
Improving SVM Training Sample Selection Using
Multi-Objective Evolutionary Algorithm and LSH

Romaric Pighetti, Denis Pallez, Frédéric Precioso

pighetti@i3s.unice.fr, denis.pallez@unice.fr, precioso@i3s.unice.fr, frederic.precioso@unice.fr

University Nice Sophia-Antipolis, I3S Lab (UMR CNRS 7271)

Abstract—In this paper, we propose a new framework hy-
bridizing a Support Vector Machine (SVM), a Multi-Objective
Genetic Algorithm (MOGA) and a Locality Sensitive Hashing
(LSH). The goal is to tackle fine-grained classification challenges
which means classifying many classes with high similarities
between classes and poor similarities inside one class. SVM is
used for its ability to learn multi-class problems from very few
training data. MOGA is used to optimize training samples used
by the SVM so as to improve its learning rate. As data define a
discrete set of instances and not a continuous solution space, LSH
is used to map "optimal solutions" obtained by MOGA onto the
closest real instances contained in the dataset. We evaluate our
method for content-based image classification on the standard
image database Caltech256 (i.e. 30000 images distributed in 256
classes). Experiments show that our method outperforms state-
of-the-art approaches.

I. INTRODUCTION

One of the big challenges encountered recently in classifi-
cation is the so-called “fine-grained challenge”. This not only
refers to the task of classifying large scale datasets, which
is still an open question for huge volume of data, but it has
mainly to deal with considering many classes among which
some are very similar with respect to the description of their
content while the semantic information they hold is different
and vice-versa. This problem arise often when the amount of
data and the number of classes increase. It has been exhibited
in particular in the context of classifying large image databases
(see Fig.10 for inter-class visual ambiguities and see Fig.11
for intra-class visual dissimilarities). In such a context, to
learn a classifier the larger the training set is the better the
prediction will be. However, considering the amount of data
the computation time required would be extremely long.

One way to deal with very large datasets and proposing
low time consuming algorithms is to consider subsets of the
training set during the learning process. The issue is then how
to build these subsets: Most of the works are based on random
subsets [1].

While this effectively solves the large scale problem, it
does not guarantee the best results. In opposition to random
strategies, a statistical and a spatial distribution analysis of
the data may be used for building better subsets. In this case,
computing geometrical information on the whole dataset is still
very time consuming and is hard to apply for large datasets [2],
[3]. In this paper, we propose to combine a genetic algorithm
(GA) which is based on stochastic exploration mechanisms
while guiding the search towards promising areas of the search
space, and Support Vector Machine classifiers (SVM) [4] to

exploit locally these promising areas to build a better global
classifier. SVM have proven to be very effective in a wide
range of problems, thus building a solution for the fine-grained
challenge on SVM is pretty promising, even though training
a SVM is a quadratic problem with respect to the number
of training samples. In the proposed approach, the GA will
search for the optimal training samples to improve the SVM
classification. The training set for the SVM will incrementally
grow with training samples retrieved by the GA. At each
iteration the SVM classifier, trained up to the current step,
is then used to evaluate new generated solutions and thus
contribute to guide the GA search process.

This incremental building process of the training set re-
quires the GA solutions to be samples of the dataset. In [5],
Kawulok et al have also worked on a method using a GA to
extract learning samples for SVM. However in their approach,
each solution evolved by the GA is a training set so that at the
end of the optimization process, the best training set is obtained
and ensures better performances for the classifier. Such strategy
implies to learn a classifier for each training set contained in
the GA population, which is very time consuming. As opposed
to the previous strategy, we design a solution to be a single
point of the dataset. Thus, the proposed approach has a lower
complexity.

In our approach, as the genotype is only one solution
and considering that GA may apply crossover and mutation
during evolution, resulting optimal solutions may not belong
to the initial dataset. So, we propose to use Locality Sensitive
Hashing (LSH) to facilitate the identification of an adapted
solution picked from the initial dataset.

We have focused the evaluation of our apporach on the
fine-grained context of large scale image classification. Several
other works have been considered to combine evolution-
ary algorithms and local search techniques (SVM, k-Nearest
Neighbor classifier...) for image classification [6]–[11]. How-
ever, most of these approaches are evaluated on very small
image datasets (no more than few thousand images) or ad-
hoc handcrafted databases up to 12 000 images [11], mainly
owing to scalabilty limitations. We have chosen to evaluate
our method on Caltech-256 dataset (30 000 images in 256
classes) which is a well-known benchmarck for fine-grained
image context, classically considered in most of the recent
works in image classification.

The paper is organized as follows, the next section gives
some background about SVM, GA and LSH, which are the
three main components of the presented framework. Section III
presents the details and explanations about the proposed ap-

2015 IEEE Symposium Series on Computational Intelligence

978-1-4799-7560-0/15 $31.00 © 2015 IEEE

DOI 10.1109/SSCI.2015.197

1383

Figure 1. Possible separating
planes

Figure 2. SVM margin illustration

proach. The experimental set-up and parameters are exposed
in Section IV, and Section V presents the results. Finally, a
conclusion and future works are presented in Section VI.

II. PRELIMINARIES

The presented method combines SVM, multi-objective GA
and LSH. In order to better understand our method, details
about those three algorithms are given in this section.

A. Support Vector Machine

SVM has encountered a great success as a classification
technique in the past twenty years for several good reasons:
It has proven to be effective for a wide range of pattern
recognition tasks, it is theoretically sound, and it has among
other power the capacity to achieve rather impressive clas-
sification results from few training samples. While several
hyperplane can separate a given set of training data (Fig.1),
SVM computes the hyperplane which gives the largest margin
(Fig.2). As it can be seen in Fig.2, the hyperplane is defined
by a small number of vectors (those with bigger light gray
and black border), called support vectors, computed from the
training set. Once the hyperplane is defined, it is used to
classify further unclassified data that are presented to the SVM.

A hyperplane separates the space into two parts, thus SVM
are binary classifiers by design. When dealing with multi-class
problems, the problem is broken down into several binary clas-
sification problems. Common strategies to then build the final
multi-class decision are: learning a binary classifier between
every pair of classes (one versus one strategy) or learning a
binary classifier between a class and the remaining classes
(one versus all strategy) for each class. In the first case, the
class is assigned to a new data using the max voting wins
strategy. In the second case, the classifier with the highest
SVM decision (the new data is both on the positive side for
this SVM and farthest from this SVM boundary than any other
SVM) determines the class. However, the SVM decision (i.e.
distance between the new data and the SVM boundary) has to
be tuned to produce comparable results among all one-vs-all
SVMs.

B. Genetic Algorithms

Genetic Algorithms (GA) are optimization methods in-
spired by Darwin’s theory of evolution. GA evolves candi-
date solutions by applying successively genetic operators as
selection, recombination (crossover) or mutation on candidate
solutions. A candidate solution, also called individual, is often
represented by a vector of genes called a genome. A gene can
be a bit (0 or 1), an integer or a real value. In a multi-objective
optimization process [12], a fitness function f is defined by
f(x) = (f1(x), ..., fn(x)) where fi(x) : X → R represents
one objective to optimize (maximize or minimize). In this
context, a dominance relation is defined as given in Def.1
to compare individuals performances in solving the multi-
objective function. The way candidate solutions x ∈ X are
selected for breeding is based on this fitness value. This process
iterates for new generations until a stopping criteria is reached.

Definition 1: Let D be the space in which solutions are
expressed, and F = {f1, f2, ..., fn} be n scalar objective (or
fitness) functions to be minimized.
For (s1, s2) ∈ D, s1 dominates s2 if and only if:
∀i ∈ [1, n], fi(s1) ≤ fi(s2) and
∃i ∈ [1, n], fi(s1) < fi(s2)

Figure 3. Solutions to a bi-objective minimisation problem

Fig.3 illustrates this dominance relation considering that the
goal here is to minimize both f1 and f2. All individuals in
the area marked B are dominated by the solution A, and
all solutions in the area marked C dominate solution A. No
comparison can be made between solution A and solutions in
the area marked D using the dominance relation. Given this
dominance relation, for a set of individuals, the pareto front is
defined as the subset of non-dominated individuals, represented
as a black dotted line in Fig.3. The optimal pareto front is
the set of attainable non-dominated solutions, depicted with a
red mixed dashed line in Fig.3. The goal of a multi-objective
evolutionary algorithm is to evolve individuals toward the
optimal pareto front, keeping as much diversity as possible
along the front. The dominance relation is used as part of the
evaluation process to guide the search toward this goal. One
of the most known algorithm for MOGA is NSGA2 [13].

1384

Those algorithms are known to be able to explore the
search space thanks to the genetic operators, which is of great
interest in the presented method.

C. Locality Sensitive Hashing

Locality Sensitive Hashing (LSH) [14] is a hashing tech-
nique aiming at giving a fast approximate solution to the
k-Nearest Neighbours problem. It uses family of locality
sensitive hashing functions to hash the data in small cells,
commonly called buckets, see Fig.4. This partition of the
space is relevant only if two data which were close before
partitionning, are put in the same part of the partioned space,
i.e. are in the same bucket. LSH classic algorithm [15]–[17]

Figure 4. The input space D is partitioned thanks to hash functions and data
are assigned to buckets.

tackles the problem (R; cR)NN . Indeed, LSH defines how to
design a family H of hash functions h to be locality sensitive:
Given a query Q the probability p1, that a data A at a distance
less than R from the query in the original space is put in the
same bucket as the query, is higher than the probability p2 that
a data B at a distance higher than cR from the query, is put
in the same bucket as the query (cf. Fig.5). This can be better
formalized in Def.2.

Figure 5. Q is the query and A its nearest neighbor within radius R while
B is farther than cR from Q, with c = 1 + ε on the figure.

Definition 2: Let D be the space of data to be hashed,
(R, cR) ∈ R

2, p1 ∈ [0, 1] be the probability of true NN
detection, p2 ∈ [0, 1] be the probability of false NN detection,
H be a family of hashing functions and d be a similarity or
distance function on D.

H is said to be (R, cR, p1, p2)-sensitive if:
Given a query data Q ∈ D,
∀h ∈ H, ∀(A,B) ∈ D2,
if d(A,Q) ≤ R then PH[h(A) = h(Q)] ≥ p1
if d(B,Q) ≥ cR then PH[h(B) = h(Q)] ≤ p2
with p2 ≤ p1 and R ≤ cR, c > 1.

The standard implementation of LSH provides a solution to
this problem with a computation complexity in O(nρ) with
ρ < 1/c and n the dimension of D space.

Among all the families H proposed by the authors [17],
we have chosen to use random projections (see Fig.6):

For any data p ∈ D given,

ha,b(p) = �a.p + b

W
	

where a is a random vector in D, b is a random value in
[0,W [and W specifies the size of the “slices”. Fig.6 shows

Figure 6. One hash function (random projection) for D = R
2

Figure 7. D = R
2 partitioned with one table of two hash functions

the graphical representation of one hash function defined
as a random projection [17] and Fig.7 shows a graphical
representation of hashing a two dimension space using one
table with two hash functions. Parallel lines represent one hash
function. In this figure, each hash function gives a result in Z

and combined hash functions are couples of integers. If more
than one table is used, then, for each new table, two new hash
functions are drawn, splitting the space in other directions.

Given this structure, searching for the approximate nearest
neighbours of a data d consists in searching the true nearest
neighbour of d in the set of data that have the same combined
hash function as d in at least one table. Fig.7 helps observing
that the more hash functions are used per table, the smaller the
retrieved set will be. More hash functions means more "lines",
and thus smaller buckets. And, the more tables are used, the
bigger the set will be. More tables means multiplying the space
partition displayed on Fig.7 as many times as the number of
tables with new hash functions. Then retrieving from each table
the set of data with the same combined hash as d multiplies
the number of sources from which data are retrieved, and so
increases the number of elements in the set.

1385

Figure 8. The framework workflow

Careful attention must be taken when choosing the number
of tables and hash functions. If those are not tuned correctly,
one might have difficulties to find neighbours in some part of
the search space, because there are too few elements retrieved.
Or spend too much time computing the true nearest neighbour
because there are too much elements in the retrieved set of
approximate nearest neighbours.

III. THE FRAMEWORK

The proposed approach aims at using a genetic algorithm to
extract optimal training samples for a SVM from a very large
set of possible training samples. As other sampling methods,
we aim at reducing the size of the training set to improve
the SVM training time, which is quadratic with respect to
the training set size. As aforementioned, the SVM decision is
built upon only few support vectors from the training samples.
The exploration capabilities of GA will help reaching the right
training samples and the framework will be able to get better
performances than random sampling or local search strategies
which concentrate only on training samples close to or within
the SVM margin.

In our approach, the SVM training set is built iteratively by
extracting training samples from the GA exploration process.
Lets first introduce the global workflow before going into more
details about the GA exploration.

A. Global Workflow

Fig.8 depicts the global workflow of the framework. In
order to initialize the learning process, one example of training
data must be provided for each category searched (Fig.8(a)).
This example plays the role of query. From there, one genetic
algorithm is initialized for each category (Fig.8(b)). The ini-
tialization is partially biased, using a normal law centred on
the example provided to the algorithm for each category.

Let GAi be the ith GA, associated to Ci, the ith searched
category, and Pi its population.

The SVM decision is used as part of the evaluation process
to guide the search towards interesting areas of the input

data space. Therefore, it is required to learn a first SVM
before the GA process can further start. To do so, once the
initialization is done, a first extraction of training samples is
processed (green part of Fig.8) to initialize the classifier. For
each GA, each individual of its population Pi is mapped to the
nearest available true training sample from the training dataset
(Fig.8(c)). The mapping is applied on data that have not been
yet added to the training set. This is done using an approximate
nearest neighbour search using LSH. Some of the new training
samples are then extracted from each mapped population, and
added to the classifier training set (Fig.8(d and e)). Once it is
done, a classifier is available and ready to classify unlabelled
data (Fig.8(f)).

The evolutionary process can then begin. The evolution
loop, consisting of evaluation, selection, crossover and muta-
tion (Fig.8(g, h, i and j)) is processed. The classifier trained
so far is used as part of the evaluation process to help guiding
the search towards interesting new training samples. Every g
generations (Fig.8(k)) the mapping and the extraction process
(green part of Fig.8) are repeated to add samples to the
classifier training set. The process stops when enough samples
have been added to the training set.

B. The Genetic Algorithm

The goal of the genetic algorithm in this framework is to
retrieve training samples. Therefore, each individual of the GA
represents a potential training sample (defined as a real valued
vector representing the image description in our experiments).

The evaluation (Fig.8(g)) is the core of the process. It
defines the problem the GA must solve and thus guides the
search. The GA is expected to retrieve training samples that
improve the SVM decision. As we want to identify rapidly
good results, one objective will be to identify the worst and
best individuals to determine the center of the class. Another
concern is to find a diverse set of elements and make the GA
explore the space.

So as to satisfy these two requirements, two objectives have
been defined. The first one is the closeness to the SVM margin,
which is to be maximized to identify rapidly the center of the

1386

class. As we are working with a multi-class SVM based on the
1 versus all strategy and we have one GA per category, each
GA will evaluate the distance of its individuals to the margin
of the SVM separating the category associated to the GA and
the rest.

The second objective is the closeness of the individual to
the query element, which is to be maximized. Since the query
element is probably in the center of the class, we expect the
GA to find elements in other palces of the search space by
doing this.

Those two objectives are quite different. They most proba-
bly have their solutions in different regions of the search space.
In order to solve those problems together, we have decided
to use a multi-objective GA. As explained before, those are
designed to find a diverse set of solutions, giving multiple non-
dominated trade-off between objectives. This property will also
ensure that the solutions identified by the MOGA of a given
category are diverse enough and allow the extraction of several
training samples from its population whenever we need to.

Experiments have been conducted with this framework
to evaluate its performances against random sampling and
classical interactive SVM. Next section brings further details
about experimental set-up and the implementation used.

IV. FRAMEWORK EVALUATION

This section first introduces content based image retrieval
(CBIR) and its challenges as the test bed problem for the
proposed method. Details about the dataset used and the
experimental set-up are then given before some details about
the implementation and used parameters are provided.

A. Content Base Image Retrieval

Within the wide variety of problems that can be seen as a
classification problem, we have considered here CBIR as the
test bed for the presented framework. It consists in searching
images by their visual content instead of keywords or meta-
data. The goal of such techniques is to be able to classify
huge image databases, gathering into a same class or group,
images that represent the same semantic concept. This field
of research has grabbed most of the attention from computer
vision and machine learning communities in the last decade,
driven by the increasing growth of visual content downloaded
on the internet everyday, which makes impossible to attach
relevant keywords or meta-data to every single data.

The number of data makes CBIR a large scale problem by
definition. It can also be considered as a fine grained problem
due to the number of classes to be retrieved and the char-
acteristics of images, which can have inter-class ambiguous
similarities (as illustrated in Fig.10) and intra-class ambiguous
dissimilarities (as illustrated in Fig.11). In addition, CBIR is
a really active research topic, which results are applied from
medical use [5] to everyday search queries [18]. In addition,
state of the art techniques in the domain rely on SVM, allowing
straightforward comparison of the proposed framework against
classical SVM use.

CBIR systems are composed of two main parts. The first is
the expression of the visual content of the images. It consists in
extracting a visual description for each image of the database.

The second, on which the focus is in this work, is the mining
of those visual description to classify the database.

Thanks to the popularity of CBIR, there exists many
datasets and competitions to which one can compare their
results to.

B. Experimental Setup

Figure 9. Some categories from Caltech-256 database

Caltech-256 [19] database has been chosen as the test
bed for the presented work. It is composed of about 30 000
images in 256 categories. Fig.9 shows some images from this
database. It has been used in several works whom results are
reported in [18]. Those works will form the baselines for
results comparisons. The problem associated with Caltech-
256 dataset is to be able to learn the 256 categories of the
database by training a classifier from a small subset, the so-
called training set, in order to assign the right class to the
remaining data, the so-called test set, which have not been
seen by the classifier.

As no separation is pre-defined for training and test sets
in caltech-256, the standard evaluation protocol is based on
randomly drawing training samples from the database, and use
the remaining of the database as a test set. In this protocol,
methods have to be evaluated for different training set sizes:
15, 30, 45 and 60 training samples per category are drawn
respectively.

We want to point out here that following such protocol
is rather unfair for our approach since we have to constrain

Figure 10. Inter-class ambiguities for categories: BEAR, GORILLA and
CHIMP

1387

Figure 11. Intra-class ambiguities for the category: MUSSELS

the exploration potential of the GA to be sure to extract
precisely 15, 30, 45 and 60 training samples per category, to
remain compliant with the evaluation protocol. However, the
evaluation on Caltech-256 classification was the most simple
context for fine-grained challenge.

As in all the works evaluated on this same protocol, the
training samples are drawn from the whole dataset, we have
decided that the whole dataset will be considered as available
training samples for our method. Doing so, training samples
are drawn from the same pool of data as previous works, what
changes is how the training samples are selected. To use LSH
for the approximate nearest neighbour search in the framework,
the database requires to be hashed before any learning process.
In order to fully respect the standard evaluation protocol, we
can select a new training sample for a given training class
subset only if this subset has not yet reached the training
size limit (15 or 30 or 45 or 60). Each class is thus hashed
separately so that we can control the mapping to a specific class
and so the amount of each class integrated in the training set.

The learning process runs and 15 training samples are
added to the classifier training set at each mapping and
selection processes (green part of Fig.8). The learning process
is stopped when 60 training samples have been selected from
each category. The SVM classification score is evaluated each
time new elements are added to the training set, which ends up
providing results for training sets containing 15, 30, 45 and 60
images per category. As for [18], the remaining of the database
is then used as a test set. This allows a fair evaluation of what
the framework brings in comparison to random sampling.

For comparison purposes, an active SVM approach [20]
has also been implemented. It uses the same SVM code as
our framework implementation. The learning process consists
in selecting the 15 first learning samples at random for each
category. Then, in each category, the 15 most uncertain data are
chosen to be added to the training set. The process is repeated
until enough (60 in this study) elements have been added to the
training set for each category. As for the previous method, the
SVM classification score is evaluated each time new elements
are added to its training set.

In order to observe the impact of our training sample se-
lection against standard methods, the same visual descriptors,
i.e. Fisher Vectors, as [18] have been used in the experiments.

As the framework embeds a GA, which uses randomness
during the evolution, and because the query elements are
chosen at random, the learning process is repeated 10 times
and the results presented are the average results over the 10

runs. For each run, the image given for each category as a
query is randomly drawn from the database.

The most commonly considered measures to evaluate CBIR
system are Precision and Recall. Results are compared to
those of [18], therefore, the same measure is used: the Mean
Average Precision (MAP). This measure consists in computing
the mean of the retrieval precision obtained for each separate
class with a given classifier. (1) explains how to compute the
MAP.

MAP =
1

N

N∑

i=1

(
|num(correctly classified in Ci|)

|num(classified in Ci|)) (1)

This ends the experimental set-up. Parameters values and
details about the implementation are provided in the following.

C. Implementation Details and Parameters Values

The implementation has been realized in java, using
ECJ [21] for the genetic algorithm and Weka [22] for the
SVM. For LSH, the library TarsosLSH1 has been used. As

Table I. PARAMETERS USED IN THE IMPLEMENTATION OF THE

FRAMEWORK

GA NSGAII

Population size 20

Crossover two points crossover

Crossover probability 1

Mutation none

Tournament selection size 2

Genome 2048 floats

SVM library LibLinear

C 1

Distance L2

LSH tables 10

LSH hash per table 1

explained in Section III, before any learning can be processed,
each category of available training samples must be hashed
separately using LSH. In order to have enough potential
neighbours, and after empirical tests, it has been decided to
use 10 tables with only 1 hash per table.

A multi-objective GA is needed for the framework. NSGA-
II [13] has been chosen, using the implementation provided by
ECJ. Each GA has a population of 20 individuals. The biased
initialization process is done on the whole population. The
crossover is a two point crossover and the crossover probability
is 1. No mutation has been used in this implementation.
The selection is a tournament selection of size 2. As visual
descriptors extracted are normalized float vectors with 2048
dimensions, individuals in the GA are represented with float
vectors with 2048 dimensions bounded to [-1, 1]. The distance
used to evaluate the proximity of two vectors is the L2
distance. The evaluation process of NSGA-II has been tuned
to call the classifier learning process when necessary and the
two objectives explained in Section III have been defined.

The SVM used is a libLinear wrapper for Weka2. It is used
with the complexity parameter set to 1 and the default solver.

1https://github.com/JorenSix/TarsosLSH (09/29/2015)
2https://github.com/bwaldvogel/liblinear-weka (09/29/2015)

1388

Figure 12. Detailed work flow of our implementation

Experimental results showed that the value of the complexity
parameter has barely no influence on classification results, so
we did not bother tuning it more. All these parameter settings
are reported in the Tab.I.

Fig.12 shows a detailed workflow of our implementation.
During the mapping process, individuals of each GA are
mapped to true samples from the dataset that have not yet
been added to the training set.

This ends the definition of the experimental set-up and
parameters. The results will now be presented and analyzed
in the next section.

V. RESULTS

Tab.II presents the results obtained with the proposed
framework against some of the previous works reported in
[18] and the implemented active SVM [20].

All the approaches from “Kernel Codebook” down to “IFK
(SIFT)” are focusing on building the most powerful visual

Table II. COMPARISON OF OUR APPROACH WITH RESULTS FROM THE

LITERATURE ON CALTECH-256

Method Nb. of images per category in the training set
15 30 45 60

Kernel Codebook 27.20

EMK (SIFT) 23.20 30.50 34.40 37.60

Standard FK (SIFT) 25.60 29.00 34.90 37.60

Sparse Coding (SIFT) 27.70 34.00 37.50 40.10

Baseline (SIFT) 34.10

NN (SIFT) 38.00

NN 42.70
IFK (SIFT) 34.70 40.80 45.00 47.90

Active SVM [20] 32.22 35.85 38.59 40.58
Our approach 34.96 42.03 47.99 53.35

content representations to be then input in a classifier. We
have decided to use the same visual content representation
as in “IFK (SIFT)” [18] since they provide the best results. In
their approach, Perronnin et al. [18] consider a linear SVM to
classify the images. Since our framework is based on active
learning to incrementally build the training set, as it has been
shown to be more efficient to train a SVM with less data [20],
we also evaluate our framework against the standard active
learning approach for SVM [20], in order to get a complete
comparison. This approach is reported right above our results
in the Tab.II.

For the first training set, composed of 15 training data
from each category, the proposed approach have similar results
to those obtained in [18] and by the active SVM. It was
expected because the initialization consists in selecting images
at random to create the first population for the GA, and the first
training samples for the SVM are extracted from this random
population.

From 30 samples per category, the MOGA process has
started. As expected, the use of MOGA helps identifying
good training samples and thus leads to better performances
than a random selection. The presented framework has an
accuracy 2% better than the random selection at 30 images
per category, almost 3% better at 45 images and more than 5%
better at 60 images. The gap between the proposed approach
and results presented in [18] increases with the number of
training samples used per category. Those results confirm
that the MOGA helps finding training data that improve the
classification performances of the SVM.

We can also see that the active learning scheme performed
worse than the random selection. This active scheme is ded-
icated to binary SVM and selects the most uncertain data as
new training samples to add them to the training set, one after
the other. Authors of [20] proved that this was the best way to
select training samples for a binary SVM. To adapt it to our
context, we added at each iteration the 15 most uncertain data
of each category to the training set. This means that we apply
this active selection strategy in a multi-class context and we
perform selection of individuals 15 by 15 instead of 1 by 1.
Obtained results show that this strategy is not good and so this
simple extension of the binary SVM active learning scheme is
not ideal. We are also doing an active learning task so we
can compare our results to those of this method. And we can
see that the selection of training samples through the MOGA

1389

improved a lot the SVM classification performances. Indeed,
the MAP gains more than 6% at 30 images per category, more
than 9% at 45 images per category and almost 13% at 60
images per category. As for the comparison with the random
selection, we can see that the gap increases with the number
of training samples used.

During the learning process, the MOGA uses the partially
learnt SVM to help guiding the search and explore relevant
areas. Each time that new data are added to the SVM training
set, the SVM performances increase. This changes part of the
MOGA fitness computation, meaning that the MOGA goals
adapt to the SVM needs. This can explain the increasing gap
between the presented framework results and other methods.

VI. CONCLUSION

This paper has introduced an innovative way to select
training data for SVM from a large set of available samples.
The method proposes to build the training set incrementally.
The training data are extracted from a GA population, which
evolves using the partially learnt classifier as part of its
evaluation process to find the best training data to add to the
training set.

When applied to the CBIR problems on the caltech-256
dataset, this method has shown promising results, providing
performances that are far more better than the classical random
sampling used in state of the art methods.

Owing to the evaluation protocol used for comparison
purposes, the MOGA is stuck to only one category. This limits
its exploratory performances. In addition, the objectives of the
MOGA were inspired by an active learning method dedicated
to binary SVM [20] because each MOGA was learning training
samples for a specific class. However, we want to increase
the global classification performances of the SVM. Therefore,
future works will focus on releasing the category constraint
on the MOGA, allowing the search of training samples in the
whole set of available training samples. This will give more
importance to the exploratory capacity of the GA. Crafting
objectives from existing active learning methods dedicated to
multi-class SVM [23] is also considered. This should highly
improve the quality of the training samples retrieved by the
MOGA. An adaptation of the MOGA evolving individuals in
the discrete space instead of the underlying continuous space
is our current on-going work. All those elements leave a big
room for improving of this promising framework.

This framework will also now be tested against larger
and harder datasets as the one from Large Scale Visual
Recognition Challenge [24]. We consider then to use pre-
trained Convolutional Neural Network features as input of our
framework instead of Improved Fisher Vectors.

VII. ACKNOWLEDGEMENT

We would like to acknowledge Florent Perronnin who kindly helped us
with the Fisher Vectors he used in [18]. This work is partly funded by French
National Agency for Research, VISIIR project, under contract number ANR-
13-CORD-0009.

REFERENCES

[1] J. Balcázar, Y. Dai, and O. Watanabe, “A random sampling technique
for training support vector machines,” in Algorithmic Learning Theory,
ser. Lecture Notes in Computer Science, 2001, vol. 2225, pp. 119–134.

[2] J. Wang, S. Kumar, and S.-F. Chang, “Semi-supervised hashing for
scalable image retrieval,” in IEEE CVPR, San Francisco, USA, 2010.

[3] J. He, W. Liu, and S.-F. Chang, “Scalable similarity search with
optimized kernel hashing,” in ACM SIGKDD Conference, Washington,
DC, USA, 2010.

[4] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning,
vol. 20, no. 3, pp. 273–297, 1995.

[5] M. Kawulok and J. Nalepa, “Support vector machines training data
selection using a genetic algorithm,” in Structural, Syntactic, and
Statistical Pattern Recognition, ser. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2012, vol. 7626, pp. 557–565.

[6] M. Arevalillo-Herráez, F. J. Ferri, and S. Moreno-Picot, “A hybrid multi-
objective optimization algorithm for content based image retrieval,”
Applied Soft Computing, vol. 13, no. 11, pp. 4358 – 4369, 2013.

[7] S. Moreno-Picot, F. Ferri, and M. Arevalillo-Herráez, “A nsga based
approach for content based image retrieval,” in Progress in Pattern
Recognition, Image Analysis, Computer Vision, and Applications, ser.
Lecture Notes in Computer Science, J. Ruiz-Shulcloper and G. San-
niti di Baja, Eds. Springer Berlin Heidelberg, 2013, vol. 8258, pp.
359–366.

[8] M. Arevalillo-Herráez, F. J. Ferri, and S. Moreno-Picot, “Distance-
based relevance feedback using a hybrid interactive genetic algorithm
for image retrieval,” Applied Soft Computing, vol. 11, no. 2, pp. 1782
– 1791, 2011.

[9] C.-C. Lai and Y.-C. Chen, “A user-oriented image retrieval system based
on interactive genetic algorithm,” Instrumentation and Measurement,
IEEE Transactions on, vol. 60, no. 10, pp. 3318 –3325, oct. 2011.

[10] T. Kanimozhi and K. Latha, “An integrated approach to region based
image retrieval using firefly algorithm and support vector machine,”
Neurocomputing, vol. 151, Part 3, no. 0, pp. 1099 – 1111, 2015.

[11] M. Broilo and F. De Natale, “Evolutionary image retrieval,” in IEEE
ICIP, Nov 2009, pp. 1845–1848.

[12] C. Coello Coello, C. Dhaenens, and L. Jourdan, “Multi-objective combi-
natorial optimization: Problematic and context,” in Advances in Multi-
Objective Nature Inspired Computing, ser. Studies in Computational
Intelligence. Springer Berlin Heidelberg, 2010, vol. 272, pp. 1–21.

[13] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: Nsga-ii,” Trans. Evol. Comp, vol. 6,
no. 2, pp. 182–197, Apr. 2002.

[14] D. Gorisse, M. Cord, and F. Precioso, “Scalable active learning strategy
for object category retrieval,” in Image Processing (ICIP), 2010 17th
IEEE International Conference on, Sept 2010, pp. 1013–1016.

[15] P. Indyk and R. Motwani, “Approximate nearest neighbors: towards
removing the curse of dimensionality,” ACM, pp. 604–613, 1998.

[16] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high
dimensions via hashing,” in International Conference on VLDB, 1999,
pp. 518–529.

[17] M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni, “Locality-sensitive
hashing scheme based on p-stable distributions,” SCG, pp. 253–262,
2004.

[18] F. Perronnin, J. Sánchez, and T. Mensink, “Improving the fisher kernel
for large-scale image classification,” in ECCV, 2010, pp. 143–156.

[19] G. Griffin, A. Holub, and P. Perona, “Caltech-256 object category
dataset,” California Institute of Technology, Tech. Rep. 7694, 2007.
[Online]. Available: http://authors.library.caltech.edu/7694

[20] S. Tong and E. Chang, “Support vector machine active learning for
image retrieval,” in ACM MM, 2001, pp. 107–118.

[21] D. White, “Software review: the ecj toolkit,” Genetic Programming and
Evolvable Machines, vol. 13, no. 1, pp. 65–67, 2012.

[22] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The weka data mining software: An update,” SIGKDD Explor.
Newsl., vol. 11, no. 1, pp. 10–18, Nov. 2009.

[23] A. Joshi, F. Porikli, and N. Papanikolopoulos, “Scalable active learning
for multiclass image classification,” IEEE Trans. on PAMI, vol. 34,
no. 11, pp. 2259–2273, Nov 2012.

[24] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “Imagenet large scale visual recognition challenge,” IJCV,
pp. 1–42, April 2015.

1390

