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Abstract—Subspace learning techniques have been
extensively used for dimensionality reduction (DR) in
many pattern classification problem domains. Recently,
Discriminant Analysis (DA) methods, which use sub-
class information for the discrimination between the
data classes, have attracted much attention. As DA
methods are strongly dependent on the underlying
distribution of the data, techniques whose functionality
is based on neighbourhood information among the
data samples have emerged. For instance, based on
the Graph Embedding (GE) framework, which is a
platform for developing novel DR methods, Marginal
Fisher Analysis (MFA) has been proposed. Although
MFA surpasses the above distribution limitations, it
fails to model potential subclass structure that might
lie within the several classes of the data. In this paper,
motivated by the need to alleviate the above shortcom-
ings, we propose a novel DR technique, called Subclass
Marginal Fisher Analysis (SMFA), which combines the
strength of subclass DA methods with the versatility
of MFA. The new method is built by extending the
GE framework so as to include subclass information.
Through a series of experiments on various real-world
datasets, it is shown that SMFA outperforms in most of
the cases the state-of-the-art demonstrating the poten-
tial of exploiting subclass neighbourhood information
in the DR process.

I. INTRODUCTION

Dimensionality reduction (DR) is an important
process for achieving efficient pattern classification.
In recent years, a variety of subspace learning algo-
rithms for DR has been developed. Locality Preserv-
ing Projections (LPP) [1], [2] and Principal Compo-
nent Analysis (PCA) [3] are two of the most popu-
lar unsupervised linear DR algorithms with a wide
range of applications. Besides, supervised methods
like Linear Discriminant Analysis (LDA) [4] have
shown superior performance in many classification
problems, since through the DR process they aim at
achieving data class discrimination.

In practice, usually there is the case that many

data clusters appear inside the same class impos-
ing the need to integrate this information in the
DR process. Along these lines, techniques such as
Clustering Discriminant Analysis (CDA) [5] and
Subclass Discriminant Analysis (SDA) [6] have been
proposed. Both of them utilize a specific objective
criterion that incorporates data subclass information
aiming to discriminate subclasses that belong to
different classes, while putting no constraints to
subclasses within the same class.

Although the above methods have proven their
potential in various classification problems, their
correct performance is highly dependent on specific
assumptions with respect to the underlying distri-
bution of the data samples [4]. Since in real-world
problems such assumptions are rarely satisfied, it is
clear that there is a need to overcome the limitations
related to the above methods. Towards this end, in
[7], the authors have presented a Graph Embedding
(GE) framework, which serves as a platform to
develop new DR methods. Using GE, they have pro-
posed Marginal Fisher Analysis (MFA), which uses
neighbourhood information among adjacent samples
within and between the classes of a dataset. The
advantage of MFA is that it models the intra-class
compactness and the inter-class separability using
vicinity information among the samples ignoring the
underlying distribution of the data classes.

Although MFA overcomes the limitations related
to class distribution, it totally defies potential struc-
ture within the classes in the form of subclasses.
Such structure is anticipated to provide DR process
with crucial information, which may allow better
discrimination of the classes. In this paper, extending
the GE framework so as to include subclass infor-
mation [8], we propose a novel Subclass Marginal
Fisher Analysis (SMFA) algorithm for supervised
dimensionality reduction. The new method combines
the modularity of subclass based methods with the
strength of MFA, as it models the margins among
classes using neighbourhood information between

2015 IEEE Symposium Series on Computational Intelligence

978-1-4799-7560-0/15 $31.00 © 2015 IEEE

DOI 10.1109/SSCI.2015.198

1391



the samples belonging to the several subclasses. This
combination enables SMFA to overcome the short-
comings stemming from the distribution constraints
of the data leading to improved classification perfor-
mance. As a matter of fact, through an experimental
comparison, it is shown that our method outperforms
a number of state-of-the-art dimensionality reduction
methods in terms of classification accuracy.

The rest of this paper is organized as follows.
A literature review of related work is presented in
Section II. The GE framework, which is employed
for developing our method is described in Section
III, while the novel SMFA method along with its
kernelization is presented in Section IV. A compar-
ison of SMFA with all the state-of-the-art subspace
methods mentioned in the Introduction is conducted
in Section V on a number of real-world datasets.
Finally, conclusions are drawn in Section VI.

II. RELATED WORK

Although LDA proves to be an effective method
in many classification problems, it encounters some
fundamental limitations. For instance, it suffers from
the small sample size problem, which occurs when
the number of the training samples is smaller than
the data dimensionality. In this case, LDA fails to
optimize its objective criterion, due to the singularity
of the involved matrices. A solution to this problem
has been provided in [9], where the authors propose
the use of the pseudo-inverse of a matrix, in order
to overcome matrix singularity. Another approach is
the utilization of PCA as a preprocessing step to
reduce data dimensionality and then, the application
of LDA, resulting to the combined PCA + LDA
method [4].

For overcoming the singularity problem, regu-
larization techniques have also been employed [10].
Moreover, in an indirect way to deal with the singu-
larity problem, a 2D-LDA method, where the data
are represented as matrices has been proposed in
[11]. As has been clearly stated in [12], an additional
problem appears when some of the smallest eigenval-
ues of the within matrix correspond to noisy features
of the data. A factorization that prunes the noisy
bases of the within matrix and a correlation-based
criterion have been proposed in [12] for solving these
problems.

Another strong limitation is that LDA postulates
that the data class samples have multivariate Gaus-
sian distribution, common covariance matrix and dif-
ferent means, for achieving the optimal discrimina-
tion in Bayesian terms [13]. In real problems though,
the class data might not be normally distributed.
Many extensions of LDA have been proposed in the

literature for circumventing these limitations [14],
[15], [16], [17]. Amongst the most effective methods
towards this end is Marginal Fisher Analysis [7]
designed based on the Graph Embedding framework.
MFA uses adjacency information among the data
samples and succeeds in overcoming the above-
mentioned distribution limitations. However, MFA
ignores information stemming from potential sub-
class structure within the data classes.

As already mentioned in the Introduction, CDA
and SDA have been proposed for exploiting subclass
structure of the data. Along the same lines, a Mixture
Subclass Discriminant Analysis (MSDA) method
that modifies the objective function of SDA has
been proposed in [18]. Moreover, the link between
MSDA and the Gaussian mixture model has been
accomplished using the Expectation-Maximization
framework. In the same work, MSDA has further
been extended in several ways so that the subclass
separation problem is solved and nonlinearly separa-
ble subclass structure has been tackled using the ker-
nel trick. In [19], a Multiple-Exemplar Discriminant
Analysis (MEDA) method is presented. The classes
are represented by some exemplar vectors. Using
these exemplars, an objective criterion is constructed.
In this vein, the subclass means can be used as
exemplars, hence exploiting the subclass structure of
the data.

Subspace learning and clustering have been
treated together into an iterative process in [20].
Intra-cluster similarity and inter-cluster separability
are enhanced using initial cluster estimation in the
subspace-learning step. Then, affinity propagation is
adopted for clustering the reduced data providing an
updated clustering estimation. In [21], the authors
combine global with local geometric structures using
a regularization technique. The singularity problem
is tackled by imposing penalty on parameters and
the optimal parameter is chosen based on a model
selection approach.

Recently, Sparse Representations have attracted
great interest in terms of data discrimination. In
this context, regularised approaches for solving the
generalised eigenvalue problem accompanying the
Fisher criterion have been proposed providing sparse
discriminant directions. For instance, in [22] a reg-
ularised method that can be applied to both matrix-
based and tensor-based discriminant techniques has
proven its potential. Moreover, the L1-norm has
also been successfully utilised in Fisher discriminant
analysis [23]. In a similar vein, in [24] two sparse
discriminant analysis methods based on L2,1-norm
penalty have been used in face recognition with in-
teresting results. Finally, sparse graph-based discrim-
inant analysis for preserving the sparse connection in
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a manifold has also been introduced [25].

For conducting nonlinear DR, the application of
the kernel trick to the linear approaches has been pro-
posed [26]. The main idea is to firstly map the data
from the initial space to a high-dimensional Hilbert
space, where they might be linearly separable and
then use a linear subspace method. This approach
results to the kernelized versions of the linear tech-
niques, that have already been developed, i.e., Kernel
Principal Component Analysis (KPCA) [27], Kernel
Clustering Discriminant Analysis (KCDA) [28], Ker-
nel Subclass Discriminant Analysis (KSDA) [29],
etc.

From the above review, it looks as though the
several limitations stemming from the data distribu-
tions or the singularity of the involved matrices have
been successfully addressed by dedicated methods.
However, there is still enough space for improvement
as the new methods introduce new limitations. For
instance, subclass-based methods postulate that the
data subclasses have Gaussian distributions, hence
translating the problem from classes to subclasses.
Moreover, although some of the above-mentioned
techniques manage to deal with such limitations and
optimally model the distributions of the training data,
the generalization ability to the test data still remains
an open challenge. To this end, as we will see in the
following sections, our method achieves surpassing
any distribution related limitations, while at the same
moment offers great generalization chances.

III. GRAPH EMBEDDING

In the GE framework [7], the set of the data
samples to be projected in a low dimensional space
is represented by two graphs, namely, the intrin-
sic Gint = {X ,Wint} and the penalty Gpen =
{X ,Wpen} graph, where X = {x1,x2, · · · ,xn} is
the set of the data samples in both graphs. Moreover,
Wint and Wpen is the intrinsic and the penalty
weight matrix, respectively. The intrinsic weight ma-
trix models the similarity connections between every
pair of data samples that have to be reinforced after
the projection. The penalty weight matrix contains
the connections between the data samples that must
be suppressed after the projection. For both of the
above matrices these connections can have negative
values. A negative value causes the opposite results,
i.e., a negative value in the intrinsic matrix means
that the corresponding data samples should diverge
and a negative value in the penalty matrix means
that the corresponding data samples should converge
after the projection.

Now, the problem of DR could be interpreted in
an alternative way. It is desirable to project the initial

data to the new low dimensional space, such that the
geometrical structure of the data is preserved. The
corresponding objective function for optimization is:

argmin
tr{YBYT }=d

J(Y) , (1)

J(Y) =
1

2
tr{
∑
q

∑
p

(yq−yp)Wint(q, p)(yq−yp)
T } ,

(2)
where Y = [y1,y2, · · · ,yn] are the projected vec-
tors, d is a constant, B is a constraint matrix defined
to remove an arbitrary scaling factor in the embed-
ding and Wint(q, p) is the value of Wint at position
(q, p). The structure of the objective function (2)
postulates that, the larger the value Wint(q, p) is,
the smaller the distance between the projections of
the data samples xq and xp has to be. By using
some simple algebraic manipulations, equation (2)
becomes:

J(Y) = tr{YLintY
T } , (3)

where Lint = Dint−Wint is the intrinsic Laplacian
matrix and Dint is the degree matrix defined as
the diagonal matrix, which has at position (q, q) the
value Dint(q, q) =

∑
p Wint(q, p).

Similarly, the Laplacian matrix Lpen = Dpen −
Wpen of the penalty graph is often used as the
constraint matrix B. Thus, the above optimization
problem becomes:

argmin
tr{YLintY

T }
tr{YLpenYT } . (4)

The optimization of the above objective function is
achieved by solving the generalized eigenproblem:

Lintv = λLpenv , (5)

keeping the eigenvectors, which correspond to the
smallest eigenvalues.

This approach leads to the optimal projection
of the training data samples. For projecting new
test samples, the linearization of the above approach
could be used [7]. If we employ y = VTx, the
objective function (2) becomes:

argmin
tr{VTXLpenXTV}=d

J(V) , (6)
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J(V) =
1

2
tr{VT

(∑
q

∑
p

(xq − xp)

Wint(q, p)(xq − xp)
T

)
V} , (7)

where X = [x1,x2, . . . ,xn]. By using simple alge-
braic manipulations, we have:

J(V) = tr{VTXLintX
TV} . (8)

Similarly to the straight approach, the optimal eigen-
vectors are given by solving the generalized eigen-
problem:

XLintX
Tv = λXLpenX

Tv . (9)

IV. SUBCLASS MARGINAL FISHER ANALYSIS

In this section, motivated by the well-known
Marginal Fisher Analysis (MFA) method presented
in [7], we propose a novel algorithm for dimen-
sionality reduction, called Subclass Marginal Fisher
Analysis (SMFA) employing the GE framework. The
new method combines the power of subclass meth-
ods with the agility of the typical MFA to overcome
the limitation of the intraclass Gaussian distribution
assumption. The intrinsic graph matrix characterizes
the intra-subclass compactness, while the penalty
graph matrix characterizes the inter-class separabil-
ity. Both graph matrices are built using neighbouring
information of the graph nodes. More specifically,
based on the graph embedding formulation presented
in Section III, the intrinsic graph matrix is defined
as:

Wint(p, q)=

{
1, if p∈Nkint(q) or q∈Nkint(p)
0, otherwise

,

(10)
where Nkint

(q) denotes the index set of the kint
nearest neighbours of the q-th sample in the same
subclass. The penalty graph matrix is defined as:

Wpen(p, q)=

{
1, if p∈Mkpen

(q) or q∈Mkpen
(p)

0, otherwise
,

(11)
where Mkpen

(q) denotes the set of samples that
belong to the kpen nearest neighbours of q outside
the class of q. It is worth noting that in contrast to
the intrinsic graph matrix, the values of the penalty
graph matrix depend on the class information regard-
less of the subclass labels. In this way we avoid to
put constraints between subclasses belonging to the
same class offering better generalization chances.

The proposed SMFA algorithm inherits all the
advantages of the typical MFA method. More specif-
ically, there is no assumption on the data distribution,
since the intra-subclass compactness is encoded by
the nearest neighbours of the data belonging to
the same subclass and the inter-class separability
is modelled using the margins among the classes.
Moreover, the functionality of SMFA is based on two
parameters, i.e., kint and kpen, which appropriately
adjusted may lead to avoiding potential overfitting,
therefore offering huge generalization power to the
method. Also, the available projection dimension-
ality using SMFA is determined by kpen, which
almost always is much larger than that of LDA, CDA
and SDA. Finally, SMFA is capable of leveraging
potential subclass structure of the data, which in
many cases may boost its performance. In Section V,
the superiority of SMFA over a number of previously
presented state-of-the-art DR methods in terms of
classification accuracy is demonstrated through a
series of experiments.

A. Kernel Subclass Marginal Fisher Analysis

In this section, the kernelization of SMFA
(KSMFA) is presented. Kernels are widely used
in classification problems, where the data are not
linearly separable and in unsupervised learning when
the data lie on a nonlinear manifold. Let us denote by
X the initial data space, by F a Hilbert space and by
f the non-linear mapping function from X to F . The
main idea is to firstly map the original data from the
initial space into another high-dimensional Hilbert
space and then perform linear subspace analysis in
that space. If we denote by mF the dimensionality
of the Hilbert space, then the above procedure is
described as:

X �xq→yq=f(xq)=

( ∑n
p=1 a1pk(xq,xp)

...∑n
p=1 amFpk(xq,xp)

)
∈F ,

(12)
where k is the kernel function. From the above
equation it is obvious that

Y = ATK , (13)

where K is the Gram matrix, which has at position
(q, p) the value Kqp = k(xq,xp) and

A = [a1 · · ·amF ] =

⎛
⎜⎝

a11 · · · amF1

...
. . .

...
a1n · · · amFn

⎞
⎟⎠ (14)

is the map coefficient matrix. Consequently, the final
KSMFA optimization becomes:

argmin
tr{ATKLintKA}
tr{ATKLpenKA} , (15)
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where Lint = Dint −Wint and Lpen = Dpen −
Wpen and Wint, Wpen are those defined in eq. 10
and 11, respectively. Similarly to the linear case, in
order to find the optimal projections, we resolve the
generalized eigenproblem:

KLintKa = λKLpenKa , (16)

keeping the eigenvectors that correspond to the
smallest eigenvalues.

B. Subclass Extraction

From the above discussion, the need for effi-
cient data clustering, is evident. A variety of clus-
tering methods has been proposed in the litera-
ture. Techniques such as K-means and Expectation-
Maximization (EM) [30] have been used for ex-
tracting clusters in a database. It is well-known that
there is no method that consistently outperforms the
others.

A relatively new technique relying on spectral
graph theory [31], called Spectral Clustering (SC),
has also been proposed for data clustering. It has
been shown that SC often outperforms traditional
clustering algorithms such as K-Means [32]. How-
ever, the use of this method has certain limitations,
described in [33]. SC can be used for the estimation
of the correct number of subclasses within each
class [32]. Another potential advantage of SC is
that it uses the Gram matrix, which is also used
by KSMFA. Therefore, when combining SC with
KSMFA, the Gram matrix has to be calculated once,
hence reducing the computational load. In this paper,
a multiscale Spectral Clustering (MSC) approach,
proposed in [34] has been used, in order to extract
clusters within each class of the data at different
scales.

V. EXPERIMENTAL RESULTS

We conducted classification experiments on sev-
eral real-world datasets using LPP, PCA, LDA,
MFA, CDA, SDA and SMFA along with their ker-
nel counterparts. For validating the performance of
the algorithms, the 5-fold cross-validation proce-
dure has been used. For extracting automatically
the subclass structure, we have utilized the MSC
technique [34], keeping the most plausible clustering
for each dataset. For classifying the data, the Nearest
Centroid (NC) classifier has been used with LPP,
PCA LDA and MFA algorithms, while the Nearest
Cluster Centroid (NCC) [35] has been used with
CDA, SDA and SMFA algorithms. In NCC, the
cluster centroids are calculated and the test sample is
assigned to the class of the nearest cluster centroid.
NC and NCC were selected because they provide the

optimal classification solutions in Bayesian terms,
thus proving whether the DR methods have reached
the goal described by their specific criterion.

In the following paragraphs, we briefly present
the datasets that have been used along with the
performance rates of the various subspace learning
methods.

A. Classification experiments

For the classification experiments, we have used
diverse publicly available datasets offered for vari-
ous classification problems. More specifically, FER-
AIIA, BU, JAFFE and KANADE were used for
facial expression recognition, XM2VTS for face
frontal view recognition, while MNIST and SE-
MEION for optical digit recognition. Finally, IONO-
SPHERE, MONK and PIMA were used in order to
further extend our experimental study to diverse data
classification problems.

In our experiments, for performing DR we have
used both the linear and the RBF kernel approach.
The maximal dimensionality of the reduced space is
determined by the rank of the corresponding matri-
ces utilized by the discriminant analysis methods.
Moreover, LPP is a parametric method regarding
the variance of Gaussian similarity function, when
constructing the affinity matrix. Thus, looking for
the optimal variance, in order to achieve the best
classification results, makes the comparison very
complex. In this paper, for the sake of simplicity
and relying on some empirical studies of ours, this
parameter was allowed to take values in the range
[0.1 · Ê(dij), 2.0 · Ê(dij)], with step 0.1 · Ê(dij),
where Ê denotes the sample mean and dij is the
Euclidean distance between i, j samples.

The cross-validation classification accuracy rates
for the several subspace learning methods over the
utilized datasets, are summarized in Tables I and II
for the linear and the kernel methods, respectively.
The optimal dimensionality of the projected space
that returned the above results is depicted in paren-
thesis. For each dataset, the best performance rate
among linear and kernel methods separately is high-
lighted with bold, while the best overall performance
rate among all methods, both linear and kernel, is
surrounded by a rectangle.

For ranking the methods in terms of classifi-
cation performance we further conducted a post-
hoc Bonferroni test [36] for each pair of methods.
The performance of pairwise methods is significantly
different, if the corresponding average ranks differ

by at least the critical difference CD = qα

√
j(j+1)

6T
[37], where j is the number of methods compared,
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TABLE I: Classification Accuracies (%) of Linear Methods on Several Real-World Datasets

DATASET LPP PCA LDA MFA CDA SDA SMFA

FER-AIIA 40.9(3) 31.0(120) 64.6(6) 72.6(10) 73.2 75.5(11) 72.6(12)

BU 39.4(298) 38.1(49) 51.6(6) 52.4(6) 49.1(16) 52.3(15) 49.3(11)

JAFFE 46.8(18) 37.6(39) 53.2(6) 61.5(14) 40.0(15) 54.1(6) 44.9(20)

KANADE 34.2(92) 43.3(46) 67.1(6) 66.3(19) 59.7(7) 67.1(5) 63.8(9)

MNIST 71.1(259) 79.9(135) 84.6(9) 82.8(38) 84.8(15) 85.1(14) 85.3(40)
SEMEION 53.6(99) 83.2(55) 88.2(9) 86.9(8) 89.2(19) 89.4(19) 87.5(10)

XM2VTS 95.7(54) 92.0(86) 70.5(1) 97.7(4) 98.1(3) 97.4(2) 98.4(4)
IONOSPHERE 84.6(23) 72.3(15) 78.9(1) 76.0(12) 80.6(2) 83.4(2) 84.3(26)

MONK 1 66.7(3) 68.3(5) 50.8(1) 71.7(2) 70.0(4) 74.2(3) 78.3(2)
MONK 2 56.0(1) 53.3(4) 52.0(1) 58.7(2) 54.2(1) 54.0(2) 60.7(1)
MONK 3 77.2(5) 80.9(4) 49.4(1) 81.6(1) 74.6(2) 66.3(2) 86.1(5)
PIMA 61.8(1) 63.5(6) 56.5(1) 74.4(1) 60.5(3) 73.5(3) 74.9(1)
SPECIFIC RANK 5.1 5.8 5.0 3.0 4.0 2.7 2.3

OVERALL RANK 9.0 9.8 8.5 5.0 6.6 5.0 4.0

TABLE II: Classification Accuracies (%) of Kernel Methods on Several Real-World Datasets

DATASET KLPP KPCA KDA KMFA KCDA KSDA KSMFA

FER-AIIA 50.2(252) 41.5(29) 54.9(6) 61.3(9) 56.1(12) 53.5(12) 56.7(39)

BU 52.7(317) 35.9(290) 46.6(6) 44.4(29) 41.0(13) 48.0(14) 39.9(18)

JAFFE 28.8(98) 25.9(58) 42.4(6) 47.8(6) 36.1(18) 46.3(5) 34.1(13)

KANADE 32.7(99) 33.2(88) 44.3(6) 46.6(6) 40.0(6) 38.5(6) 45.8(7)

MNIST 81.4(299) 64.5(155) 86.0(9) 86.4(21) 83.4(19) 85.2(15) 86.7(34)
SEMEION 83.8(99) 77.4(77) 95.3(9) 90.0(11) 94.1(19) 95.9(19) 94.9(20)

XM2VTS 71.3(297) 74.7(56) 61.3(1) 78.7(31) 71.5(3) 57.3(4) 81.2(4)
IONOSPHERE 83.7(23) 70.3(2) 92.9(1) 92.3(1) 93.1(1) 92.9(1) 92.6(1)

MONK 1 63.3(2) 72.5(1) 55.8(1) 60.0(1) 58.3(4) 61.7(3) 70.8(4)

MONK 2 54.8(1) 59.8(3) 69.7(1) 70.8(2) 78.7(1) 54.5(1) 79.7(2)
MONK 3 62.5(2) 79.2(5) 51.7(1) 79.2(2) 67.5(2) 58.3(1) 73.3(2)

PIMA 50.7(3) 67.5(4) 48.9(1) 54.0(3) 52.5(3) 52.9(1) 56.2(3)

SPECIFIC RANK 5.3 5.0 4.3 2.8 3.9 4.1 2.6

OVERALL RANK 10.2 10.0 8.1 6.3 8.2 8.3 6.1

T is the number of data sets and critical values qα
can be found in [38]. In our comparisons we set
α = 0.05. The ranking has been performed including
both linear and kernel methods in the comparison, as
well as separately for the linear and kernel methods.
The classification performance rank of each method
is referred to in the last two rows of Tables I and II.
Specific Rank denotes the method rank for the linear
and the kernel methods, independently. Overall rank
refers to the rank of each method among both the
linear and the kernel methods.

The ranking results are also illustrated in Fig.
1 left and right, for the linear and kernel methods,
respectively. The vertical axis in both figures depicts
the various methods, while the horizontal axis de-
picts the performance ranking. The circles indicate
the mean rank and the intervals around them indicate
the confidence interval as this is determined by the
CD value. Overlapping intervals between two meth-
ods indicate that there is not a statistically significant
difference between the corresponding ranks.

The first remark from Tables I, II and Fig. 1 is
that SMFA and KSMFA outperform the rest methods

in the linear and kernel case, respectively. Although
their superiority is not statistically significant over all
remaining methods, undoubtedly these two methods
offer a strong potential to improve the performance
of the state-of-the-art in many classification domains.
In addition, it is interesting to observe the robustness
of SMFA and MFA along with their kernel counter-
parts across the datasets. This observation combined
with the fact that both these methods rely on the
same motivations shows the advantage gained by en-
coding the data distributions using neighbouring in-
formation between the samples towards overcoming
the several limitations previously presented in this
paper, offering at the same time great generalization
chances.

As a general remark, the superiority of subclass
methods against unimodal ones is evident, with MFA
and KMFA being vivid exceptions. The top overall
performance is shown by SMFA followed by SDA
and MFA, while the worst performance is shown
by KLPP. More specifically, on the one hand, SDA,
MFA and KMFA display on average the best per-
formance in facial expression recognition problems.
On the other hand, in optical digit recognition, face
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SDA
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PCA

LPP

Rank
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KSMFA

KSDA

KCDA

KMFA

KDA

KPCA

KLPP

Rank

Fig. 1: Ranking of Various Methods After Pairwise Post-Hoc Bonferroni Tests on Real Data. (Left: Linear
Methods, Right: Kernel Methods)

frontal view recognition and the remaining classifi-
cation problems, SMFA and KSMFA clearly have on
average the optimal performance.

In comparing linear with kernel methods, a sim-
ple calculation yields mean overall rank equal to 6.84
for the linear methods and 8.17 for the kernel ones.
Although the difference between the two approaches
(i.e., linear and kernel) is significant, we must admit
that there is ample space for improving the kernel
results by varying the RBF parameter, as the selec-
tion of this parameter is not trivial and may easily
lead to over-fitting. Actually, the top performance
rates presented in this paper have been obtained by
testing indicative values of the above parameter. As
a matter of fact, it is interesting to observe that
the use of kernels proves to be beneficial for some
methods in certain datasets, while deteriorates the
performance of others. For instance, from Tables I
and II, the use of kernels boosts the performance
of PCA in three out of the four last datasets (i.e.,
MONK 1, MONK 3 and PIMA), while this is not
the case for example in XM2VTS. There are two
main reasons for this. Firstly, while some datasets
contain linearly separable classes, others may require
some kernel to obtain this linearity. The second
reason is that in our experiments, for relaxing the
computational complexity, we have used the same
kernel values per dataset across all methods and there
is no fact advocating that the same value constitutes
the optimal parameter for each method.

VI. CONCLUSIONS

The main contribution of this paper is a novel
Subclass Marginal Fisher Analysis (SMFA) dimen-
sionality reduction method. The functionality of

SMFA is based on adjacency information of data
samples within the same subclass as well as the
proximity of “marginal” samples belonging to differ-
ent classes. In this way, the new method combines
the flexibility of neighbourhood modelling methods,
like MFA, with the modularity offered by subclass
information towards overcoming inherent limitations
stemming from the data distributions, offering at the
same moment great generalization chances.

Through an extensive experimental study, it has
been shown that SMFA outperforms a number of
state-of-the-art subspace learning methods in many
real-world datasets pertaining to various classifica-
tion domains. Similar remarks could also be drawn
for KSMFA. Moreover, as a general remark, it could
be stated that subclass-based methods exhibit supe-
rior performance against unimodal ones, in terms
of classification accuracy, proving the potential of
including subclass information in the dimensionality
reduction process.

Although the performance of the proposed
method is impressive, there is yet space for ex-
ploring new methods employing the Graph Embed-
ding framework, either by designing completely new
methods or by modifying SMFA. Experimenting on
this direction is encompassed in our future plans.
Moreover, in order to reinforce even more the out-
comes of this paper and to provide more credibility
to SMFA, in the near future we intend to extend
our current experimental study to more datasets from
additional classification domains.
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