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Abstract—Accurate and computationally efficient means for
classifying human activities have been the subject of extensive
research efforts. Most current research focuses on extracting
complex features to achieve high classification accuracy. We
propose a template selection approach based on Dynamic Time
Warping, such that complex feature extraction and domain
knowledge is avoided. We demonstrate the predictive capability
of the algorithm on both simulated and real smartphone data.

I. INTRODUCTION

Wearable sensors have widespread applications in aca-
demic, industrial and medical fields. Examples of some current
uses are fall detection in medical or home settings [1], and Hu-
man Activity Recognition (HAR) for smart health-monitoring
systems [2].

A substantial amount of research has been done with
professional on-body wearable sensors. However, these devices
are usually large, impractical or inconvenient for general
commercial purposes. One viable alternative is smartphone
sensors. Smartphones are equipped with accelerometers and
gyroscopes, which provide rich motion data on their users.
Although these sensors are less accurate than professional
ones, the prevalence and convenience of smartphones suggests
their potential for far-reaching applications. Possible benefits
include a decreased need for human supervision in medical set-
tings, more complex human-machine interaction, and complex
activity recognition on smartphone applications.

Our objective is an offline implementation of smartphone
motion data classification that has comparable classification
accuracy and computational efficiency with current techniques,
and does not require domain knowledge of HAR.

In this paper, we propose a method based on Dynamic
Time Warping (DTW). DTW has recently been widely used
and integrated with other methods such as decision trees [3] in
machine learning. Although DTW suffers from high computa-
tional costs and Dynamic Time Warping Distance (DTWD) is
not a distance metric because it lacks the triangle inequality,
DTW still has the potential to be a feasible answer to the
above task by providing a flexible, easily interpretable time
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series similarity measure. By modifying DTW to improve on
computational efficiency and similarity measure accuracy, we
proceed to use it for motion data clustering, activity template
construction and classification for our problem. Each template
is the time series average representing a cluster. It has the
benefit of providing visual representations of a human activity
and does not require HAR knowledge for construction.

As such, the primary contributions of this paper are:

1) Modification of DTW as a similarity measure for time
series,

2) Procedure for template extraction in place of feature
extraction.

Our implementation enhances the quality of prediction,
avoids high dimensionality, and is robust to noise. For demon-
stration, we use real human activity data, as well as synthetic
data constructed from human activity data.

In Section II, we proceed by discussing existing meth-
ods for classifying human activities using feature extraction,
hierarchical divide-and-conquer strategies, and multi-modal-
sequence classification. Section III formally defines Dynamic
Time Warping and Section IV describes our proposed modifi-
cations to increase prediction accuracy. Section V discusses our
template selection and classification approach which utilizes
the modified DTW. In Sections VI and VII, we apply our
algorithm to both real world data and synthetic data. Finally,
in Section VIII and onwards, we compare the results of our
algorithm with existing algorithms, and conclude.

II. RELATED WORK

Considerable work has been done on classifying human
activities. We consolidate works on both professional on-body
sensors and smartphone sensors, while taking note that data
from the latter may need different pre-processing steps due
to higher noise tendencies. Furthermore, on-body sensors can
be placed at more assigned locations on the body such as
arms and ankles, and may include more components such as
magnetometer [1].

An essential step in many papers is feature extraction. Pop-
ular features for such tasks include mean, standard deviation,
maximum, peak-to-peak, root-mean-square, and correlation
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between values of modality axes [4]. Another suggested option
is using autoregressive modeling to form augmented-feature
vectors [5].

Following feature extraction, algorithms used for classi-
fication include Hidden Markov Models [2], Support Vector
Machines [4], Multi-layer Perceptron, Naive Bayes, Bayesian
Network, Decision Table, Best-First Tree, and K-star [6].
Although the strategy can increase classification accuracy, it
requires manual grouping of the activities into meaningful
categories. Comparative study across these algorithms has also
been done [7].

While feature extraction is quite popular in HAR for
achieving high accuracy rates, there are a few problems with
feature extraction. First, it is dependent on domain expertise
as achieving high accuracy through feature extraction is only
possible with the correct features. Second, feature extraction
is prone to high dimensionality as a large number of features
are needed. Finally computing some of these features such as
autoregression coefficients can be computationally intensive.

Current DTW methods on HAR involve aligning human
behavior in video data [8]. These methods use a generalized
time warping mechanism to extend DTW to aligning multi-
modal sequences [9]. While our proposed method discussed in
Section IV uses DTW, we recognize that we cannot translate
these methods directly for our approach since the data modality
is different, and sequences extracted from video data may have
different properties from raw sensor readings.

III. DEFINITIONS

In this section, we state our definition and assumptions of
time series. We also introduce DTW.

A. Time Series

A p-dimensional multivariate time series
Xi = {Xi(tl) ∈ R

p; l = 1, . . . ,m} is a sequence of data
points where:

1) tl < tl′ for l < l′,

2) tl ∈ T = [a, b], ∀l = 1, . . . ,m,

3) Xi(t) ∈ R
p, ∀t ∈ T .

We assume our training and test data are time series
satisfying the assumptions above, with the additional condition
that Δti = ti−ti−1 = b−a

m−1 . We assume that all series have the
same length as observed in most data sets, but the following
DTW algorithms can be easily extended to the alternate case.

In the rest of this paper, we will refer to the length of a
time series as m and the dimension of each point in the time
series as p.

B. Dynamic Time Warping (DTW)

DTW is an algorithm for computing the distance and
alignment between two time series. It is used in applications
such as speech recognition, and video activity recognition [8].

Definition 3.1: [10] A warping path is a sequence w =
(w1, . . . , w|w|) where for k ∈ {1, . . . , |w|}, wk = (pk, qk)
with pk, qk ∈ {1, . . .m}, satisfying the following conditions:

1) Boundary condition: w1 = (1, 1), w|w| = (m,m)

2) Monotonicity condition: {pk}|w|k=1, {qk}|w|k=1 are
monotonously non-decreasing sequences

3) Continuity condition:
wk+1 − wk ∈ {(1, 0), (0, 1), (1, 1)}
for k ∈ {1, . . . , |w| − 1}

For simplicity, we write w = (p, q) as a path in accordance
with Definition 3.1

Definition 3.2: For time series Xi and Xj with distance
matrix D as calculated in Algorithm 1, for a path w = (p, q),
we define the cost c as:

c(w) =

|w|∑
k=1

D[pk, qk]

Definition 3.3: The Dynamic Time Warping Distance
(DTWD) is the sum of the pointwise distances along the
optimal path w∗, for the cost function defined in Definition
3.2.

w∗ = argmin
w

c(w), DTWD (Xi, Xj) = c(w∗) = D[m,m].

DTW can be optimized through a bandwidth parameter bw,
where it computes only values of the matrix close to the diago-
nal. This version of DTW is called FastDTW [11]. Algorithm
1 denotes the procedure to compute DTWD(Xi, Xj ; bw). A
small bandwidth should be employed if the two time series
demonstrate the same shape and frequency, since a smaller
bandwidth brings the computational time closer to O(m).

Data: time series Xi, Xj , bandwidth bw
Result: DTWD(Xi, Xj ; bw)
Initialize distance matrix D = 0m×m

D[1, 1] = |Xi(1)−Xj(1)| for s ∈ {2, . . . ,m} do
D[s, 1] = D[1, s] =∞

end
for s ∈ {2, . . . ,m} do

for t ∈ {max(2, s− bw),min(m, s+ bw)} do
cost=min (D[s− 1, t], D[s, t− 1], D[s− 1, t− 1])

D[s, t] = |Xi (s)−Xj (t)|+ cost

end
end
return D[m,m]

Algorithm 1: Fast DTW

One time series Xj can be aligned to another Xi by using
the optimal path defined in Definition 3.3. The basic concept of
DTW alignment is illustrated in Figure 1. DTW first creates a
matrix D of pointwise distances depicted as a black and white
grid in the image on the right. The algorithm then runs through
D from the first index (bottom left) to the last index (top right),
enumerates all paths w, and finds an optimal warping path w∗
as specified in Definition 3.3. The optimal warping path is
shown as the darkened line in the image on the right, and the
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alignment between the two series is shown in the image on
the left. The algorithm also returns the sum of the pointwise
distances along the optimal path [12].

Fig. 1: DTW image from [12] showing the alignment proce-
dure. The two original time series shown on the left (dotted)
and bottom (solid) of the image on the right are shown aligned
on the left image according to the optimal path shown as the
dark black line on the right.

Algorithm 2 is used to align two time series. The algorithm
first computes all paths from the distance matrix D, obtains the
optimal path, and updates Xj according to that path.

Data: time series Xi, Xj , distance matrix D
Result: time series Xj aligned to Xi

for s ∈ {2, . . . ,m} do
for t ∈ {max(2, s− bw),min(m, s+ bw)} do

if D[s][t− 1] ≤ D[s− 1][t] and D[s][t− 1] ≤
D[s− 1][t− 1] then

path[s][t] = (s, t− 1)
end
if D[s− 1][t] ≤ D[s− 1][t− 1] then

path[s][t] = (s− 1, t)
else

path[s][t] = (s− 1, t− 1)
end

end
end
w∗ = {}
for s ∈ {1, . . .m}, t ∈ {1, . . .m} do

w∗ = w∗ ∪
{
argmin

s,t
path[s][t]

}

end
for p ∈ w∗ do

Xj (p[0]) = Xj (p[1])
end
return Xj

Algorithm 2: Alignment Algorithm using DTWD

IV. SUBSEQUENCE DTW (DTWSUBSEQ)

An apparent drawback of DTWD is the overstatement of
the dissimilarity between two copies of a time series when
one copy is horizontally displaced. DTW cannot match the
ends of the two copies without incurring a cost. For instance,
a sine curve and cosine curve can be obtained from the same
sinusoidal function due to sampling from a long series, but
DTWD returns a positive value. This limits the functionality
of DTWD as a similarity measure.

To alleviate this, we propose a modification to DTW
based on subsequence matching [13]. We relax the boundary
condition that the optimal path must start at the bottom left

D[1, 1] and end at the top right D[m,m] of the distance matrix
D.

Computing all possible paths is computational expensive.
To induce computational savings, we introduce a displacement
window parameter dw, which is the maximum horizontal
displacement of the samples. We restrict our search to paths
that start and end within the window defined by dw. This
parameter can be empirically estimated through the distribution
of a common landmark in the data. For periodic data, the
natural displacement window is the period.

We view similar time series as those having similar shape
and frequency. Therefore, at each displacement k, we truncate
both input series, Xi and Xj , to the same length. To obtain a
distance with respect to the original length, for the truncated
series, Xk

i and Xk
j , the resulting DTWD

(
Xk

i , X
k
j

)
is weighed

proportionately to their length by

DTWDk (Xi, Xj) =
m

m− k + 1
DTWD

(
Xk

i , X
k
j

)

DTWsubseq, displayed below in Algorithm 3, is further
optimized by imposing a bandwidth as in Fast DTW.

Data: time series Xi, Xj , displacement window dw,
bandwidth bw

Result: DTWsubseqD(Xi, Xj ; dw, bw)
Initialize optD =∞
for k ∈ {1, . . . , dw} do

Xk
i = Xi[k : m]

Xk
j = Xj [1 : m− k + 1]

Dk = DTWDk (Xi, Xj ; bw)
if Dk < optD then

optD = Dk

end
end
return optD

Algorithm 3: Fast DTWsubseq

V. TEMPLATE SELECTION AND CLASSIFICATION

A. Overview

As discussed in Section II, the standard approach to HAR
classification first extracts features from the motion data time
series, then classifies using these features with well-established
algorithms. Working with the raw data in the time domain is
preferable if it is sufficiently capable of capturing information
about the data. We propose a method based on DTWsubseq
and hierarchical clustering, which avoids intensive feature
extraction, and can alleviate many of the problems with feature
extraction discussed in Section II.

Our approach to classification is to use the training data
to build time series templates representing each activity, and
subsequently classify the test data according to their similarity
to these templates using DTWsubseqD. This type of template-
based method is robust to speed and style variations of the
subjects’ motions, and potentially requires less training data
than feature-based methods [8].

Before giving details of how to construct templates, we
present a general diagram of the full classification procedure
illustrated in Figure 2.
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Fig. 2: Breakdown of the template selection and classification
method

B. Cluster

For each activity, we use the training set to build clusters.
There are two main parts of the clustering step:

1) Computing the distance matrix by finding the
DTWsubseqD between all pairs of points in each
activity,

2) Forming clusters in hierarchical clustering by calcu-
lating distance between two clusters Ci and Cj is
calculated as

d(Ci, Cj) = max
s∈Ci,t∈Cj

DTWsubseqD(s, t),

and removing flat clusters by restricting pairwise
distances within a cluster to be below

cut× max
Ci,Cj

d(Ci, Cj).

We use hierarchical clustering as our clustering algorithm
because of its flexibility in being able to perform with any
similarity measure. Decreasing the parameter cut increases
the number of clusters for each activity. We show results for
different values of cut in Section VII.

C. Build Templates

After computing clusters for each activity, we compute the
average of a set of time series. We consider two methods
for selecting templates: DTW Pointwise Averaging (DPA) and
DTW Barycenter Averaging (DBA).

We provide the algorithm for DPA in Algorithm 4 and brief
descriptions of DBA.

DPA is a straightforward method for computing the average
of a set of time series. The algorithm first finds the point with
minimum distance to all other time series, aligns each time
series to that point, and finally calculates a pointwise average.

DBA is a global method that calculates an average series
that minimizes the sum of squared DTW distances to all series
in the cluster. In each iteration of the algorithm,

1) Conduct DTW between the average series and each
series in the cluster, and extract associations between
the coordinates of the pair.

2) For each coordinate α of the average series, update
the corresponding value as the mean corresponding
to all coordinates associated with α.

Data: Clusters C1, . . . , Cn

Result: Templates T1, . . . , Tn

for i ∈ {1, . . . , n} do
t∗ = min

t

∑
x∈Ci

DTWsubseqD (x, t)

for x ∈ Ci do
align(t∗, x)
Ti = ‖Ci‖−1

∑
x∈Ci

x

end
end
return T1, . . . , Tn

Algorithm 4: DTW Pointwise Averaging

Details of the DBA algorithm can be found in [14]. DBA
is more computationally intensive than DPA, but DBA has
been shown to improve classification accuracy in centroid-
based methods [15], and hence is included for comparison.

In the aligning and averaging portions of both algorithms,
we used DTW instead of DTWsubseq because DTW would
return similar warping paths while maintaining the length of
the input series.

D. Classify

For each training and test sample, we first compute
DTWsubseqD to each template. This provides a vector of
distances, which is the same size as the number of templates,
for each sample. We treat this vector of distances as a feature
vector, and proceed by running a dimensionality reduction
algorithm (such as PCA) and a classifier (such as SVM) on
the DTWsubseqD vectors.

VI. REAL WORLD DATA AND SIMULATIONS

A. UCI HAR Data

The dataset contains a total of 10,299 samples from 30
subjects conducting six activities in a lab: 3 dynamic activities
(walking, walking upstairs, walking downstairs) and 3 static
activities (sitting, standing, lying). We used 7,352 samples for
training, and the remaining 2,947 samples for testing.

Each reading (time series) is six dimensional with dimen-
sions corresponding to acceleration (in ms−2), and angular ve-
locity (in s−1) in the x-y-z axis. The range for the acceleration
is [−1, 1] and the range for angular velocity is [−3, 3].

This data set is already preprocessed as provided by
applying noise filters and then sampled in fixed-width sliding
windows of 2.56 sec and 50% overlap (128 readings/window)
[16]. Figure 3 depicts some curves after preprocessing.

Due to the method of sampling, many of the resulting short-
ened curves in the static activity category are flat curves with
no activity, and mis-informative for classification. Since these
flat curves provide no additional information, we have removed
them. A multidimensional time series will be considered as a
flat curve if all of its dimensions are flat. A dimension of the
time series is flat if its range (maximum value - minimal value)
falls within the 5% quantile of all ranges of that dimension
across all time series. Figure 4 depicts some curves which
have been removed.
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Dynamic Activities Acceleration Dynamic Activities Angular Velocity

Static Activities Acceleration Static Activities Angular Velocity

Fig. 3: A sample of pre-processed curves from the UCI HAR
dataset. Each figure contains 3 plots corresponding to the
x,y, and z axis (top to bottom). The top pair of plot has 3
curves corresponding to the dynamic activities: walking (blue),
walking upstairs (green), walking downstairs (red), and the
bottom pair of plots has 3 curves corresponding to the static
activities: sitting (blue), standing (green), lying (red).

Activity 3 Acceleration Activity 3 Angular Velocity

Fig. 4: A sample of flat curves removed from the UCI
dataset from the sitting activity. Each figure contains 3 plots
corresponding to the x,y, and z axis (top to bottom).

B. Synthetic Data

This dataset is created to test the ability of our proposed
method to classify time series belonging to new subjects, in
the event of noise that may be present in this type of usage
of smartphone sensors. In the simulation, we consider short
bursts of noise in the observations, due to reasons such as
jerky motions, sudden shifts of the sensor, and sensor noise.

Training data is generated from one dimension (Accx, Ac-
celeration in the x-axis) of a random template, computed from
the UCI HAR dataset, from each of the following activities:
walking, walking upstairs, walking downstairs, sitting. This
can be taken to represent the motion of one subject. Test data
is generated from a different random template for each activity,
to simulate motions from a different subject.

The training set has a total of 800 samples, 200 for each
activity. The test set has 200 samples, 50 for each activity. Each
sample is created from the template in the following manner:

Training Sample for Walking Test Sample for Walking

Fig. 5: Training and Test Samples from the Synthetic Dataset
for Walking

1) Accx of the template is extracted and normalized to
zero mean and unit variance

2) Concatenate the template to length 256
3) Perform FFT on the resulting series
4) Generate a normally distributed N (0, 5) random vec-

tor of length 10 and add it to a random location of
the FFT

5) Perform IFFT and retrieve the real part of the result
6) Sample a series of length 128

Figure 5 contains two plots corresponding to training and
test samples for the same activity. Two curves are plotted to
show the effects of adding noise. Each reading (time series) is
a one dimensional acceleration (in ms−2). The range for the
acceleration is [−4, 4].

VII. RESULTS

In this section, we present the results on the UCI HAR
dataset and synthetic data.

We examine templates generated by our method, and addi-
tionally study the benefit obtained from using different values
of the cut parameter in the clustering stage. We plot templates
corresponding to different clusters in the same activity to
demonstrate the performance of our clustering and template
construction methods. Templates are shown in Figure 6 and
7 for both DBA and DPA for the UCI dataset, and synthetic
dataset.

Classification accuracy is presented in Tables I and II.
Each table shows the accuracy for all four combinations of
distance method (DTW, DTWsubseq) and averaging method
(DPA, DBA), and two different values of the cut parameter
(0.25, 0.5).

cut DTWsubseq with DPA DTWsubseq with DBA

0.5 0.789 (0.946) 0.777 (0.941)
0.25 0.838 (0.974) 0.855 (0.977)

cut DTW with DPA DTW with DBA

0.5 0.781 (0.943) 0.797 (0.937)
0.25 0.841 (0.966) 0.860 (0.977)

TABLE I: Test Accuracy for DTW and DTWsubseq UCI
HAR Dataset. Numbers in parentheses are the accuracies after
combining all static activities into one activity.
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DBA Cluster 1 Acceleration DBA Cluster 1 Angular Velocity

DPA Cluster 1 Acceleration DPA Cluster 1 Angular Velocity

DBA Cluster 2 Acceleration DBA Cluster 2 Angular Velocity

DPA Cluster 2 Acceleration DPA Cluster 2 Angular Velocity

Fig. 6: UCI HAR Data: Plots for templates constructed from
two clusters for walking. Both DBA and DPA are shown for
comparison. Each figure contains 3 plots corresponding to the
x,y, and z axis (top to bottom).

cut DTWsubseq with DPA DTWsubseq with DBA

0.5 0.650 0.640
0.25 0.700 0.655

cut DTW with DPA DTW with DBA

0.5 0.615 0.620
0.25 0.615 0.580

TABLE II: Test Accuracy for DTW and DTWsubseq Synthetic
Dataset.

VIII. DISCUSSION

A. Comparison with Feature Extraction

We benchmark our procedure against standard feature
extraction methods. We computed 568 features using mean,

DBA Cluster 1 DBA Cluster 2

DPA Cluster 1 DPA Cluster 2

Fig. 7: Synthetic Data: Plots for templates constructed from
two clusters for walking Accx. Both DBA and DPA are shown
for comparison.

standard deviation, correlation, RMSE from [4], Energy [17],
average absolute difference [18], largest 5 FFT magnitudes,
autocorrelation, kurtosis, skew from [7], autoregression coef-
ficients [5], and number of zeros for the original time series,
and first difference time series. We also computed the mean,
standard deviation, kurtosis, and skew for the magnitudes of
the FFT [16].

We performed standard classification on these features
using PCA for dimensionality reduction and linear SVM as
a classifier (same as in Section V-D). The results for classifi-
cation on both synthetic data and the UCI dataset are shown
in Table III.

UCI Feature Synthetic Feature

0.890 (0.965) 0.67

TABLE III: Accuracy using Feature Extraction. Number in
parentheses is the accuracy after combining all static activities
into one activity.

Before comparing accuracy, we comment on a few ad-
vantages our method has over feature extraction. First, our
methods have the natural advantage that no domain knowledge
is required, compared to the importance of extracting the
correct features. In order to achieve high accuracy using feature
extraction, a large number of features need to be extracted
(over 500). To achieve comparable accuracy, using DTW-DBA
with cut = 0.25 our method builds around 220 templates, less
than half the number of features. Second, some features such
as autocorrelation increase with the length of the time series,
and almost all features increase with p, the dimension of each
point. The dimensionality of our method is only influenced
by the number of templates, which can be fixed through the
cut parameter. Third, our method has reduced computational
complexity compared to feature extraction. Fast DTW has
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complexity O(m), whereas most features have computational
complexity at least O(m), and some features such as autore-
gression coefficients have computational complexity Ω

(
m2

)
.

B. UCI HAR Data

Figure 6 shows that our clustering scheme performs reason-
ably well in grouping differently-shaped curves. Both template
methods are able to capture the shape of the data. In fact, the
DPA and DBA templates appear very similar to one another.

Judging from the classification accuracy results in Table
I, for both cut = 0.5 and 0.25, DTW performs better with
DBA, achieving 0.797 over 0.781 and 0.860 over 0.841 respec-
tively. When cut = 0.25, DTWsubseq also does better with
DBA, with accuracy 0.855 over 0.838. But when cut = 0.5,
DTWsubseq performs better with DPA, achieving 0.789 over
0.777.

One possible reason why DBA did not consistently work
better is that the starting average sequence in DPA is initialized
using the same similarity measure (DTWD, DTWsubseqD) as
is used for clustering. The starting average sequence in DBA is
initialized with a random candidate in the cluster, as suggested
in the original paper [14].

It’s possible that with a few modifications, such as picking
the right initializing series for DBA, DTWsubseq-DBA with
cut = 0.5 could achieve higher accuracy as it performs
well in distinguishing between static and dynamic activities.
It makes only 22 classification errors between static and
dynamic activities, comparable to DTWsubseq-DPA, and has
comparable accuracy when considering 4 activities as shown
in parentheses in Table I.

The effects of lowering the cut threshold are clear-cut. As
expected, lowering the threshold (and increasing the number
of clusters) increased accuracy . With original DTW we see
an increase in accuracy from 0.781 to 0.841 with DPA, and
subsequently up to 0.86 with DBA. Using DTWsubseq, we
see an increase with DBA, and a smaller increase with DPA.
This may primarily be due to overfitting. Decreasing cut from
0.5 to 0.25 increase the number of templates from around 50
to over 500.

The highest accuracy our method achieved was 0.860 using
DTW-DBA with cut = 0.25, which is comparable to the
feature extraction method which had a test accuracy of 0.890.
One possibility is that the flat curves in static activities have not
been sufficiently removed. The static activity curves usually
have a spike, then remain flat. As some flat portions still remain
in our training and test sets, all 3 static activities contain flat
templates and hence induce high classification error within
themselves. This is evidenced by the confusion matrix for
DTW-DBA shown in Table IV where there are lots of mis-
classifications between activities 3-5, especially for activity 5.

However, we find that our methods are capable of perform-
ing better than feature extraction when we circumvent the issue
of the flat templates. Looking at the values in parenthesis in Ta-
ble I where we perform a 4-category classification of walking,
walking upstairs, walking downstairs and static activities, all
our methods with cut = 0.25 outperforms feature extraction’s
0.965 accuracy. DTW-DBA and DTWsubseq-DBA perform the
best with 0.977.

Predicted

Actual

⎡
⎢⎢⎢⎢⎢⎣

0 1 2 3 4 5

0 462 26 8 0 0 0
1 3 460 8 0 0 0
2 0 1 419 0 0 0
3 0 1 0 182 32 5
4 2 0 1 71 258 5
5 0 0 0 75 63 71

⎤
⎥⎥⎥⎥⎥⎦

TABLE IV: Classification by DTWsubseq-DBA and cut =
0.25. Activities are labeled as follows: 0- walking, 1 - walking
upstairs, 2 - walking downstairs, 3 - sitting, 4 - standing, 5 -
lying

Summarizing the results of our method on the UCI HAR
dataset, compared with benchmark feature extraction method,
we see that our accuracy rates are similar for six activi-
ties and better for four activities. Within our template-based
methods, we see that there is no clear improvement using
DPA versus DBA, and there is a slight overall improvement
using DTWsubseq over DTW. Finally, we see that in all cases
decreasing the cut parameter increases accuracy.

C. Synthetic Data

Our synthetic data experiments reflect the satisfactory
performance of our methods in the event of noisy data and
new test subjects not present in the training phase.

Comparing template construction, Figure 7 shows that
templates created using DBA are significantly more robust to
sporadic noise than those created by DPA. The samples in
Figure 7 are created from a single time series and modified by
adding noise at a small region of the curve. DBA successfully
accounts for this, as its template is identical to all curves
at points other than the noisy region, and its shape matches
the noisy region fairly well. On the other hand, DPA fails to
capture the identical shape of the curve as it underestimates
the magnitudes of the peaks and troughs.

However, because the test data is constructed from a
different template (simulating a different person), DBA overfits
to the training data. All methods with DPA perform similarly or
better than with DBA. With DPA instead of DBA, DTWsubseq
achieves 0.650 over 0.640 with cut = 0.5, and 0.700 over
0.655 with cut = 0.25. DTW performs similarly with DPA
and DBA with 0.615 and 0.620 respectively, and better with
DPA for cut = 0.25 obtaining 0.615 over 0.580.

The cut threshold follows similar trends as in the UCI
dataset, except that cut = 0.25 for DTW-DBA achieves lower
accuracy than cut = 0.5. This is likely due to overfitting as
the number of templates created was around 400.

Our method achieves the highest accuracy using
DTWsubseq-DPA with cut = 0.25 (0.700), 3% higher
than that of feature extraction (0.67). This gives good
indication that our method is potentially suitable for real-
world applications, since it is more robust to noise than
feature extraction, and is better at generalizing to data from
new test subjects.

Summarizing the results of our method on the synthetic
dataset, we see our method achieves higher accuracy than
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benchmark feature extraction. Within the template-based meth-
ods, we again see that there is no clear improvement using DPA
versus DBA, but there is an improvement using DTWsubseq
over DTW. Finally, we see that in almost all cases, decreasing
the cut parameter increases accuracy as expected.

D. Summary of Results

We summarize the accuracy results obtained using our
algorithm for clarity in Table V. We see that our algorithm’s
accuracy is comparable to feature extraction’s, and performs
better in most cases.

Accuracy on six activities Accuracy on four activities

UCI HAR 0.860 (0.890) 0.977 (0.965)
Synthetic N/A 0.700 (0.67)

TABLE V: Summary Table for Best template selection al-
gorithm vs. feature extraction. Feature extraction accuracy is
shown in parentheses.

IX. CONCLUSION

In this paper, we presented modifications to DTW as
a more accurate time series similarity measure, as well as
a template-based approach for Human Activity Recognition.
Through experiments on both real data and synthetic data, we
show that our approach gives comparable and sometimes even
better classification accuracy than the most common method
of feature extraction. As compared to feature extraction on
real data, our approach has comparable overall test accuracy,
and better accuracy within activities in the dynamic category.
For the synthetic data, it achieved higher accuracy, indicating
robustness to noise and the ability to classify data from new
test subjects. This is an especially useful feature for real-life
implementations of such classification algorithms, for instance
on a smartphone app.

Furthermore, the application of our approach extends be-
yond HAR, as long as the data set satisfies our definition
of multi-dimensional time series. Since the template-based
approach allows us to extract features without domain knowl-
edge, it can be readily applied to these new datasets, unlike
feature extraction methods which requires careful determina-
tion of useful features to achieve good accuracy.

X. FUTURE WORK

We plan to improve our activity recognition and template
usage in several ways. Potential directions include: modify-
ing DTW to learn more complex activities, cross validating
parameters in hierarchical clustering and DTW such as cut
or bandwidth bw to increase prediction accuracy, removing
redundant templates and limiting overfitting, and creating
synthetic data from templates which can increase predictive
power, or be used in place of real-world data.

Since the work presented in this paper is not specific to
HAR applications, we also plan to apply and evaluate our
algorithm on sequential data in other domains of research.
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