. Available: http://dx.doi.org/10.1007/978-3-319-10172-9 27

1382

